
Lexical Access via Phoneme to Grapheme conversion

1Michael Fridkin, 1David L. Dowe and 2Simon Musgrave
1Clayton School of I.T

2School of Languages, Cultures and Linguistics
Monash University
VIC 3800, Australia

mfri7@student.monash.edu.au
david.dowe@infotech.monash.edu.au
simon.musgrave@arts.monash.edu.au

Abstract

The Lexical Access (LA) problem in Com-
puter Science aims to match a phoneme se-
quence produced by the user to a correctly
spelled word in a lexicon, with minimal hu-
man intervention and in a short amount of
time. Lexical Access is useful in the case
where the user knows the spoken form of a
word but cannot guess its written form or
where the users best guess is inappropri-
ate for look-up in a standard dictionary or
by traditional computer spellcheckers. Pre-
vious approaches to this problem have at-
tempted to match user-generated phoneme
sequences to phoneme sequences in dic-
tionary entries and then output the stored
spelling for the sequences. Our approach
includes a phoneme-to-grapheme conver-
sion step followed by spelling-to-spelling
alignment. This ensures that more distor-
tion to the data can be handled as well as
reducing error rates and also allows us to
combine the Lexical Access problem with
a related task in Natural Language Pro-
cessing, that of spelling Out of Vocabulary
(OOV) items. We call this combination
the Hybrid Lexical Access (HLA) Prob-
lem. The performance of our system on this
task is assessed by the percentage of correct
word matches in the output after edit dis-
tance is performed to find the closest match
to a stored item.

1 Introduction

In languages with irregular spelling systems, such
as English, most speakers have trouble spelling
at least some words. To aid spelling there are

orthographic dictionaries (which index words by
their sequence of letters) and phonemic dictio-
naries (which index words by their sequence of
phonemes). We will be looking at how, given a
phoneme sequence, phonemic dictionaries can be
used by computer systems to look up single words
and if the word is not in the lexicon then how
computer systems can best give a suggestion to
its true spelling.

In orthographic dictionaries, finding the cor-
rect word depended on being able to spell the
first few letters correctly. Spellcheckers have im-
proved on this method but still have two draw-
backs. Firstly, they require a candidate spelling
before they can begin matching and this can prove
difficult in some situations; for example, an un-
stressed vowel sound (normally schwa in English)
can be spelled with many different graphemes.
Secondly, spell-checkers have difficultly match-
ing multiple graphemes which can correspond to
the same phoneme. For example, in the word
Aachen, the candidates Acen, Aken and Acken
would not map to the correct spelling using stan-
dard spellcheckers. Few speakers of English
would know that /k/ is spelled asch in some cir-
cumstances such as the one in the example. Com-
puter systems can supplement the user’s linguistic
knowledge in these situations.

In Computer Science theLexical Access Prob-
lem involves matching a sequence of phonemes
to a sequence of words. It is assumed that each
phonemic sequence corresponds to some word in
the lexicon and it is the job of the computer sys-
tem to ascertain what the intended word is. We
wish to do a similar task but for single words and



without the assumption that the word is in the
dataset. If the word is not in the dataset then the
problem turns into that of spelling Out of Vocab-
ulary (OOV) items. Obviously the user can not
specify if the word is or is not in the dataset and
the system must make that judgement itself. This
extension of the Lexical Access Problem to in-
clude OOV items we call the Hybrid Lexical Ac-
cess (HLA) Problem. Besides improving look-
up of spelling for unfamiliar and unknown words,
both aspects of this hybrid problem are also rele-
vant as part of automatic speech recognition sys-
tems. The focus of this article is to compare and
contrast the Lexical Access, Spelling OOV items
and HLA problems and their applications to aid
people with spelling.

2 Background

The dataset for the HLA problem is one or more
phonemic dictionaries (the problem is restricted
to single words so continuous speech data is ir-
relevant). Since dictionaries are transcribed by
expert linguists or by automatically utilizing lin-
guistic rules made by linguists and users are not
expected to have the same training, there is no
guarantee that both will agree on a correct pro-
nunciation. The system must assume that most
times there will be disagreement. The main role
of the system is to standardize input from users to
match, ideally, a single dictionary entry.

The system is given 1 attempt to produce the
correct match for the input during testing but in
practice it is allowed to output as many words
as necessary (to cover the case of multiple ho-
mophones - i.e. to, two and too). We need to
measure the system’s accuracy by how accurately
it performs across a wide range of words, to pre-
vent bias towards one class of words, such as short
words or common words or words with silent let-
ters.

An example of a flaw in the system is if a
dataset has silent letters, such as “w” in wrong,
aligned to a special null or empty phoneme re-
sulting in silent letters being second-class citizens
and likewise the words containing the silent let-
ters. If the “w” in wrong and “p” in psychol-
ogy are treated as the same phoneme and there
are 25 graphemes which may correspond to this
phoneme in total then each will have a base prob-

ability of roughly
1

25
= 4%. Such a system will

have a high accuracy because it will give the cor-
rect output for the other phonemes. The output
overall will be very close to being correct. The
problem is that the bias will be directed towards
words without silent letters. Those words that do
not belong to this class will be significantly dif-
ficult for the system to find, roughly 25 attempts
on average to find the “w” in wrong, which is not
practically feasible.

Our system first does phoneme-to-grapheme
conversion (PTGC) and then finds the best match
from the dataset for that grapheme sequence (us-
ing the ASPELL spellchecker). If no match is
found, then the generated grapheme sequence is
the final output of the system. The metric which
we use for measuring the success of the first
stage of the system is a Average Conversion Per-
centage (ACP) at word level, corresponding to
what (Marchand and Damper, 2000) refer to as
“percent correct” and what (Rentzepopoulous and
Kokkinakis, 1996) call “success rate of the con-
version algorithm ... at the word (state sequence)
level”. The ACP is the percentage of entries con-
verted correctly in the PTGC stage out of the to-
tal number of entries produced. No edit distance
measure is included at this stage. During post-
processing ASPELL matches the grapheme string
output from the PTGC to a word in the dataset us-
ing the Minimum Edit Distance criterion which
selects the grapheme representation for which
the minimum number of insertions, deletions and
substitutions is required (Levenstein, 1966). The
success of the system at this stage is measured
using ACP Average Conversion Percentage after
Edit Distance (ACP-Ed), which again represents
the percentage of correct matches out of the total
number of outputs produced.

ACP-Ed was used to control training of the
PTGC component and it has several advantages
for this purpose. Firstly, it reduces any bias in
the assessment process towards short words and
common words. If Edit Distance is not taken into
account, the performance of a system may be ex-
aggerated if it handles such words well even if
its output when dealing with longer words and
uncommon words is very poor. Using ACP-Ed
means that the system is guided towards produc-



ing good output for all input, even if very few
inputs achieve perfect output. Secondly, ACP-
Ed takes into account the size and distinctive-
ness of the available dataset and assesses not only
how close the output of PTGC is to the correct
graphemic representation, but also how close the
output is to similar dictionary entries and whether
sufficient information is available to discriminate
between similar entries. For example, the phone-
mic input [a b d uh k t @r r z] (‘abductors’), pro-
duces ‘abducters’ as output from PTGC. This has
an Edit Distance of 1 from the correct graphemic
representation (substitution of ‘o’ for ‘e’ is re-
quired at position 7), which is a good result. How-
ever, the dictionary also contains the entry ‘ab-
ductees’, which also has an Edit Distance of 1
from the PTGC output (substitution of ‘e’ for ‘r’
is required at position 8). Therefore, the PTGC
output is not good enough to disambiguate be-
tween the two possible matches with grapheme
strings from the dictionary and the result will
count as a failure in the calculation of ACP-Ed.

When plotted on different axes, we see fluc-
tuations between ACP and ACPed, indicating a
non-monotonic relationship. Indeed, these fluc-
tuations occur with some consistency across the
two data-sets (UNISYN andNETtalk) used in our
study and again when we varied the internal or-
ganisation of the PTGC process - namely, the for-
mat table encoding from sec. 5.4.

3 Previous Work

Pronunciation by analogy (Marchand and
Damper, 2000) is a PTGC technique which
matches substrings of the input phoneme se-
quence to substrings of a group of words with
similar phoneme sequences in the dataset and
uses their corresponding grapheme sequences
to infer the output grapheme sequence. The
system of that study used theNETtalkcorpus of
approximately 20,008 hand-aligned entries with
stress and syllable boundaries to achieve 76.4%
ACP.

NETtalk was produced by Terrence J. Se-
jnowski and intended for grapheme-to-phoneme
conversion, it is setup using 50 phonemes and a
null phoneme for silent letters. In practical sit-
uations the null phoneme, which gives cues to
the system about locations of silent letters, is not

given to the system. This makes this dataset an
interesting area of investigation for phoneme-to-
grapheme systems because accurately predicting
how the null phoneme is spelled would greatly
improve accuracy for silent letters. Roughly half
of theNETtalkdataset contains the null phoneme.
This is due to the fact that vowels can be monoph-
thongs such as “e” in pet or dipthongs as in “a”
in pay. The word pay is transcribed /pe-/ where
the “e” stands for /eI/ and the y corresponds to
the null phoneme. To make the dataset useful for
training and testing PTGC systems, an auxiliary
system needs to be created which takes as input a
phonemic sequence and inserts the null phoneme
in appropriate locations.

A run of the Snob (Wallace and Dowe, 2000)
software on theNETtalk dataset revealed that
roughly 70% of the time when the null phoneme
was observed it was surrounded by predictable
neighbours or one of several predictable neigh-
bours. For example, the phoneme /eI/ represented
in NETtalkby the letter “e”, as a first vowel in the
nucleus of a syllable receiving secondary stress in
penultimate position, occurs 64 times inNETtalk.
Out of those 64 times, 60 times the null phoneme
is at the last position. To be even more precise,
when /eI/ is spelled using the letter “a” and is the
first vowel in the nucleus of a syllable receiving
secondary stress in penultimate position it occurs
52 times in the dataset, all of which are followed
by the null phoneme in last position. The pre-
dictability of the null phoneme can be the basis
for a system for converting data inNETtalk for-
mat into one that is compatible with the general
format of input to PTGC systems (which does not
have the null phoneme).

The approach in (Thomas et al., 1997) to the
Lexical Access problem was to match the in-
put phonemic sequence to a phoneme sequence
from the dataset and then output the correspond-
ing grapheme sequence. Their dataset contained
more than one realization of the same word so
they used edit distance to match the input se-
quence to one of the realizations seen in the
dataset from which the corresponding grapheme
sequence was the output. The testing was done
by inputting phoneme sequences and measuring
how many input phonemes differ from a candi-
date stored lexicon sequence divided by the to-



VB - Verbs
VBD VBG VBN

past tense gerund past participle

JJ -Adjectives
JJR JJS

comparative superlative

NN - Nouns
NNS NNP NNPS
plural proper proper plural

Table 1: Part of speech (POS) abbreviations

Orthography a b o a r d
NETtalk x0 b o1 -〈 r d

IPA �A "b O: ô d
Unisyn @ b *oo a rd

IPA @ "b O: ôd

Table 2: Comparison of dataset representations of the
word aboardwith different alignment strategies.

tal number of phonemes, called the distortion
rate. The distortion threshold is the maximum
distortion rate for which the corresponding av-
erage Word Error Rate (WER) was calculated.
With Part of speech (POS) tags in the input they
achieved results of 24.53% WER under 10% dis-
tortion threshold and without POS tags, 31.29%.
The degradation in performance of their system,
with POS tagging and without, when increasing
the distortion threshold can be seen in figure 1.

Two points of interest in figure 1 are that the
last increase in distortion from 50% to 60% ac-
tually decreases the WER by 0.19% and that the
model with POS tagging show a higher degrada-
tion under distortion than the one without POS
tagging, which corresponds to our results for POS
tagging (sec. 6). For example, when increasing
the distortion rate from 10% to 20% the WER of
the model with POS tagging increased by 1.62%
whereas the model without POS tagging, with the
same increase in rate of distortion increased by
1.56%. As a ratio of the original 10% WER, these
come to 1.07% and 1.05% respectively as seen in
figure 1, for 20% distortion. The 0.02% differ-
ence between the two models stays roughly con-
stant as the distortion ratio increases.

Figure 1: (Thomas et al., 1997) Results

4 Resources Used

There were two datasets used for training and test-
ing our system, the UNISYNAccent-Independent
Keyword Lexiconand theNETtalk corpus. The
two datasets differed both in size and the levels of
detail. The UNISYN dataset had roughly 119,356
entries, after entries with special symbols such as
apostrophes were removed. Each entry contains
orthography, POS tag, phonemic transcription,
syllable boundaries, morpheme boundaries and
typical word frequency as found in standard liter-
ature. However phoneme to grapheme alignment
is not included and had to be done separately.
The alignment strategy for this dataset,AU , par-
titioned the dataset into phoneme and grapheme
pairs using a hand-made table of intuitive corre-
spondences.

The NETtalkcorpus has for each entry an or-
thography, phonemic transcription and an indica-
tor variable in the range 0 to 2 to say whether
the word is irregular, foreign or common. The
phonemes and graphemes are aligned one-to-one
in a format suitable for grapheme-to-phoneme
conversion. There is a null phoneme which corre-
sponds only to silent letters and makes the corre-
spondences more regular for the other phonemes.



The NETtalkalignment strategy we callAN . A
comparison of the results of the two models of
alignment is in table 2.

To prepare the datasets for training and testing,
lexical stress, POS tags and phonemic transcrip-
tions were extracted from them and an alignment
strategy was applied. For theNETtalkdataset the
POS tags were matched to the UNISYN dataset
where they had entries in common and the rest of
the tags were automatically generated usingC&C
Tools(Clark and Curran, 2004).

For analyzing the datasets the Snob program
was used, which does flat clustering using the
Minimum Message Length (MML) criterion.
When a dataset is run through Snob using an
alignment model,AN or AU , the output is a set
of classes all at the same depth for each pairing in
the model. The classes are a hypothesis about the
data that when applied to the data and transmitted
with the data as a message has the shortest two-
part message length (Wallace, 2005) (Wallace and
Boulton, 1968) (Patrick, 1991). The premise is
that the shortest message Snob finds will be a
good explanation of the data.

5 Method

Figure 2: System flow

The system can be divided into 3 modules:

(i) Pre-processing, represented in figure 2 as
the steps from “Data” to “Rules”, (ii) Process-
ing, starting at the “SCFG” step and ending
at the “PTGC Candidate” step, and (iii) Post-
Processing, starting at the step “Spellcheck” and
ending with either “Output Candidate” or “Output
Match”.

The pre-processing stage aligns the dataset by
using an alignment model if the dataset is not al-
ready aligned and generates a list of classes pro-
duced by running Snob on the aligned dataset.
The list of classes are passed to the parser to be
converted into a Stochastic Context Free Gram-
mar (SCFG).

The processing stage of the system is given the
input in the form of a phoneme sequence and its
POS tag, as well as a SCFG. Each phoneme in the
sequence is processed sequentially and its output
graphemes are concatenated to produce the can-
didate word.

The post-processing stage is given the candi-
date word with the dataset only containing the
word spellings and it has to find the best match
or fail and output the candidate word and part of
speech tag it was given.

5.1 Pre-processing

The dataset usually consists of a series of en-
tries of phoneme sequences and word spelling.
In the phoneme sequence each phoneme is writ-
ten out separately and the word spelling is writ-
ten together as a single string. We want to look
at the structure of the word to create models
for understanding the relationship between the
phoneme sequence and the grapheme sequence
and this requires breaking up the word spelling
into a grapheme sequence with each member
of the grapheme sequence having one or more
graphemes corresponding to one phoneme.

Phonemes with different levels of stress are
considered as different, as well as phonemes that
are the beginning of names. In total there are
657 pairs, 463 part of speech tag combinations
(35 basic tags) - which are only used at the post-
processing “Spellcheck” step - and 157 phonemes
(including merged phonemes).

The dataset now consists of a series of pairs
of phonemes and graphemes and each possi-
ble pairing is given a unique ID. A phoneme



can have multiple grapheme pairings so it spans
over several ID’s. We choose the ID’s for each
pairing carefully following the criteria that for
each phoneme the ID’s which correspond to that
phoneme are contiguous, for example{39 k c, 40
k ck, 41 k k}. ID’s in each possible broad sound
groups (such as monophthong vowel, diphthong
vowel, stop or fricative) are also contiguous.

We can now view each ID in the list as a sep-
arate entity, distinct from the word in which it
was originally found, surrounded by zero or more
neighbours and having a position in the ID se-
quence. This list of independent ID’s is used as
input to the Snob program in order to generate
classes which use patterns in the occurrence of
neighbours to compress the dataset into groups
whose combined size equals a fraction of the size
of the original dataset.

Groups are chosen following two criteria.
Firstly, the ID in any group is exactly the same or
very close (for example, a group may consist of
a vowel and a stressed form of the same vowel),
and secondly the neighbours and position for that
ID are as different as possible to all the other ID’s
which have the same phoneme (we do not need
to worry about ID’s that do not have the same
phoneme because in the input we are given the
phoneme). Each group is described by a Normal
distribution for each of four neighbours (neigh-
bour two spaces to the left to the neighbour two
spaces to the right, and position of the ID). We
end up with a distribution with the mean centered
not at the most frequent ID but at the ID which
has a value which is in between the most frequent
ID’s. These are our classes which from now on
we refer to as rules.

5.2 Processing

The system parses an input phoneme sequence by
looking at the environment (its neighbours and
position) of each of the phonemes and looks up
every relevant rule in the SCFG to find the most
likely rule. All the rules we select have a distribu-
tion centered at one particular value for attribute
6 which is outputed by the parser when the rule is
selected.

For example, for the pair “e@” (meaning schwa
is spelled with an “e” having ID 63 in our model
(there are 1031 such pairs in a sample dataset of

10,000 words, as in “abhorrence”. Snob will find
a class with this identical spelling of schwa and
the description of the attributes of this class will
inform us when to use this spelling. This is the
class which describes this pair:

Serial 517 Relab 0.019 Size 152.
Att 2 vals 152.

Mean 508.5465 S.D. 66.9917
Att 3 vals 152.

Mean 469.9997 S.D. 0.4144
Att 4 vals 152.

Mean 502.1750 S.D. 88.1242
Att 5 vals 152.

Mean 5.9335 S.D. 2.2393
Att 6 vals 152.

Mean 63.0000 S.D. 0.0400

Att1 is the model for the pair 2 spaces left, if there
is none then the value is -1.0, likewise Att2 is the
pair 1 space to the left, Att3 is the pair 1 space
to the right, Att4 is the pair 3 spaces to the right
and Att5 is the position of the ID for the current
class. Most importantly att6 is the description of
all the ID’s in this class. The standard deviation of
0.04 means that all the ID’s are exactly the same.
Although there are 6 attributes Snob looked at, it
chose the above 5 for this class and attribute 1 it
deemed as insignificant for this class. Snob deems
attributes as insignificant when their description is
almost identical to the description of the popula-
tion (for this attribute it is [Mean 246.7137, S.D.
210.8832]). Our current population is all possible
pairings of schwa with any graphemes. To inter-
pret this class we need to look at the range of the
different Broad Sound Groups (BSG).

Start marker -1 End marker 629
Monophthong 1 .. 215 Dipthong 216 .. 394
Tripthong 395 .. 404 Plosive 405 .. 454
Nasal 455 .. 494 Approximant 495 .. 546
Fricative 547 .. 574 Affricate 575 .. 618
Trill 619 .. 628

This class says that we spell schwa as “e” when
it is around position six preceded by a Plosive or
Approximant and followed by “n” and then by a
Plosive, Approximant or Fricative. These are the
combinations “ment”, “dence” and “tence”. In
our example the neighbours of the schwa are “"o
r” on the left and “n s” on the right, that is Att1



is in the range 164 to 167, Att2 is 619 to 629,
Att3 is 460 to 476 and Att4 is 559 to 574. All of
the values lie without one standard deviation from
where the class predicts except for Att2 which is
two standard deviations away. This is still a high
probability because 68.3% of the values lie within
one standard deviation of the mean for the Normal
distribution and 95.5% lie within two standard de-
viations.

In order to automatically find this rule we write
all the classes we are interested in - that is all the
classes that have an ID with the schwa phoneme
- as production rules in the SCFG with attributes
one to five on the right hand side and attribute
six on the left. Next we give each class a weight
which reflects the size of this class divided by
the total size of the population. Then we give
each input symbol a weight which reflects the
probability of seeing this symbol when looking
at the appropriate attribute for all the members
of this class. Finally we choose the rule which
has the highest probability of being parsed. A
fragment of the SCFG for class 517 given the
input “{ "o r @ n s 6}” is:

1.0 Start –> St
0.15 e –>{ Att1 Att2 @ Att3 Att4 Att5 }
0.0017 Att1 –> "o
0.0013 Att2 –> r
0.0618 Att3 –> n
0.0034 Att4 –> s
0.1780 Att5 –> 6
0.13 St –> e

Non-terminals ={St, Att1, Att2, Att3, Att4,
Att5}, start Symbol ={Start}, terminals ={e, "o,
r, n, s, 6,{, }}. The weights for the St symbol rep-
resent the relative frequency of the ID in relation
to the other ID’s of this phoneme, the weight for
the rule (surrounded by curly braces) is the size of
the group it represents as a fraction of all the ID’s
of this phoneme and the weights of each attribute
is calculated by sampling over the range of the
input phoneme corresponding to the appropriate
attribute. We sample from the Normal distribu-
tion which the attribute models, over the range of
the input divided by the magnitude of the range to
calculate the average probability of each ID which
the input ranges over of belonging to this class.
For example, attribute 1 is N(µ = 246.7137,σ =

210.8832) and the first input is “"o” with range
164 to 167 so the weight in the SCFG for this at-
tribute given the current input is 0.0017.

Formally a SCFG is a pair (p, G) where:p :
P → [0, 1] is a probability function assigning
probabilities to rules such that

∑
i∈ΠA

p(A →
αi) = 1 andΠA is the set of all rules associated to
A, (Bened́ı and Śanchez, 2007). A SCFG is con-
sistent if the probability assigned to all sentences
in the language of the grammar sums to 1.0.

The result of a Snob run (Wallace and Dowe,
2000) using the six attributes discussed at the start
of the section was a set of classes, for each pair-
ing of phoneme to graphemes, with each class
having a model containing the mean, standard de-
viation and relative abundance. This produced a
SCFG consisting of 35,000 classes over a dataset
of 99,800 entries and 657 pairs, with an average
of 53.27 classes needed to describe each ID.

Sys Data Size ACP a ACPb ACPc

AU
d UNIe 10K 16.53 84.74

AN
f NETg 20K 31.27 91.00

AN NETh 20K 31.27 81.20
M.i NET 19.5K 75.1

aACP when the system has no access to the lexicon
bACP when the system has access to all but the target entry

of the lexicon
cACP when the system has full access to the lexicon,

i.e. ACPed
dOur system using UNISYN alignment
eUNISYN dataset
fOur system using NETtalk alignment
gPOS tags added to NETtalk
hNETtalk dataset
i(Marchand and Damper, 2000) under 0% distortion

Table 3: Comparison of Systems

From,To [@, æ] [aI, æ]
Effect -0.73% -0.17%
Freq. 46.0% 6.78%

Table 4: Effects of Vowel Distortion

5.3 Post-processing

After a candidate is generated its most common
part of speech tag is attached to it and an attempt
is made to match the candidate to a lexicon word.



From,To [d,S] [Ù, S] [t, S]
Effect -3.11% -1.21% +2.39
Freq. 23.31% 3.05% 7.8%

Table 5: Effects of Consonant Distortian

From, To NNP, NN NNPS, NN NNS, NN
Effect. -1.85% -0.76% -3.7%
Freq. 14.4% 1.5% 18.0%

Table 6: POS distortion - Nouns

If the candidate cannot be matched then the out-
put is the candidate, however if the candidate can
be matched to some lexicon word then that word
is the output. In the testing stage if the output
word has any homophones they are ignored how-
ever the end system will output all homophones
with the output word.

5.4 Format Table Encoding

The Format table contains all the different pair-
ings of phonemes and graphemes in the dataset.
The table contains 657 entries for the phonemes
and all the part of speech tag combinations. The
table is used to process the data, which is in
human-readable format into numeric form, for
Snob to process. Different arrangements of the
Format Table result in different SCFG’s produced
by Snob and different ACP and ACPed results.

6 Results and Discussion

There were three systems compared during the
testing phase of the study, with our system tested
on two different datasets under two different
alignment models. Table 3 is a comparison of
our system with that of (Marchand and Damper,
2000), with access to different amounts of the
dataset. Comparing our results with (Thomas
et al., 1997) was difficult because they used the
WER metric which is calculated differently to
our ACP and ACPed and their results are omit-
ted from the table. Our system performs less well
than the other systems when only PTGC is con-
sidered, but does better than either of the other
systems when the post-processing is included.
Only one system, that of (Marchand and Damper,
2000), was suitable for leave-one-out testing but
looks to be the most promising solution to the

From, To VBD, VB VBG, VB VBN, VB
Effect -1.51% -0.24% -1.08%
Freq. 3.52% 6.7% 2.96%

Table 7: POS distortion - Verbs

From, To JJR, JJ JJS, JJ
Effect -0.35% -0.13%
Freq. 0.5% 0.71%

Table 8: POS distortion - Adjectives

HLA problem if the low ACP can be further low-
ered by the factor seen in our system when the
system has full access to the dataset. The two
models we used to test our system reveal thatAN

gives the lowest ACP under all types of access to
the dataset and that including POS tags increases
the ACP from 81.2% to 91.0% for that dataset (ta-
ble 3).

Two of the systems studied performed tests on
the effects of distortion to their systems. Tables 4
to 8 are the results of running theAN system un-
der various distortions. The distortions were per-
formed by changing all occurrences of a phoneme
in the dataset to a different phoneme and running
the system again without retraining it. The values
in the tables are the penalty costs for each distor-
tion in the corresponding row and column. For
example, in table 4 column 1, row 1 the value of
the penalty is -0.73%, corresponding to a fall in
the ACPed of 0.73%. The “Freq.” row reports the
frequency of the column element in the dataset.

Tables 5 and 4 rely on the PTGC component
of the system to recover from errors and tables 6,
7 and 8 rely on the spellchecking software to re-
cover. Distortion to the input of the PTGC does
not degrade performance as much as to the post-
processor under most conditions of distortion un-
less the distortion results in a phoneme which is
found completely different environments to the
original. Table 5 actually records a bonus, sug-
gesting that some phonemes have interchangeable
environments. Tables 6, 7 and 8 demonstrate
that during post-processing recovering from er-
rors is difficult, with an average decrease in per-
formance of 30% (where table 1 expands the ab-
breviations).



References

Jośe-Miguel Bened́ı and Joan-Andreu Śanchez. 2007.
Fast Stochastic Context-Free Parsing: A Stochastic
version of the Valiant Algorithm. InIbPRIA (1),
pages 80–88.

Stephen Clark and James. R. Curran. 2004. Parsing
the WSJ using CCG and Log-Linear models. In
Proceedings of the 42nd Annual Meeting of the As-
sociation for Computational Linguistics (ACL-04),
pages 104–111.

A. Levenstein. 1966. Binary codes capable of cor-
recting deletions, insertions and reversals. InSoviet
Physics-Doklandy, volume 10.

Yannick Marchand and Robert I. Damper. 2000. A
multistrategy approach to improving pronunciation
by analogy. Association for Computational Lin-
guistics, 26(2):195–219.

Jon D. Patrick. 1991. Snob: A program for dis-
criminating between classes. Technical Report CS
91/151, Dept Computer Science, Monash Univer-
sity, Melbourne, Australia.

Panagiotis A. Rentzepopoulous and George K. Kokki-
nakis. 1996. Efficient multilingual phoneme-to-
grapheme conversion based on hmm.Computa-
tional Linguistics, 22(3):351–376.

Ian Thomas, Ingrid Zukerman, Jonathan Oliver, David
Albrecht, and Bhavani Raskutti. 1997. Lexical ac-
cess for speech understanding using minimum mes-
sage length encoding. InIn UAI97 Proceedings
of the Thirteenth Conference on Uncertainty in Ar-
tificial Intelligence, pages 464–471. Morgan Kauf-
mann.

Chris S. Wallace and David M. Boulton. 1968. An
information measure for classification.Computer
Journal, 11(2):185–194.

Chris S. Wallace and D. L. Dowe. 2000. MML clus-
tering of multi-state, Poisson, von Mises circular
and Gaussian distributions.Statistics and Comput-
ing, 10(1):73–83, January.

Chris S. Wallace. 2005.Statistical and Inductive In-
ference by Minimum Message Length. Springer,
Berlin, Germany.


