Proceedings of the Australasian Language Technology Workshop 2007, pages 92-99

Question Prediction Language Model

Luiz Augusto Pizzato and Diego Molla
Centre for Language Technology
Macquarie University
Sydney, Australia
{pizzato, diego}@ics.mg.edu.au

Abstract

This paper proposes the use of a language
representation that specifies the relationship
between terms of a sentence using question
words. The proposed representation is tai-
lored to help the search for documents con-
taining an answer for a natural language
question. This study presents the construc-
tion of this language model, the framework
where it is used, and its evaluation.

1 Introduction

Although Information Retrieval (IR) can be helped
by NLP techniques such as named entity (NE)
recognition, phrase extraction and syntax parsing
(Strzalkowski, 1999), they are not generally used
due to their high complexity. One such task that peo-
ple can perform somewhat easily whilst still being
hard for computers is the answering of factoid ques-
tions based on textual content. The Question An-
swering (QA) Track of TREC (Voorhees, 2005) fo-
cuses on answering questions using the AQUAINT
corpus (Graff, 2002), which contains 375 million
words from three different sources of newswire data:
Xinhua News Service (XIE) from People’s Republic
of China, the New York Times News Service (NYT),
and the Associated Press Worldstream News Service
(APW).

For the QA task, not only it is important to find an
answer in a document, but also to find the documents
that might contain the answer in the first place. Most
QA systems take the approach of using off-the-shelf
IR systems to return a list of documents that may

92

contain an answer, and then processing the list of
documents to look for the required answer. Nor-
mally the processing time for every question in these
systems is long because of the sheer amount of work
that is required after the list of document is returned.

Many QA systems focus on the input and output
of IR systems. For example, Dumais et al. (2002)
perform a passive-to-active voice transformation of
the question, in an attempt to bring the IR query
closer to the document it is expected to retrieve.
Some IR work focuses on improving QA by pas-
sage retrieval re-ranking using word overlap mea-
sures. For instance, Tellex et al. (2003) compare a
group of passage retrieval techniques and conclude
that those that apply density-based metrics' are the
most suitable to be used for QA.

Some work has been done on IR models that
specifically aid the QA task. The work of
Monz (2004) defines a weighting scheme that takes
into consideration the distance of the query terms.
Murdock and Croft (2004) propose a translation lan-
guage model that defines the likelihood of the ques-
tion being the translation of a certain document.
Tiedemann (2005) uses a multi-layer index contain-
ing more linguistic oriented information and a ge-
netic learning algorithm to determine the best pa-
rameters for querying those indexes when applied
for the QA task. Tiedemann argues that since ques-
tion answering is an all-natural language task, lin-
guistic oriented IR will help finding better docu-
ments for QA.

In this paper we propose a language representa-

'Ranking of passages based on the number of query words

and the proximity between them.

mailto:@ics.mq.edu.au

tion that when used in the IR stage of a question
answering system improves its results. As a conse-
quence it helps to reduce the processing time due to
a better retrieval set and because it has the capacity
of giving answer cues.

This paper is divided into five sections. The next
section presents the Question Predication Language
Model and some of its features. Section 3 introduces
how the the model is used and how the necessary re-
sources for its usage were built. Section 4 describes
some experiments and present some preliminary re-
sults. Section 5 presents the concluding remarks and
future work.

2 Question Prediction Language Model

We describe a language model that focuses on
extracting a simple semantic representation of an
English text that can be easily stored in digital
databases and processed by Information Retrieval
(IR) tools. We focus on extracting a particular kind
of semantic that help us to find the location of a text
that has some likelihood of answering a question.
The model and its semantic are defined as Question
Prediction (QP).

The Question Prediction Language Model
(QPLM) represents sentences by specifying the
semantic relationship among its components using
question words. In this way, we focus on dividing
the problem of representing a large sentence into
small questions that could be asked about its
components. In other words, we represent the
relationship among key words of a sentence as short
questions. For instance, the sentence “Jack eats
ham” could be represented by the following two
triples: Who(eat, Jack) and W hat(eat, ham).
Using this model it is possible to answer short
questions that focus on relations existent inside a
sentence context, such as “Who eats ham?” and
“What does Jack eat?”.

The QPLM represents sentences as semantic rela-
tions expressed by triples q(w, a) where ¢ is a ques-
tion word, w is the word that concerns the question
word ¢ and a is the word that answers the relation ¢
about w. For instance the relation Who(eat, Jack)
tells us that the person who eats is Jack. The repre-
sentation of our semantic relations as triples Q(w, a)
is important because it allows the representation of

93

what

4
pla@w"i, school
what which
\ 4 A 4

[flag] [every

Figure 1: Graph Representation

sentences as directed graphs of semantic relations.
This representation has the capacity of generating
questions about the sentence being analysed. Fig-
ure 1 shows such a representation of the sentence:
“John asked that a flag be placed in every school”.

Having the sentence of Figure 1 and removing
a possible answer a from any relation triple, it is
possible to formulate a complete question about this
sentence that would require a as an answer. For in-
stance, we can observe that removing the node John
we obtain the question “Who asked for a flag to be
placed in every school?” where W ho was extracted
from the triple Who(ask, John). The same is valid
for other relations, such as removing word school to
obtain question “Where did John asked for a flag to
be placed?”’. The name Question Prediction for this
model is due to its capability of generating questions
regarding the sentence that has been modeled.

In this section, we have shown how our model
represents the semantic information. In the next sec-
tion we focus on the implementation of QPLM and
its usage.

3 Building and using QPLM

As observed in Figure 2, a training set of QPLM
triples was created using mapping rules from a cor-
pus of semantic role labels. Using a syntactic parser
and a NE recognizer with our training set, we were
able to learn pattern rules that we further applied in
the processing of the AQUAINT corpus.

PropBank (Palmer et al., 2005) is a corpus with
annotated predicate-argument relations from the
same newswired source of information as the Penn
Treebank®. We used PropBank as our starting point

http://www.cis.upenn.edu/ treebank

http://www.cis.upenn.edu/

hand fted t ted
anlua e oPLM auomge AQUAINT
mapping rules learning QPLM
PropBank S trainin S N
P 4 ~ fning 4 7~ pattern rules ~~s~g
data ..
T Connexor PropBank
l 2 with parse trees >—ro
and named entities
TnoPipe > QPLM annotated
AQUAINT

Figure 2: Creation and usage of pattern rules.

because it comprises the same textual style, and the
predicate-argument relations (also referred to as se-
mantic roles) can be mapped to QPLM triples.

We studied the possibility of using semantic role
labeling tools to perform the semantic annotation,
however our experiments using these tools showed
us that they have not yet achieved a reasonable speed
performance. For instance, the SwiRL semantic role
labeling system® would take a couple of years to
fully process the AQUAINT corpus. In contrast, our
system takes a couple of days if all the necessary
information is already at hand; adding the time re-
quired for syntactic parsing and NE recognition, the
total processing period is not longer than two weeks.

3.1 Training corpus

PropBank is processed through a set of map-
ping rules from the predicate-argument relations to
QPLM. Using a PropBank map as our training data
gives us the benefit of a large training set, but at
the same time it will only create relations that are
present in PropBank, therefore excluding some rela-
tions that we wish to include. For instance, relations
that do not involve any action, such as the ownership
relation in (Whose(car, Maria)) and the quan-
tity relation in (HowM any(country,twenty))),
among others.

PropBank defines relations between predicate and
arguments without properly defining their meaning.
On the other hand, it does keep a format where the
argument number O represents the agent acting upon
something and argument number 1 represents pa-
tients or themes. PropBank was manually anno-
tated according to the PropBank Marking Guide-

*http://swirl-parser.sourceforge.net/

94

lines (Babko-Malaya, October 2006). The guide-
lines represent an effort to build a consistent set of
relations, however a closer look at the corpus shows
that consistency is a hard task to achieve, particu-
larly with the vaguely defined arguments number 3
onwards. For those cases the inclusion of a function
tag proved to be useful®.

Observing how arguments and predicates relate to
each other, we created a set of rules mapping from
argument-predicate relations to the QPLM. The ba-
sic differences between both models is that the
QPLM triple contains a label representing a more
specific semantic relation, and that it associates only
the head of the linked phrases. For instance, the
sentence “The retired professor received a lifetime
achievement award” is represented as:

(1) Semantic Roles: [The

retired professor] 4 FG0
[received]?"®? [a lifetime achievement award]

ARG1

(2) QPLM: Who(receive, professor), What(receive, award)

As can be observed in (1), semantic role label-
ing does not provide information about which is the
main term (normally the head of a phrase) of each
argument, while in (2), QPLM represents relations
between the phrase heads. In order to find the phrase
head, we applied a syntactic parser (Connexor’) to
PropBank sentences. However, the phrase heads
are not always clearly defined (particularly when the
syntactic parse tree is broken due to problems in the
parser) creating an extra difficulty for the mapping
process. When a syntactic path cannot be found be-
tween predicates and any of the words from the ar-
gument, we then try to find the head of the phrase

* A function tag is information attached to the arguments rep-
resenting relations such as negation, location, time and direc-

tion.
Shttp://www.connexor.com

http://www.connexor.com

by syntactically parsing the phrase by itself. If this
also fails to provide us with a head, we simply use
the first available non-stopword if possible.

The stage of finding the related phrases heads
showed to be quite important, not only because we
would be defining which words relate to each other,
but also because if a broken parse tree is found, no
rules could be learnt from the resulting QPLM triple.
An analysis of the data showed us that 68% of the
QPLM triples derived from PropBank were gener-
ated from an unbroken parse, while the rest used
some of the other methods.

We understand that even though our model has
similarities with Semantic Role Labeling, we are
taking a step further in the sense of semantic repre-
sentation. QPLM has a finer semantic representation
meaning that a predicate argument relation in Prop-
Bank might have different representations in QPLM.
Our mapping rules takes into consideration not only
the number of the argument but also the predicate
involved and the POS or NE of the related words.

Even though we cover different aspects of Prop-
Bank in our mapping, we observed that many pred-
icates hold different meanings for the same argu-
ments which creates a problem for our mapping
strategy. This problem was not fixed because of
the prohibitive amount of work needed to manually
mark all the different meanings for the same pred-
icate in different sentences. In these cases, where
the same predicates and the same argument repre-
sent different semantics according to the QPLM, we
chose the one most representative for the set of sen-
tences using that predicate and argument. For in-
stance, the argument number 3 of predicate spend
for the majority of the cases represents a quantity
of money that was spent (a HowMuch label), how-
ever we have one case where the argument is cash (a
What label). This type of mapping compromises the
accuracy of our conversion, however a randomly se-
lected set of 40 documents was manually evaluated
showing that nearly 90% of the QPLM triples were
correctly converted.

After the mapping was finalized we obtained a
training set of rules with 60,636 rules, and 39 types
of semantic relations (Table 1).

95

aboutwhat do outofwhat
adv forwhat overwhat
afterwhat fromwhat | subj
againstwhat how towhat
aroundwhat howlong | towhom
aswhat howmuch | underwhat
atwhat howold what
behindwhat intowhat when
belowwhat inwhat where
beneathwhat | likewhat who
betweenwhat | obj whom
beyondwhat | ofwhat why
bywhat onwhat withwhat

Table 1: QPLM Semantic Relations

Original: John kicked the ball bought by Susan.

QPLM: Who(kick, John), What(kick, ball), What(buy, ball),
Who(buy, Susan)

Parse Tree: _
Johnm,s“b] — kickypa —°% bally, — thege:

bally,, "¢ buyvp ~agt byprep PP Susanny

Named Entities: <ENAMEX Type=NAME> John
</ENAMEX> kicked the ball bought by <ENAMEX
Type=NAME> Susan </ENAMEX>.

Table 2: Training Files

3.2 Rule learning

The PropBank corpus, after being automatically
converted to QPLM triples, is used to learn the rules
that are used to find the QPLM information of plain
text. The QPLM annotation relies on the output of
a syntactic parser and of a named-entity recognizer
for its annotation and for the rule learning process.
We are currently using Connexor for syntax pars-
ing and LingPipe® to recognize NEs. Our seman-
tic model uses pattern rules (PRules) created from
the representation of the same sentence as syntactic
parse trees, MUC style named entity, and a list of
QPLM triples. Table 2 presents the different infor-
mation that we use for training.

Having these representations at hand, a set of
rules is learned using the following process (see Fig-
ure 3 for an example):

1. replace the part of speech information with the
respective named entity category in the syntac-
tic parse tree;

*http://www.alias—i.com/lingpipe/

http://www.alias-i.com/lingpipe/

2. identify leaf-to-root links along the combined
syntactic and named-entity (S+NE) path be-
tween w and a for every triple Q(w, a);

3. for the existing S+NE paths, replace w and a
by a marker in both the triples and the paths,
registering those as pattern rules (PRule);

repeat steps 2 to 3 for all triples and documents;

4. combine all PRules found, calculate their fre-
quency of occurrence and group them by com-
mon triples. It is important to note that if we
have a sentence such as “Jack eats”, we would
have a frequency of two (2x) for the pattern

subj
Aperson T — Wyq.

1. Johnperson®™? — kickya

2. Who(kick, John) : Johnpersonwbj — kickya

a by'
3. Who(w,a) : aperson’®”’ — Wua
4. Who(w,a) :
b
L] 1>< : apeTSOnsu 7 — w'Ua

. com agt
o 1x: apersonp P — byp’r‘ep 99— w'up

Figure 3: Process example

After computing all the training files we would
have a resulting PRule file containing all possible
S+NE paths that can generate the manually defined
triples. If an S+NE path could not be found then a
PRule cannot be generated and the current training
triple is skipped.

3.3 Applying QPLM

Using the training corpus described above, we found
all the PRules needed in order to generate the se-
mantic triples when having an S+NE representa-
tion. The rules are grouped by QPLM triples, having
their S+NE paths attached with a frequency value.
This frequency value represents how many times an
S+NE path was used to generated a PRule in the
training corpus.

To convert S+NE files into QPLM, we start by ap-
plying those PRules that have the highest frequency
values. These PRules are believed to be the most sig-
nificant ones. Also it is important to observe that if
an S+NE path generates different QPLM triples, we

96

only need to apply the one with the higher frequency.
For instance, if the pattern wpersonSUbj — Qyq 1S aS-
sociated with the triple Who(w, a) with frequency
of 8 and with the triple Where(w,a) with a fre-
quency of 2, the S+NE path will only generate the
W ho triple. Because frequency is the decisive fac-
tor, in the previous example we have 20% of chance
of wrongly assigning an incorrect semantic label.

We observed that more precise PRules could be
created taking into account that some verbs con-
stantly generate a different QPLM triple for the same
S+NE path. These new PRules (which we refer to as
FW) are defined with a fixed w becoming less fre-
quent but at the same time more precise. The pre-
cision of FW rules combined with the generality of
the previous ones (which we refer to as GN) assure
us that we have a correct analysis of a known verb
as well as fair guess of an unseen one. To ensure
that known verbs are evaluated first by the more pre-
cise FW rules, we assign a much higher weight to
those rules than GN ones. An evaluation using the
combination of both types of rules has shown us that
assigning a weight 800 times higher to FW than to
GN gives us the best results.

We also observed that due to the large amount of
learnt PRules, the process for creating the QPLM
was slow. In order to improve the speed perfor-
mance of the process, we decided to compromise our
system precision and recall by removing the least
important rules, i.e. those with a frequency equal
to one. The lower number of PRules caused a de-
crease of recall which is more noticeable when tak-
ing into account the FW rules. Even though we
experienced a decrease of precision, removing low
frequent PRules causes the removal of abnormal
PRules that were generated by parsing errors.

In the next section we describe the environment
where QPLM was applied, followed by some exper-
imental results.

4 Evaluation

It is possible to evaluate our model implementation
on how well it performs the task of assigning the
correct semantic labels to a certain text. However
because the model was designed so it would improve
the IR stages of a QA system, we believe that the
most significant evaluation at this point is in terms

of how well it helps us solving this specific problem.

Since we have not yet implemented lexical se-
mantic substitution or any other IR techniques such
as stemming or lemmatization, a comparison with
a full-fledged state-of-the-art IR system is not rele-
vant. The lack of these techniques makes it some-
what harder to boost the confidence on single sen-
tences or windows of text if the proper context is
not recorded. However, we have confidence that the
model can help to provide cues of possible answers
by substituting the partial match between a question
word and document representation. For instance, if
the question “Where will a flag be placed?” is pre-
sented and the sentence in Figure 1 is considered, a
partial match school can be considered as a possible
answer.

4.1 The IR model comparison

We have compared our QPLM triples with bag-of-
words (unigram) and syntactic dependency triples.
In all three cases the indexing and retrieval methods
were the same, only the indexed units were differ-
ent. We have implemented an IR framework that can
hold relational information such as n-grams, syn-
tactic, semantic role label and QPLM. Our frame-
work is implemented so that it supports fast index-
ing (hundreds of documents per second in a low-
end desktop machine) and it retrieves using a vector
space model. The framework allows distributed in-
dexing and retrieval under other models but they are
not yet implemented.

During the development and test phases of our
framework, we have implemented different vector
space models of retrieval. We have implemented the
unigram model, along with syntactic relations, se-
mantic role labeling and QPLM.

The unigram model associates words with docu-
ments as well as it adds the position of them within
the document. The inclusion of position informa-
tion allows the use of a ranking function based on
proximity. We also implemented a syntactic model
using the output of Connexor. The model associated
words with documents as well as words with their
respective heads and/or modifiers. Since we are us-
ing a vector space model, computing TF and IDF
over this type of relation has a different meaning.
TF for full matching triples would be how many of
them with the same Syntactic — Relation, head

97

and modi fier are found, while TF could also mean
partial matches where one or two elements are not
needed to match. IDF in this setup would be similar
to TF but with the scope of the whole document set.

In the semantic role labeling model, a complete
match of predicate and argument is not expected; be-
cause of this we only consider partial matches (if a
word appears as the correct argument or predicate).
However we expect a larger weight for a document
when all the words properly match. In this model
IDF and TF are calculated by taking into account
the words found in the right context.

In the QPLM we have a very similar model to the
syntactic relation one. However in QPLM not all
the words will relate to each other, causing a large
number of words to be missing in the final represen-
tation. To overcome this problem, we compute IDF
and TF as the syntactic relations and we also add
the TF/IDF weights from an unigram model. Be-
cause QPLM relations are much less frequent, when
a match is found they will have higher weights than
unigrams. Unigrams and QPLM are combined so
that we do not discard relevant documents when they
contain important keywords that are missing in the
QPLM representation.

4.2 Evaluation over IR and QA

We have shown in the previous sections that the
QPLM analysis relies on a syntactic parser and on a
named-entity recognizer, in order to build a training
set used to look for pattern rules and then to analyse
text files into this model. We have not analysed the
correlation among the performance of the syntactic
parser nor the named entity recognizer, however we
observed that our model has problems learning rules
when these components offer poor results. As ex-
plained previously in section 3.1, if we cannot find a
rule connecting two nodes into the same parse tree,
we cannot learn a conversion rule. These cases ac-
count for 42,609 out of 135,537 rules, reducing in
practical matters our training set to only 68% of its
original size. Many of these cases are due to bro-
ken parse trees returned by Connexor. We have not
yet experimented with different parsers, however a
possible outcome of such experiment might be that
having a broken structure and therefore losing the
training instance is more desirable than having the
full parse, but with the wrong dependencies.

We have also filtered out the pattern rules that
have the same S+NE path but are not the most fre-
quent one regarding their QPLM triple. By doing
this we discard 12% of all the rules (20% of GN and
4% of FW). We do not use the rules when their fre-
quency values are equal to one, this will cause an
extra drop in the number of rules used to 44%. As
expected the removal of low frequency rules have a
stronger impact on FW rules than in GN rules (54%
and 33% respectively).

This information is important because we can
then predict what the upper limit of our performance
is when measuring the recall using the set of rules
we built as a training and testing set. According to
the values presented, using all the rules with a fre-
quency of 2 or more we have an upper limit of recall
of 38%. A ten-fold evaluation over the training set
has given us a value of 24% for recall.

When comparing the PropBank mapped files with
the files analysed by our technique, it is possible to
observe that the amount of QPLM triples in our se-
mantic analysis is much larger than the ones mapped
from PropBank. The reason is that PropBank only
marks certain predicates in a sentence, while QPLM
also provides relation among other verbs and other
sentence words. Because of this we performed a
manual evaluation of the precision of our technique
over a set of 20 randomly selected documents and
we found that 50% of the relations can be seen as
correct. We also observed that many of the relations
that were wrongly generated were due to some er-
rouneous S+NE path. Filtering out this wrong pat-
tern from the rule file will improve our precision.
The important fact is that even though our perfor-
mance over the analysis of the QPLM does not ap-
pear to be very high, the generated rules show to be
very useful when applied to IR and the QA task.

We have retrieved one hundred documents for
the set of 1449 questions of the TREC 2004, 2005
and 2006 QA track (Voorhees, 2005; Voorhees and
Dang, 2006) and verified the existence of the answer
string in each of these documents. We have per-
formed this retrieval process for the unigram, syn-
tactic relations and QPLM models. Due to data stor-
age constraints at this moment we only have the re-
sults for the XIE and APW newswire corpus.

The comparison between the three models shows
that we can obtain better documents to answer nat-

98

Coverage

n docs. 5 10 25 50 100
UNI | 0.2227 | 0.2718 | 0.3246 | 0.3591 | 0.3885
SYN | 0.2307 | 0.2752 | 0.3325 | 0.3691 | 0.3964

QPLM | 0.2310 | 0.2787 | 0.3370 | 0.3757 | 0.4040

Redundancy

n docs. 5 10 25 50 100
UNI | 0.5421 | 1.0062 | 2.2279 | 4.0363 | 7.2158
SYN | 0.5715 | 1.0535 | 2.3080 | 4.1091 | 7.2686

QPLM | 0.5729 | 1.0584 | 2.3567 | 4.2486 | 7.6405

Table 3: Results for APW and XIE

ural language questions if we take into considera-
tion the same linguistic relations in the question and
in the terms present in the documents. We measure
our results using coverage and redundancy measures
(Roberts and Gaizauskas, 2004). Coverage tells us
how much of the question set we can answer us-
ing the top-N documents, while redundancy tells us
how many documents per question contain an an-
swer. These results are presented in Table 3.

As we observe in Table 3, for a large collection of
documents and questions our system performs con-
sistently better than unigram and syntactic relations.
We have performed a paired t-test for statistic signif-
icance using the results of the individual questions
for QPLM and unigrams showing that there is a 99%
percent of chance that the improvement is not ran-
dom for the results in the APW corpus. However, a
paired t-test did not reject the null hypothesis in the
test performed with the XIE corpus. This may be an
indication that the XIE Newswire Corpus is written
with a linguistic style that our system has not been
able to take advantage of. Perhaps it strongly differs
from the style present in our training set (PropBank)
causing our rules not to be successfully used. Fur-
ther work is needed to understand the main differ-
ences among these corpora. By understanding this
we might find ways to adjust our system towards dif-
ferent textual styles.

Even though coverage and redundancy are good
measures for evaluating a retrieval set for QA, we
have observed that these measurements do not al-
ways relate to each other (Pizzato et al., 2006). For
this reason we have applied the retrieval set to a QA
system in order to observe if it does help to improve
its results. Using the retrieval sets generated by the
different models in the AnswerFinder QA system

(van Zaanen et al., 2007) showed us that the QPLM
performed 25% better than the unigram model and
9.3% better than the syntactic model. Even though
AnswerFinder is not among the best performing QA
systems, it does give us some insight on what a re-
trieval set should contain.

5 Concluding Remarks

In this paper we have presented a semantic model
that represents the relations among sentence compo-
nents by labeling them with question words. This
model was built to assist the task of question an-
swering, particularly at the IR stages. We under-
stand that by providing documents that are better
suited towards finding an answer for a natural lan-
guage question, QA system would not only return
better answers but also become faster.

The work presented here shows that the QPLM
can be used effectively in IR frameworks, and a
comparison with the unigram and syntactic model
demonstrates that we are able to improve the over-
all IR results. We have already implemented the
predicate-argument model in our IR framework and
we plan to compare it with QPLM. Because the cur-
rent semantic role labeling systems are impractically
slow when applied to large corpora, the comparison
will be done using a reduced number of documents.

In this work, we focused on the single impact of
our technique on the retrieval stages of a QA sys-
tem. In future work we will include different re-
trieval methods in our IR framework to enable a
valid comparison with state-of-the-art IR systems.
We also plan to manually study the PRules so as
to identify the ones causing some drops in the pre-
cision and recall of our model, and to construct an
automatic method that would help this process.

As explained, we had data storage constraints
which made the evaluation more difficult. As future
work we plan to distribute the retrieval process and
to perform evaluations with the whole AQUAINT
corpus and with the NYT documents. We also in-
tend to evaluate the impact that different retrieval
sets have in a broader range of QA systems.

References

O. Babko-Malaya. October 2006. Propbank annotation
guidelines.

99

S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng. 2002.
Web question answering: is more always better? In
SIGIR '02: Proceedings of the 25th annual interna-
tional ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 291-298, Tam-
pere, Finland. ACM Press.

D. Graff. 2002. The AQUAINT Corpus of English News
Text. Linguistic Data Consortium, Philadelphia.

C. Monz. 2004. Minimal span weighting retrieval for
question answering. In Proceedings of the SIGIR-
2004 Workshop on Information Retrieval For Question
Answering (IR4QA), Sheffield, UK, July.

V. Murdock and W.B. Croft. 2004. Simple translation
models for sentence retrieval in factoid question an-
swering. In Proceedings of the SIGIR-2004 Work-
shop on Information Retrieval For Question Answer-
ing (IR4QA), Sheffield, UK, July.

M. Palmer, D. Gildea, and P. Kingsbury. 2005. The
proposition bank: An annotated corpus of semantic
roles. Computational Linguist, 31(1):71-106.

L. A. Pizzato, D. Molla, and C. Paris. 2006. Pseudo rel-
evance feedback using named entities for question an-
swering. In Proceedings of the Australasian Language
Technology Workshop 2006., Sydney.

I. Roberts and R. J. Gaizauskas. 2004. Evaluating pas-
sage retrieval approaches for question answering. In
ECIR, volume 2997 of Lecture Notes in Computer Sci-
ence, pages 72—84. Springer.

T. Strzalkowski. 1999. Natural Language Informa-
tion Retrieval. Kluwer Academic Publishers, Norwell,
MA, USA.

S. Tellex, B. Katz, J. Lin, A. Fernandes, and G. Marton.
2003. Quantitative evaluation of passage retrieval al-
gorithms for question answering. In SIGIR ’03: Pro-
ceedings of the 26th annual international ACM SI-
GIR conference on Research and development in in-
formaion retrieval, pages 4147, Toronto. ACM Press.

J. Tiedemann. 2005. Optimizing information retrieval in
question answering using syntactic annotation. In Pro-
ceedings of RANLP 2005, pages 540-546, Borovets,
Bulgaria.

M. van Zaanen, D. Molla, and L. A. Pizzato. 2007. An-
swerfinder at trec 2006. In The Fifteenth Text RE-
trieval Conference (TREC 2006).

E. M. Voorhees and H. T. Dang. 2006. Overview of
the TREC 2005 question answering track. In Text RE-
trieval Conference.

E. M. Voorhees. 2005. Overview of the TREC 2004
question answering track. In Text REtrieval Confer-
ence.

