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Abstract

Mutual Exclusion Bootstrapping (MEB) was

designed to overcome the problem of se-
mantic drift suffered by iterative bootstrap-

ping, where the meaning of extracted terms

quickly drifts from the original seed terms

(Curran et al., 2007). MEB works by ex-

tracting mutually exclusive classes in paral-

lel which constrain each other.

In this paper we explore the strengths and

limitations of MEB by applying it to two

novel lexical-semantic extraction tasks: ex-

tracting bigram named entities and WordNet

lexical file classes (Fellbaum, 1998) from

the Google Web 1T 5-grams.

1 Introduction

Extracting lexical semantic resources from text with

minimal supervision is critical to overcoming the

knowledge bottleneck in Natural Language Process-

ing (NLP) tasks ranging from Word Sense Disam-

biguation to Question Answering.

Template-based extraction is attractive because

it is reasonably efficient, works on small and

large datasets, and requires minimal linguistic pre-

processing, making it fairly language independent.

Hearst (1992) proposed template-based extraction

for identifying hyponyms using templates like X, Y,
and/or other Z where X and Y are hyponyms of Z.

Riloff and Shepherd (1997) proposed iterative
bootstrapping where frequent neighbours to terms

from a given semantic class are extracted in multi-

ple bootstrap iterations. Roark and Charniak (1998)

improved its accuracy by optimising the bootstrap-

ping parameters. In mutual bootstrapping (Riloff

and Jones, 1999) the terms, and the contexts they oc-

cur in, are extracted. Similar approaches have been

used in Information Extraction (IE) for identifying

company headquarters (Agichtein et al., 2000) and

acronym expansions (Sundaresan and Yi, 2000).

In Mutual Exclusion Bootstrapping (MEB), we as-

sume the semantic classes partition terms into dis-

joint sets, that is, the classes are mutually exclusive
(Curran et al., 2007). Each class is extracted in par-

allel using separate bootstrapping loops that each

race to collect terms and contexts. Although this as-

sumption is clearly false, it significantly reduces the

extraction errors of existing approaches.

This paper presents two applications of MEB that

allow some insight into MEB’s strengths and limi-

tations. First, we extend MEB to extracting bigram
BBN named entity types (Weischedel and Brunstein,

2005). We discover that both unigram and bigram

MEB are very sensitive to the context window sur-

rounding the extracted terms. Surprisingly, MEB is

insensitive to the order the semantic classes are pre-

sented and the noise in the terms themselves.

Second, we extract common nouns using 25 se-

mantic classes defined by the WordNet lexical files

(Fellbaum, 1998). We use a closed vocabulary of

WordNet unigram nouns, so the evaluation can be

performed automatically against WordNet. We find

that MEB performs well on classes with narrow def-

initions and thus more coherent contexts, such as

animal, but performs poorly on classes like cogni-
tion. We also find that increasing the number of seed

terms increases the accuracy significantly.
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2 Mutual Exclusion Bootstrapping

Mutual bootstrapping (Riloff and Jones, 1999) has

the advantage that it can identify new templates or

contexts, which in turn identify new terms, signifi-

cantly increasing recall. Unfortunately, erroneously

adding a term with a different predominant sense or

a context that weakly constrains the terms, quickly

leads to semantic drift, where erroneous terms or

contexts infect the semantic class.

Mutual Exclusion Bootstrapping (MEB) attempts

to minimise semantic drift in both the terms and con-

texts (Curran et al., 2007). It does this by extracting

all of the semantic classes in parallel, using an inde-

pendent bootstrapping loop for each class, with the

constraint that a term or context must only be used
by one class. We assume that each term has only one

sense and that each context only extracts terms with

one sense, that is, the semantic classes are mutually
exclusive with respect to terms and contexts.

This assumption is far from realistic, but it is very

effective at reducing the degree of semantic drift.

For many terms, especially the bigram named en-

tities, there is a clearly dominant semantic class.

However, for some pairs of semantic classes, e.g. na-
tionalities and languages, there is a significant lexical

overlap and so they are far from mutually exclusive.

The MEB algorithm is shown in Algorithm 1. In

each iteration, contexts and then terms are added to

each semantic class. If more than one class attempts

to extract a context or term in the current iteration

then it is eliminated, leading to mutual exclusion

between the semantic classes. The terms and con-

texts are ranked in the same way as Riloff and Jones

(1999), our only addition in MEB is the parallel mu-

tual exclusion constraint.

Mutual exclusion is very strict and many terms

and contexts are discarded. This is not a major is-

sue when precision is paramount and we are using a

large dataset, e.g. Web 1T, but it can be problematic

on smaller datasets. It is a significant problem when

the semantic classes are far from mutually exclusive

because many viable contexts are rejected when the

terms they extract are polysemous, even though the

contexts themselves reliably select one sense.

MEB is potentially sensitive to the order the con-

texts and terms are added to semantic classes, since

once they are added to a class they cannot be added

in : Seed word lists Sk ∀ categories k
in : Raw contexts C and terms T
in : # terms NT and contexts NC per iteration

out: Term Tk and context Ck lists ∀ categories k
Tk←− Sk∀ categories k;

foreach iteration do
foreach c ∈ C do

count # times c occurs with each t ∈ Tk;

discard c if occurs with multiple classes;
foreach class k do

sort set of c by above occurrence counts;

add top NC contexts to Ck;
foreach t ∈T do

count # times t occurs with each c ∈Ck;

discard t if occurs with multiple classes;
foreach class k do

sort set of t by above occurrence counts;

add top NT terms to Tk;

Algorithm 1: Mutual Exclusion Bootstrapping

elsewhere (by the mutual exclusion assumption). In

this sense, the individual bootstrapping loops com-

pete in parallel to reach a term or context first, and

claim it for themselves. Polysemous terms may be

added to just one semantic class if it is not identified

by contexts from multiple semantic classes simulta-

neously, and this also applies for contexts. There is

no guarantee that the predominant sense of a term

will be reached first, although if it is significantly

more frequent, it is likely to be reached first since it

will appear in more contexts.

3 Using the Google Web 1T n-grams

Riloff and Jones (1999) used contexts extracted

from POS tagged and chunked text by AutoSlog-

TS (Riloff, 1996). Our goal was to keep MEB lan-

guage independent to maintain this key advantage

of template-based approaches. We also wanted to

demonstrate that MEB scales efficiently to extremely

large datasets and vocabularies.

Google has collected the Web 1T corpus (Brants

and Franz, 2006), which consists of unigram to 5-

gram counts calculated over 1 trillion words of web

text collected during January 2006. The text was

tokenised using Penn Treebank tokenisation, except

that words are usually split on hyphens; and dates,

email addresses, and URLs are kept as single to-

kens. Sentence boundaries were detected using sta-
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tistical techniques. The individual words in the n-

grams occurred ≥200 times, otherwise they were

replaced with <UNK>. Each n-gram appears ≥40

times. There is 25GB of compressed data.

We use the 3-, 4-, or 5-grams from Web 1T as our

raw data, depending on the experiment. The middle

token (for unigrams) or tokens (for bigrams) form

the term and the one or two tokens on either side

form the context. This context definition is quite

language independent (except for languages without

word segmentation). Unfortunately, we can only ex-

tract terms consisting of one or two words, and the

contexts are noisier than those extracted from parsed

text, cf. Curran (2004).

For the bigram experiments we follow the pro-

cess described in Curran et al. (2007). We removed

n-grams with non-titlecase middle token(s) because

we only extract proper noun named entity types, and

we removed all contexts containing numbers. For

the WordNet experiments we only included n-grams

where the middle token(s) were a term in WordNet.

In every experiment, we eliminate contexts that only

appear with one term, and thus terms that only ap-

pear in one context, since they cannot be reached.

The size of the resulting dataset varied depend-

ing on the experiment from 176MB (for the bigrams

heavily filtered using the t-test) to 1.2GB (for the bi-

grams with a window of one word either side and

the WordNet experiments). All of the data must

be loaded into memory and for the largest experi-

ments this requires 1.6GB of RAM using our space-

optimised C++ implementation.

4 Named Entity Classes

In our first set of experiments we continue our previ-

ous work on proper-noun named entities. We based

our semantic classes on the 29 entity types used to

annotated the BBN Pronoun Coreference and Entity

Type Corpus (Weischedel and Brunstein, 2005). We

ignored entity types that did not primarily include

proper nouns, for example the DESCRIPTION types,

CHEMICALS and QUANTITIES.

For the unigram experiments we reused our previ-

ous classification where we ignored entity types that

were almost exclusively multi-word terms, for ex-

ample WORKS OF ART and LAWS. We also split the

PERSON class into MALE and FEMALE first names

LABEL UNI BI DESCRIPTION

NAME • Person: name
‘Katie Holmes’ ‘Adam Smith’

FEM • Person: female first name
Mary Patricia Linda Elizabeth

MALE • Person: male first name
James John Robert Michael William

LAST • Person: last name
Smith Johnson Williams Jones Brown

TITLE • • Honorific title
President Dr Lord Miss Major

NORP • • Nationality, Religion, Political (adj)
Republican Christian ‘South African’

FAC • • Facility: names of man-made structures
Broadway Legoland ‘Golden Gate’

ORG • • Organisation: e.g. companies, gov.
Intel Microsoft ‘American Express’

GPE • • Geo-political entity
Canada China London ‘Los Angeles’

LOC • • Locations other than GPEs
Africa Asia Pacific Earth ‘Middle East’

DATE • • Reference to a date or period
January May Friday ‘Easter Day’

LANG • • Any named language
English Arabic Hebrew ‘Scots Gaelic’

EVENT • Battles, sporting, and other named events
‘World War’ ‘Hurricane Katrina’

LAW • Document that has been made into a law
‘Reform Act’ ‘First Amendment’

Table 1: The semantic classes used for the proper

noun unigram (Column 2) and bigram (Column 3)

experiments. Bigram examples are shown in quotes.

and LAST names to investigate more fine-grained

distinctions for this class.

For the bigram experiments, we kept a single class

NAME for person name, and reintroduced the LAW

and EVENT classes. Most classes are common to

both the unigram and bigram experiments. As in our

previous experiments, some classes were easier to

evaluate manually because we were only extracting

unigrams, whilst others were more difficult. Similar

difficulties exist in the bigram classes as well. The

complete list of semantic classes used in the named

entity experiments are summarised in Table 1.

5 Named Entity Evaluation

Our evaluation followed the manual inspection pro-

cess used in our previous experiments. To make this

more efficient, we stored a cache of previous eval-

uator decisions for each class, so that once a deci-

sion had been made for a particular term in a partic-

ular class it would be made automatically in future

instances. This dramatically reduces the effort re-
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quired for manual evaluation.

Although the seed lists were mutually exclusive,

for the purposes of evaluation, ambiguous words

such as French were counted as correct if they ap-

peared in either valid category (NORP or LANG).

If a single word was an clearly part of a multi-

word term we counted it as correct (e.g. Coast as

a LOC) with the exception of the mixed unigram-

bigram experiments. If the word was not strongly

indicative of a semantic class (e.g. The) it was not

counted as correct. Mis-spellings of words (e.g. Ja-
nuray) were also counted as correct. The extracted

terms that were unrecognised by the human evalua-

tor were checked using Wikipedia and Google.

We calculate accuracy at n – the percentage of

correct terms in the top n ranked terms, following

previous bootstrapping work. This is averaged over

the semantic classes (Av(n)). We manually evalu-

ated all semantic classes down to n = 50, which ade-

quately discriminates between most configurations.

We vary the number of seeds (nS), and terms (nT)

and context (nC) added in each iteration.

6 Named Entity Experiments

Our initial expectation was that bigram named en-

tities would be an easier task than unigram named

entities because they had fewer senses and so bet-

ter satisfied the mutual exclusion assumption. Also,

we expected them to be easier to evaluate since they

were less ambiguous. However, the results did not

match our intuition and so we experimented with un-

igrams and bigrams to determine the cause.

6.1 Context Geometry

A major disadvantage for the bigram and longer n-

gram experiments is that the size of the context must

be reduced to accommodate the term itself within a

fixed sized n-gram (e.g. the Web 1T 5-grams). Even

if longer n-grams were collected for bootstrapping,

there would still be the problem of sparser counts

(even from one trillion words).

We started by repeating our original unigram

named entity experiments but this time we reduced

the context window to one token on the left and/or

right, as shown in Table 2. Table 3 shows the

impact of context geometry on unigram accuracy.

Our previous best unigram results are UNI5GMS

NAME TEMPLATE

UNI5GMS w1 w2 X w3 w4

UNI4LEFT w1 w2 X w3

UNI4RIGHT w1 X w2 w3

UNI3GMS w1 X w2

BI5LEFT w1 w2 X X w3

BI5RIGHT w1 X X w2 w3

BI4GMS w1 X X w2

Table 2: Unigram and bigram Web 1T templates.

nS nT nC Av(10) Av(50)

UNI5GMS 5 5 10 90 78
UNI4LEFT 5 5 10 86 74

UNI4RIGHT 5 5 10 76 49

UNI3GMS 5 5 10 74 48

Table 3: Effect of context geometry on unigrams.

nS nT nC Av(10) Av(50)

BI5LEFT 5 5 10 92 68
BI5RIGHT 5 5 10 83 51

BI4GMS 5 5 10 77 48

Table 4: Effects of context geometry on bigrams.

with 78%. Removing a token from the right con-

text (UNI4LEFT) makes almost no difference to the

results, but removing a token from the left con-

text (UNI4RIGHT) makes an enormous difference (a

loss of almost 30%). The effect of removing both

(UNI3GMS) is slightly worse again.

We should also note that the UNI3GMS and

UNI4GMS experiments use the Web 1T 3- and 4-

gram data, so the counts are larger and more reli-

able, and the chance of shared contexts is greater.

This suggests that the impact of removing the left

context is even greater than these results indicate.

We also considered the minimum number of con-

texts a term had to appear in to be included. Our

previous experiments required two contexts – other-

wise a term cannot be discovered. Increasing this

cutoff to 10 made no significant difference.

The impact of context geometry on bigram accu-

racy is shown in Table 4. The penalty for removing

some left context was not as great for bigrams, drop-

ping from 68% with BI5GMS to 48% with BI4GMS.

The remaining unigram experiments use UNI5GMS

and the bigram experiments use BI5LEFT.
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STOP mean Av(50) σ Av(50)

NO 69 2.9

YES 75 3.0

Table 5: Effects of category order on unigrams.

6.2 Class Ordering and Stop Classes

One criticism of the MEB algorithm is that it may be

highly dependant on the order in which the classes

are considered. Because of the mutual exclusion (i.e.

once a word has been assigned to a particular class,

it can’t be assigned to any other class) the class order

clearly has the potential to impact the results.

To test this we have run a set of ten unigram ex-

periments with the classes arranged in random per-

mutations. The results are shown in Table 5. The

standard deviation of the ten sets is 3.0, around a

mean of 75. This shows that although it has some

impact, MEB is reasonably robust to changes in the

category order. The standard deviation from these

experiments can be used as an indication of the scat-

ter across the MEB experiments in general.

We also compared the accuracy of using, and

not using, the stop classes, which are used to con-

strain specific semantic drift problems (Curran et al.,

2007). When the stop classes were used, they al-

ways appeared first in the same order, before the ran-

domly permuted semantic classes. The difference in

the means in Table 5 between the set with and with-

out stop classes shows that using stop classes does

improve the accuracy of MEB.

6.3 Number of Contexts

Our experiments with unigrams in Curran et al.

(2007) showed that the best results were obtained

by adding 10 contexts per iteration of the bootstrap-

ping process. We have repeated this experiment for

bigrams, with the results shown in Table 6.

These experiments show that that best results are

obtained for numbers of contexts between 5 and

20. There is a significant drop-off in accuracy (∼
10− 20%) for values of nC less than 5 or greater

than 20. This demonstrates a preference for hav-

ing more evidence for new terms being reliable than

for simply adding more terms in each iteration. It

also shows that keeping the number of terms added

per iteration (nT) and the number of contexts (nC)

added per iteration reasonably well balanced is the

nS nT nC Av(10) Av(50)

5 5 1 73 52

5 5 2 76 50

5 5 5 92 71

5 5 10 92 73
5 5 20 93 70

5 5 50 87 58

5 5 100 84 59

Table 6: Effects of changing the number of contexts

added per iteration.

best strategy. This makes sense if we consider the

extreme cases: adding 5 terms and only 1 new con-

text per iteration would mean that it was difficult for

the system to expand into new space; adding 5 terms

and 100 new contexts per iteration would mean that

many of the contexts may not be representative of

the contexts that those 5 terms appear in.

6.4 Filtering Using Collocations
One issue that arises when extracting bigrams (or

longer n-grams) is the possibility that random com-

binations of tokens may be selected by chance in the

MEB process. To investigate this we have carried out

a series of experiments on data that was pre-filtered

using collocation statistics.

We filtered the Web 1T data so that we only kept

bigrams that were significant collocations based on

their frequency in the Web 1T corpus. We chose the

t-test as our measure of significance as it is simple

to calculate and we do not have any low frequency

values (< 5) for which the t-test is known to per-

form badly. Our calculation follows Manning and

Schütze (1999, pg. 165). If f (w) and f (w1,w2) are

the unigram and bigram frequencies from Web 1T,

then the t-test is:

t =
p(w1,w2)− p(w1)p(w2)√

p(w1,w2)
N−1

(1)

where N is the number of tokens. Using the Maxi-

mum Likelihood Estimates (MLE) we have:

p(w1,w2) =
f (w1,w2)

N−1
(2)

p(w) =
f (w)

N
(3)

The results for cutoffs at different significance

levels are shown in Table 7. These experiments
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t nS nT nC Av(10) Av(50)

50 5 5 10 86 69

100 5 5 10 87 70
250 5 5 10 85 68

500 5 5 10 81 58

Table 7: Effects of using only significant colloca-

tions. A value of 100 in column 1 means that only

bigrams with a significance of t ≥ 100 were used.

show that the filtering had no statistically significant

result on the accuracy of MEB. In a sense, this is not

surprising, as the MEB process of ranking new terms

on the number of contexts they occur in is already

performing a form of significance testing.

However, filtering on collocations does have the

advantage of significantly reducing the size of the

vocabulary without a significant loss of accuracy at

the Av(50) level. For example the number of unique

bigram terms in the BI5LEFT experiments in previ-

ous sections is 1 858 097, compared to 482 053 for

the t ≥ 100 filtered subset (∼ 25%) and 87 537 for

the t ≥ 250 filtered subset (∼ 5%). This is particu-

larly important when dealing with massive corpora.

6.5 Multi-word Expressions

Of greater interest than extracting unigrams or bi-

grams alone is the application of MEB to the general

case of extracting n-grams of any length. Since the

maximum length of the term and context in the Web

1T corpus is five tokens, and given the decline in

accuracy that comes with reducing the length of the

context (see Tables 3 and 4) it would be impractical

to extract terms with more than two tokens.

Hence our final experiment with proper noun

named entity extraction combines the unigram and

bigram data together. This serves as an initial test

of extracting multi-word expressions as it is not spe-

cific to only unigrams or only bigrams. The data

consists of that used for UNI4LEFT and BI5LEFT, so

that the context surrounding the unigram or bigram

has the same length and geometry.

The categories we used for this experiment are

those in Table 1 that are marked as suitable for both

unigrams and bigrams. The results for this experi-

ment are shown in Table 8. These are comparable to

our best results for bigram extraction.

nS nT nC Av(10) Av(50)

5 5 10 84 69

Table 8: Results for extracting bi- and unigrams

UNI5GMS WordNet

terms 263 613 29 157

contexts 10 449 412 18 832 474

terms-contexts 42 039 483 88 178 856

Table 9: Comparison of the datasets used in the

UNI5GMS and WordNet experiments. The number

of unique terms, unique contexts and unique term-

context combinations is shown.

7 WordNet Common Nouns

In our second set of experiments we investigate the

application of MEB to common nouns. For these ex-

periments we used the noun classes from WordNet,

as described in the next section. We expected the

performance on this task to be worse than for proper

nouns for a number of reasons. Firstly, common

nouns have a larger number of senses, on average,

compared to proper nouns. This breaks the mutual

exclusion assumption that is central to MEB’s suc-

cess. Secondly, common nouns are likely to occur in

a wider range of contexts than many proper nouns.

Thirdly, the common noun categories are more gen-

eral and less well defined than for proper nouns, and

abstract nouns are also likely to be harder to cate-

gorise than concrete nouns.

One factor that favours common noun extraction

is that the WordNet classes are designed to have rea-

sonably complete coverage of the semantic space.

This is not the case in the BBN named entity cate-

gories, which is one of the reasons why we intro-

duced stop classes (Curran et al., 2007).

Table 9 compares the size of the initial dataset for

the UNI5GMS experiments (Section 6) and the Word-

Net common noun experiments. Even though we

have ∼ 10 times fewer unique terms in the WordNet

dataset, the number of unique term-context combi-

nations is double that in the UNI5GMS dataset. The

total size of the dataset used for the common noun

experiments is 1.2GB.

7.1 WordNet Categories
For common nouns we used 25 noun categories from

WordNet 3.0. These come from the broad seman-
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CATEGORY # WORDS # UNI # BI

act 6650 4917 1512

animal 7509 5010 2227

artifact 11587 7176 4163

attribute 3039 2646 322

body 2016 930 898

cognition 2964 2118 724

communication 5607 3788 1557

event 1074 844 216

feeling 428 396 31

food 2573 1347 1131

group 2624 1218 1012

location 3209 2272 788

motive 42 31 9

object 1545 1000 455

person 11087 9426 1516

phenomenon 641 332 285

plant 8030 4200 3382

possession 1061 492 514

process 770 594 162

quantity 1275 806 287

relation 437 266 150

shape 341 252 78

state 3544 2403 991

substance 2983 1869 1060

time 1028 574 375

Table 10: Noun categories in WordNet and the num-

ber of words, unigrams and bigrams in each.

tic classes employed by lexicographers in the initial

phase of inserting words into the WORDNET hier-

archy, called lexicographer files (lex files). For the

noun hierarchy, there are 25 lex files and a file con-

taining the top level nodes in the hierarchy called

Tops. Lex files form a set of coarse-grained sense

distinctions within WORDNET. These categories

and the number of WordNet words in each category

are shown in Table 7.1.

7.2 WordNet Evaluation

These experiments only involved unigrams seen

in WordNet and hence we could evaluate directly

against WordNet as a complete gold standard. We

extracted the unigrams from all of the noun cate-

gories in WordNet. We then filtered the Web 1T

corpus to extract only contexts where a WordNet un-

igram was the central token. The rest of the filtering,

nS nT nC Av(10) Av(50)

5 5 10 29 22

10 5 10 51 43

20 5 10 67 52

100 5 10 73 59

Table 11: Effects of number of seed words.

evaluation and scoring details follow the principles

described in Section 5.

Each proposed term was marked as correct if it

appeared in that WordNet semantic category. The

advantage of a closed system is the ease of evaluat-

ing the results. However, an obvious disadvantage

is that the system cannot be marked correct for valid

unigrams it discovers in a category, that are not listed

under that category in WordNet. A full manual eval-

uation may produce better results.

8 WordNet Experiments

Creating seed lists using the Web 1T frequencies, as

we had done in previous experiments, was compli-

cated by skew towards web-related senses. For ex-

ample, thumbnail was the 5th most frequent word in

the body category and site was the 2nd most frequent

word in the location category. In the number of seeds

experiments we chose the seeds based on their fre-

quency alone, but in the remaining experiments we

manually created seed lists.

8.1 Number of Seed Words

We use the n most frequent words that were unique

to each category as seeds, regardless of whether

they have obvious web-related senses. The results

for increasing the number of seed words are shown

in Table 11. Note that the seed words are not in-

cluded in the accuracy calculation. The limited num-

ber of terms in some categories (in particular, mo-
tive) causes a decrease in accuracy when more seeds

are used because many of the correct proposed syn-

onyms are now seed words.

There is a substantial increase in accuracy as the

number of seeds is increased. This shows that even

though the choice of seeds is far from optimal, and is

strongly affected by interference, the results are still

reasonable as long as a large number of seed words

is used.
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CATEGORY Av(10) Av(50)

animal 100 92

communication 100 94

food 100 96

location 100 98

cognition 0 12

feeling 60 24

object 40 20

relation 60 22

Mean 62 44

Table 12: Results for a selection of high and low per-

forming common noun categories. The mean was

calculated across all the semantic classes. The other

parameters were (nS, nT, nC) = (5, 5, 10).

8.2 Comparison of Semantic Classes
To compare performance across semantic classes,

we manually selected 5 seed words from the 20 most

frequent words in each category (as measured in

the Web 1T corpus). This allowed us to excluded

words which we knew to have web-related senses

that would dominate on the Web 1T data.

The accuracy obtained was 44%, which is sub-

stantially lower than for the named entity unigram

experiments (maximum 78%). However, the vari-

ation in performance across the categories was ex-

tremely high, as demonstrated in Table 12. Some

categories, such as cognition are extremely difficult.

This demonstrates that MEB is very good at ex-

tracting certain kinds of lexical semantic knowledge

– primarily for categories that are very well defined,

with frequent terms that appear in fairly constrained

or idiomatic contexts, for example animals and food.

For these categories, MEB performed just as well on

common nouns as it did on many of the proper noun

named entity categories.

Conclusions

We have presented two novel applications of Mutual

Exclusion Bootstrapping (MEB): extracting bigram

named entities and common nouns from WordNet.

We confirmed that MEB is sensitive to the geome-

try of the context window surrounding the extracted

terms. As expected, a larger context leads to higher

accuracy, but interestingly, this is almost entirely

due to extra context on the left of the target term.

Overall, this makes bigram and longer n-gram ex-

traction more difficult on fixed-sized window data,

such as the Web 1T corpus.

Surprisingly, we discovered that MEB is relatively

insensitive to the order the semantic classes are pre-

sented and to noise in the possible terms themselves.

We applied MEB to common nouns using 25 se-

mantic classes defined by the WordNet lexical files.

We performed automatic evaluation using a closed

vocabulary and found that MEB performed well on

classes with narrower definitions such as animal, but

poorly on classes such as cognition. This is partly due

to the concrete categories having more coherent con-

texts. We found that increasing the number of seed

terms improved the accuracy, even with poor quality

seed terms.

We now plan to experiment with loosening the

mutual exclusion assumption to allow for some

overlap between categories. There are many pos-

sibilities for improving the performance of MEB on

common nouns – here we have presented only a pre-

liminary analysis of the WordNet results. We also

plan to experiment with text other than the Web 1T

corpus so that we can test whether allowing wider

contexts will further improve performance.

The experiments we have presented in this paper

have demonstrated that MEB is an efficient and ac-

curate method of extracting semantic classes over

both unigram and bigram named entities. We have

also demonstrated its potential for extracting seman-

tic classes from WordNet for common nouns.
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