
Practical Queries of a Massive n-gram Database

Tobias Hawker
School of

Information Technologies
University of Sydney
NSW 2006, Australia

toby@it.usyd.edu.au

Mary Gardiner
Centre for Language Technology

Macquarie University
gardiner@ics.mq.edu.au

Andrew Bennetts
Canonical Ltd.

andrew@puzzling.org

Abstract

Large quantities of data are an increasingly
essential resource for many Natural Lan-
guage Processing techniques. The Web 1T
corpus, a massive resource containing n-
gram frequencies produced from one tril-
lion words drawn from the World Wide Web,
is a relatively new corpus whose size will
increase performance on many data-hungry
applications. In addition, a fixed resource of
this kind reduces reliance on using web re-
sults as experimental data, increasing repli-
cability of researchers’ results.

However, effectively utilising a resource of
this size presents significant challenges. We
discuss the challenges of using a data source
of this magnitude, and describe strategies
for overcoming these, including efficient ex-
traction of queries including wildcards, and
specialised data compression. We present
a software suite, “Get 1T”, implementing
these techniques, released as free software
for use by the natural language research
community, and others.

1 Introduction

The size and quality of data used for statistical Nat-
ural Language Processing can have a major impact
on the results a system achieves (Banko and Brill,
2001). The World Wide Web gives researchers
access to an unprecedented quantity of machine-
readable natural language text. However, even for
techniques that can take advantage of unannotated

text, there is much more web data available than
can normally be used, because this same size over-
whelms the processing resources available to most
researchers. One way of overcoming this practical
problem is to use the processing resources of com-
mercial search engines, by using the number of hits
they report for frequency estimation — see for ex-
ample Grefenstette (1999), Turney (2001), Keller
and Lapata (2003) and Nakov and Hearst (2005).
There are however several drawbacks to this ap-
proach, recently highlighted by Kilgarriff (2007),
particularly replicability of experiments.

The recent release of the Web 1T corpus (Brants
and Franz, 2006)1 presents an opportunity to ac-
cess web-scale data for n-gram frequency estima-
tion without the drawbacks of using a search en-
gine. The corpus provides frequency counts for n-
grams up to five tokens long, drawn from approxi-
mately 1 trillion words of web data. Promising re-
sults have already been achieved using this resource
for Word Sense Disambiguation and Lexical Substi-
tution (Hawker, 2007; Yuret, 2007) and for Noun-
Phrase Bracketing (Vadas and Curran, 2007).

However, the scale of even this distilled collec-
tion of web data presents significant processing chal-
lenges. Naı̈ve methods for extracting the desired in-
formation from the corpus, such as linear search or
keyword indexing, are hopelessly impractical, and
even algorithms with good asymptotic performance
such as binary search are limited in their applicabil-
ity. Approaches that attempt to overcome the scaling
problems by using indices for the set of discrete to-

1http://www.ldc.upenn.edu/Catalog/docs/
LDC2006T13/readme.txt

Proceedings of the Australasian Language Technology Workshop 2007, pages 40-48

40

mailto:toby@it.usyd.edu.au
mailto:gardiner@ics.mq.edu.au
mailto:andrew@puzzling.org
http://www.ldc.upenn.edu/Catalog/docs/


kens in the corpus are also rendered intractable by
the size of the vocabulary. In this paper we present
solutions to these difficulties of scale, strategies for
practical extraction of the items of interest from this
mountain of data.

1.1 Wild Cards

For many NLP applications, it is useful to be able to
discover not only the frequency of explicitly spec-
ified patterns, but also the frequency of patterns
where any token is permissible in certain locations.
These ‘wildcard’ queries allow, for example, the
determination of Point-wise Mutual Information in
Hawker (2007).

As an example, consider the trigram (from the
corpus): feet seem light. If we are interested in how
likely the word seem is to occur in this context, we
must not only find frequencies for feet seem light
but also entries for feet so light and feet the light. In
the notation we use for our queries, we can capture
this idea of finding the aggregate frequency for all
trigrams with feet in the first position and light in
the third with the query feet <*> light. Note
that to find the aggregate frequency for all matching
trigrams, we must employ a search strategy which
will indicate a match for any suitable string.

In the remainder of this paper, we briefly describe
the details of the Web 1T corpus and consider and
then rule out possible approaches to using it that are
not practical at this scale. We then introduce two
practical approaches that allow for the extraction of
only the information of interest including one that
permits the use of wildcards. Our software tool,
“Get 1T”, released to the community as free soft-
ware, has implemented these approaches.

2 Web 1T

The Web 1T corpus (Brants and Franz, 2006) is
a collection of n-grams and their frequency of oc-
currence as found in 1,024,908,267,229 tokens (ap-
proximately 1 trillion) comprising 95,119,665,584
sentences of text from publicly accessible web
pages. The corpus aims to cover unique pages
in English. It is filtered to exclude tokens such
as those with problematic encoding, token length,
large quantities of accented characters, and unprint-
able/control characters.

n distinct n-grams
1 13,588,391
2 314,843,401
3 977,069,902
4 1,313,818,354
5 1,176,470,663

Table 1: Number of distinct patterns

The n-grams counted cover patterns of tokens
from unigrams to 5-grams. Tokens with case dif-
ferences are treated as distinct. The collection is
filtered by a cut-off frequency of 200 occurrences
for unigrams, and 40 occurrences for bigrams to 5-
grams. There are n-grams in the corpus that contain
a token with fewer than 200 unigram instances —
those tokens within these n-grams are represented
with a special token (<UNK>). Sentence boundaries
are also included as tokens, denoted by <S> and
</S>, thus for example a 5-gram might contain 4
words and a sentence boundary.

The number of unique patterns arising from this
collection is itself very large, as shown in Table 1.

With the patterns and counts stored in text format,
one per line, and then compressed, the frequency
collection occupies around 25GB of disk space, and
is distributed by the LDC on 6 DVDs.

2.1 Comparison with Search Engine Hits

Recently, Kilgarriff (2007) has raised issues sur-
rounding the use of search engine counts for de-
termining relative frequencies of various instances
of natural language. Owing to the commercially
sensitive and competitive nature of search engine
strategies, the process behind the counts reported by
search engines is not generally known, and the data
on the web changes over time; thus the counts re-
ported are potentially unreliable. Changes may oc-
cur in the algorithm, query syntax, or even using the
same search engine for identical queries on consecu-
tive days — Kilgarriff (2007) found the results from
6 in 30 queries differed by at least a factor of two
on consecutive days, and speculates that this may be
due to queries being serviced by different comput-
ers at different parts of the update cycle. This results
in experiments that may be impossible to replicate,
even by one researcher over time, let alone by others.

41



Aside from replicability concerns, This may account
for some findings that search results are less reliable
than corpus counts in, for example, context-sensitive
spelling correction (Liu and Curran, 2006).

By contrast, the approach for constructing the
Web 1T corpus has been disclosed (Brants and
Franz, 2006), and is intentionally aimed at yielding
accurate n-gram models, rather than estimating the
popularity of query keywords for a web search de-
signed to locate pages. Since Web 1T is distributed
to researchers, there are no limits on the number of
queries that can be performed in a given time frame
aside from any imposed by resource limitations of
the researcher. The values for different queries are
directly comparable, as they cover the same corpus.
Importantly, experiments are entirely repeatable, as
the results of queries using a specific release of the
corpus do not change.

The n-gram database approach is not without a
few drawbacks however. Snippets giving broader
context than the maximum 5-token n-gram size are
not available. The original source of a document,
useful for such things as topic determination, is
lost. Parsing such short fragments is, in general,
not likely to be reliable. POS tagging is possible
on the longer n-gram sequences, though is likely to
be somewhat less reliable than typical POS tagging
performance on full sentences.

Another serious drawback is that the resources
required for performing queries are not provided
on massively redundant hardware at essentially zero
cost, as is the case for commercial search engines.
This requires researchers to query the data on their
own hardware using software that is able to handle
this quantity of data efficiently.

This paper aims to detail approaches that permit
practical use of the Web 1T corpus. We have re-
leased free software tools implementing these ap-
proaches to the community2 under the GNU GPL.

3 Infeasible Approaches to Processing

In the following discussion, the question of ac-
cessing the data will be framed in terms of
queries — particular n-gram patterns or abstractions
thereof, such as feet so light or feet <*>
light, whose count is desired from the corpus,

2Available to the public at http://get1t.sf.net/

much as would be submitted to a search engine API.
In working with a corpus at this scale, it is un-

desirable access the disk to retrieve data that is not
useful for the application at hand, and very problem-
atic to consider the same data multiple times. Any
strategy for querying the corpus must thus attempt
to avoid reading unneeded data, and where it must,
make as few passes over the data as possible.

3.1 Direct Queries
One approach to extracting queries of interest might
be to take advantage of the fact that the n-gram pat-
terns are not listed arbitrarily, but are sorted into a
lexicographically ascending order. This enables the
use of a binary search to find a query without hav-
ing to consider most entries in the database. As bi-
nary search complexity increases only with the loga-
rithm of the number of database entries, it seems rea-
sonable that this method might scale better to large
quantities of data than any linear approach.

The Web 1T corpus data is split into a single di-
rectory for each n-gram length (1–5 tokens). The
patterns are sorted in lexicographically ascending
order, and split into files of at most 10,000,000 en-
tries, individually compressed. An index file speci-
fies the first n-gram in each file, which can also be
used as a guide to the endpoint of the previous file.

Binary search for a small number of queries is
tractable without the prohibitive requirement of stor-
ing all n-grams in RAM. The index files fit easily
in RAM however, and finding which n-gram file to
search depends on the number of unique patterns for
that length (see Table 1). For 4-grams (the worst
case), this leads to an average of about log2 132, or
7 iterations per query.

There are 107 n-grams in each compressed file,
which leads to an average of log2 107, or about 23,
tests of location per exact query. Many parts of the
file must be retrieved to find each element. Each of
these accesses requires computational effort (which
in many cases will require a disk seek) and as the
files do not have fixed record size, there is an ad-
ditional burden of finding line-breaks before the ac-
tual n-gram record can be determined for compar-
ison against the desired query. The string compar-
isons required are also computationally expensive.

For even a moderate number of queries (more
than a few hundred), reads from all over the disk to

42

http://get1t.sf.net/


retrieve each query are very inefficient. It is imprac-
tical to store the entire corpus in RAM, at least for
commodity resources typically available. The cor-
pus is of the order of 80GB uncompressed, which
is well beyond RAM resources typically available to
researchers at the time of writing.

Furthermore, case-insensitive queries are very
problematic, as case differences may occur at any
point in the string. In ASCII, the two cases of a
letter, upper and lower, are lexicographically distant
(values differ by 32), and thus otherwise identical
queries may be separated by many entries or be in
entirely different files. One potential solution is to
re-generate the corpus for case-insensitive use. This
is possible, and need only be performed once, but
increases the storage burden, and while sorting data
of this size is possible using existing techniques (for
example, mergesort) it would not be a small task for
typical resources by any means.

However, the most difficult drawback to over-
come with binary searching is the desirability of per-
forming queries with wildcards — queries whose
strings are not specified exactly, but may match any
tokens at some locations. Unless the wild compo-
nent is near the end of the pattern (which permits
the use of binary searches to select a subspace of the
original, which can then be exhaustively searched)
binary searches are completely impractical.

3.2 Indexing
Another possible approach to extracting queries
from the data might be the use of a mechanism that
takes advantage of the fact that the n-gram patterns
of length 2–5 are comprised of tokens from the fi-
nite set of unigrams. Unfortunately, this approach
too is very difficult for data on the scale of the Web
1T data. There are more than 13 million unigrams
in the corpus, and assigning a unique binary value
to each one would thus require 24 bits per token.
Attempting to index the corpus using indices of 24
bits and only a single byte at each indexed location
would require in excess of 100 TB for bigrams, with
almost all locations empty.

We measured the entropy per token in the unigram
frequencies, and determined there were 10.7 bits per
token for case-sensitive measurement, and 10.3 bits
per token for the case-insensitive case. However,
while entropy coding allows the average number of

bits per token to be brought closer to these ideal rep-
resentations, some n-grams with combinations of in-
frequent tokens would have representations that far
exceed this average size.

4 Practical Approaches to Processing

This section describes methods that render querying
the Web 1T corpus practical by relying on the in-
sight that the corpus should be read from disk as
few times as possible — preferably once. Thus,
our strategies require that pre-processing occur be-
fore the frequencies for the desired queries are ex-
tracted from the corpus. One of two pre-processing
steps is required. A researcher might use our tool
to pre-process the corpus, permitting quick, on-the-
fly queries, at the price of only having approximate
counts, and of false positive counts for some queries
not present in the corpus. Or he or she might be able
to specify queries in advance, in case we can com-
pute exact counts in a single pass through the corpus.

4.1 Pre-processing the Corpus

This strategy makes queries of the corpus practical
by compressing the massive quantity of data to a
manageable level. This is achieved in two ways: by
reducing the resolution of the frequency information
and then by replacing the n-gram strings themselves
with implicit information based on the location in
the compressed data. Depending on the task, many
statistical approaches can handle some noise in the
data; although fidelity may be somewhat reduced,
the impact is not all negative — it may also smooth.

We thus construct a single monolithic binary file
for each length of n-gram. Instead of storing the ex-
act string of the n-gram alongside its count, as in the
original data, we stored the quantised set of frequen-
cies at locations determined by a hash value of the
n-grams concerned.

For many applications, the absolute resolution of
the frequency information used is not as important
as the magnitude. In particular, in many statisti-
cal approaches the absolute difference between two
quantities will not be as informative as the ratio:
the difference between a pattern occurring 500,000
and 500,050 times is much less significant that the
difference between patterns occurring 50 and 100
times. It is thus desirable to have the resolution of

43



the frequency approximately constant with respect
to magnitude, thus preserving the dynamic range of
all frequencies. A suitable transformation is to store
a value corresponding to the logarithm of the fre-
quency. If this value is then quantised, a great deal
of compression is possible. For implementation on
practical hardware, an integer number of bytes is
preferable. Using a single byte for each frequency
allows 255 discrete magnitude levels to be encoded.

The frequencies of patterns in the data have a very
large range, from 40 to 95,119,665,584. The quan-
tisation is performed with a logarithm base deter-
mined by the maximum count. A zero byte repre-
sents an unseen n-gram (frequency of zero) and the
remaining 255 quantisation levels are selected such
that their span is uniform in the logarithmic space.
The use of this logarithmic scale means that error in-
troduced by the quantisation is roughly proportional
to the magnitude of the frequency being quantised.
Using zero bytes for unseen n-grams simply requires
the initialisation of all locations to zero before begin-
ning the compression process.

To permit optimal use of the relatively small quan-
tised representation, the quantisation ranges were
determined separately for each value of n, ensur-
ing the maximum count for that number of tokens
was transformed to the maximum integer value. As
the quantised values are converted back to approxi-
mate counts in linear space when being reported, this
scaling ensures acceptable precision for each quan-
tisation scaling while still yielding comparable fre-
quencies, even between different n-gram types.

When translating quantised values back to ap-
proximate frequencies, such as when forming fea-
tures from the frequencies, all instances of a given
quantised value are interpreted as the geometric
mean of the boundaries of the range of integers that
fall within it. This is also the arithmetic mean of the
logarithms concerned.

There is also a choice to be made when a col-
lision is found during compression — when an n-
gram hashes to a value that is already non-zero in
the compressed file. At this point there are several
options: the existing value can be combined with the
new value, such as being added together; a choice
can be made between the two values, such as the
smaller or larger, or the existing or new value; or a
compromise value, such as the geometric mean of

the two values, can be stored. Which mechanism is
suitable depends on the downstream task being per-
formed. The implementation allows this choice to be
made by the user at the time the data is compressed.

For a given file size, there is a trade-off between
the resolution of the frequency information and the
number of unique keys, which in turn influences the
probability of collisions. For example, counts can
be made finer resolution by using two bytes per file
location. This is at the expense of the hash function,
which will thus have one fewer bits of key space for
data files of the same size.

4.1.1 Retrieval
To perform a query, the desired search string is

hashed, the quantised value retrieved at the location
indicated by the hash, and transformed back into a
linear count. Practical hash sizes are around 30–32
bit hashes, which yield indices of 1–4GB. The size
of the hash is constrained by the fact that it must fit
in RAM for building the hash to be tractable. Uni-
form hashing necessarily involves a pseudo-random
sequence of locations. This implies that if RAM
were insufficient for the chosen hash size, disk seeks
would be frequent, and impact very strongly on per-
formance. It would be possible to build parts of
larger hash files in RAM, using several passes over
the data, but this requires 2n passes for each addi-
tional n bits of hash, which would also quickly be-
comes prohibitive.

4.1.2 Properties
This strategy cannot yield a false negative result

for a query — a zero count when the queried pattern
does in fact occur. However, false positives are pos-
sible due to hash collisions and can become prob-
lematic. The collisions are due to there being an in-
finite number of possible patterns that would map to
each location, yet the hash value being finite.

This approach is thus not suited to wildcards at
all. Uniform hashing functions with finite hash
values are one-way, and deliberately yield differ-
ent hash values for inputs that differ only slightly.
Thus the set of possible matches must be generated
as inputs to the hashing function, and so each hy-
pothetical match must be generated and treated as
a query. The number of possible matches for any
under-specified sequence is enormous, and even if

44



only a very small fraction of these queries results in
false positives, the sheer number of queries required
quickly renders the combined effect insurmountable.

4.1.3 Implementation
This software compresses each n-gram pattern

length into a single file whose size in bytes is a
power of two. The files may be read into RAM and
queried in a random-access fashion, or counts can be
retrieved directly from the disk.

The uniform distribution property of the hash
function, desirable in minimising the number of
hash collisions becomes problematic if accessing the
compressed data directly from disk. If the n-gram
frequencies are retrieved in the order they are used
by the system, the hashing transformation renders
the requests into a sequence of pseudo-random disk
accesses, leading the disk heads to skip back and
forth repeatedly. One possible solution is to map the
file into memory for access. However, for a finite set
of queries this too is sub-optimal, as many blocks of
data must be read from disk that will not be used.

If however, the queries are collated, hashed, and
sorted based upon their hash value, the retrieval soft-
ware never needs to re-read or seek backwards. Even
more advantageously, blocks not containing patterns
of interest do not have to be read at all. For even a
large number of queries this process is very rapid.

Python bindings have also been created for ac-
cessing files created using this approach. Disk ac-
cess times are generally greater than the CPU work
for retrieval, and the hashing itself is performed in
a native C extension, so the performance penalty in-
volved using an interpreted language is minor.

4.2 Pre-processing Queries

The approach described in this section does not in-
clude any approximations or false-positive counts,
and allows queries that will match any token in spec-
ified positions. The implementation of this approach
has been used to perform successful experiments in
Word Sense Disambiguation and Lexical Substitu-
tion (Hawker, 2007). The price for these desirable
properties is that all queries must be collated be-
fore the corpus information is extracted; on-the-fly
queries are not possible.

The key idea in our approach is the reversal of
the target of the search — from the database to

the queries themselves. To adapt a well-known
metaphor, we can view each query as a needle of
a particular size and shape, and the Web 1T cor-
pus as an enormous haystack, possibly containing a
piece of hay that resembles the size and shape of the
needle (i.e. an entry matching the query). In this
metaphor, taking each desired needle individually
and trying to find matches in the enormous haystack
is clearly an insurmountable task for any large-scale
haystack. Our method involves collecting all nee-
dles in which we are interested before any search is
performed, and then considering each strand in the
haystack in turn, finding whether it matches any of
the needles. This is still an intensive task, but it is
certainly tractable, as each piece of hay need be con-
sidered only once.

4.2.1 Search Strategy
Queries are provided to the program as input

when the search is launched. Queries are stored in
a nested hashtable, where the key to the hash table
at any given level i is the i-th word in the query.
For example, the query frozen hell buckets
will be indexed under frozen at the first level, hell
at the second with other queries beginning with
frozen and under buckets at the third level with
other queries beginning with frozen hell. The
final mapping is to the counter representing the num-
ber of matches for this query. Each level contains a
mapping to the next token. The algorithm for con-
structing these structures is detailed in Figure 1.

During query construction, wildcard place-
holders are treated identically to other tokens. They
are represented in our implementation by the token
<*>, which is not present in the unigram counts for
the Web 1T corpus. The counter is used in hashta-
bles at the final token to store the frequencies found
when patterns do match.

After all queries have been processed into these
structures, each pattern of the appropriate length in
the corpus is checked to determine if any matches
occur. The recursive procedure used to check for
matches is given in Figure 2. Initial arguments are
h = h0 and a depth = 1. The set of tokens and the
frequency of those tokens is consistent across all in-
vocations of the Search procedure for a given Web
1T entry, and is thus omitted from the arguments
shown for brevity. The two recursive invocations are

45



Let h1 be initial hashtable;
foreach query do

Let h = h1;
foreach i ∈ 1 . . . n do

tokeni = query[i];
if h[tokeni] does not exist then

if i 6= n then
set h[tokeni] = new hashtable;

else
set h[tokeni] = counter
initialised to 0;

end
end
h = h[tokeni]

end
end

Figure 1: Query Structure Construction

to match the current token with both any query spec-
ifying that particular token at that location, and any
query specifying a wildcard in that position.

4.2.2 Algorithmic Complexity
The time taken to add queries is maximised when

each token in every query is novel, and thus is not
present in the existing structure. In this case the time
for each query is proportional to the number of to-
kens. This means that adding q queries of length n
is O(nq).

Considering our search strategy for a single cor-
pus entry, the largest number of hashtable lookups
are required when queries exist for all combinations
of both wildcards and exactly matching tokens. This
worst-case instance requires two hashtable lookups
for the first token, four lookups for the second and
so on: a total of 2n+1 − 2 lookups for patterns of
length n. In the asymptotic limit, the algorithmic
complexity for each corpus entry is thus O(2n). If
we let m represent the number of entries of length
n in the corpus, the independent processing of each
entry yields an overall complexity of O(2nm).

In practice however, there are several factors that
combine to keep search performance fast. Firstly,
n has a maximum value of 5, leading to only 62
hashtable lookups in the worst case. The actual per-
formance of the system depends on the characteris-
tics of the data and the queries. For the exponential

Procedure Search(h, depth) begin
tokeni = query[depth];
if h[tokensi] exists then

if depth 6= n then
Search(h[tokensi], depth + 1)

else
counter = h[tokensi];
counter← counter + frequency;

end
end
if h[WILDCARD] exists then

if depth 6= n then
Search(h[WILDCARD], depth + 1)

else
counter = h[WILDCARD];
counter← counter + frequency;

end
end

end

Figure 2: Procedure Search(h, depth)

behaviour to apply to large numbers of entries in the
database, each of these distinct entries would have to
be matched by a corresponding exact query, accom-
panied by a large number of wildcard permutations.
As there are far fewer queries than database entries,
the worst-case performance can not apply to more
than a small fraction of the database entries. In the
best case, very few entries match queries at all —
comparison for most patterns can then be terminated
at the first token, with a complexity of O(m).

Even in the worst case for hashtable lookups, the
algorithmic complexity does not contain a term for
the number of queries. While searches over more
queries and an abundance of wildcards will impact
the running time to some extent, even with many
millions of queries the overall performance has a
practical upper bound. As Keller and Lapata (2003)
observe, a single linguistic query may expand to
many corpus queries to account for inflectional and
other variation, and thus continued efficiency as the
number of queries is increased is thus most desir-
able. This is not the case for binary search or any of
the other methods discussed previously.

Memory requirements are related only to the
number of, and similarities among the queries spec-
ified. The memory required for increasing the num-

46



ber of queries will be no worse than linearly pro-
portional to the size of the query set. This is appar-
ent when the case where each term in each query is
unique is considered: each term will be stored ex-
actly once in the data structure. Any overlaps in the
leftmost tokens of queries will reduce the memory
burden with respect to this worst-case requirement.

4.2.3 Implementation
This software runs once through the n-grams for

each pattern length, and extracts counts for all spec-
ified queries. The input format for the queries
matches that of the corpus exactly — one query per
line — aside from the lack of the final tab character
and numeric count. The queries are processed into
the nested hashtable structures in RAM before any
access is made to the corpus data. After construc-
tion of these structures, all Web 1T corpus files con-
taining entries for patterns of the appropriate pattern
length (each containing 107 counts) are processed
in turn. Each is decompressed into RAM and once
there each entry is checked against the query struc-
tures as described previously.

Following processing of all relevant corpus files,
the results are written to text files. Case-sensitivity is
configurable at run-time via command-line options.
Counts are stored in RAM rather than written imme-
diately, as for case-insensitivity and queries involv-
ing wildcard counts, the frequency reported may be
the sum of many individual counts in the corpus.

It is also possible to find not just the total num-
ber of n-grams for a given wildcard, but also enu-
merate each match; this may also be configured via
the command line at run time, but for 2 and 3-gram
queries it is not recommended, as it generally results
in a prohibitively large number of hits.

5 Performance

Tools which employ both strategies described earlier
have been implemented, and have been made avail-
able as free software. For performance reasons, C
was used as the implementation language.

The speed of the approach using the pre-
processed (compressed) corpus depends straightfor-
wardly on the number of queries, and is generally
constrained by the time to read data from disk.

The pre-processed query approach was imple-
mented with adequate performance on commodity

hardware as a design goal. As a result, the runtime
speed is quick, and scales well with large numbers
of queries. Experiments have been performed that
search for over 1,000,000 5-grams with acceptable
performance. For typical queries, the sparseness of
hits among 5-grams, even in a resource spanning as
much variety as the Web 1T corpus ensures that the
worst-case performance is infrequent.

Processing all 5-grams for 106 queries on a com-
puter with a 2.66GHz Xeon CPU took around 1 hour
and 1.5GB of RAM. Simple parallelisation is easily
achieved by processing patterns of different lengths
on separate computers or CPU cores (assuming of
course that sufficient RAM and CPUs are available).
This approach can reduce the time taken for the en-
tire run to the time for that of the longest-running
pattern length. The memory footprint of the pro-
gram is at worst linearly related to the number of
queries, and as these tests show, is manageable for a
large number of queries.

6 Conclusion

It is possible to query a resource the size of the
Web 1T corpus using commodity hardware and ef-
fective hashing-based strategies. Software has been
created that makes the use of this resource prac-
tical, and has been successfully used to harness
the information available for NLP tasks including
Word Sense Disambiguation, Lexical Substitution
and Noun-Phrase Bracketing. The methods em-
ployed need only to make a single pass of the corpus
data. In one approach, the corpus is transformed to
a more amenable structure; in the other, the queries
are indexed and searched, rather than the corpus.

The tools we have implemented, using the the
techniques described in this paper, facilitate the use
of the massive scale of data now available for more
disparate and data-hungry NLP tasks.

7 Acknowledgements

Many thanks to James Curran and Jon Patrick for
their assistance and advice. We also thank Charles
B. Falconer, author of the free hashlib library for
C, which we use for the pre-processed queries.
Part of this work has been supported by the Aus-
tralian Research Council under Discovery Project
DP0558852.

47



References
Michelle Banko and Eric Brill. 2001. Scaling to very very large

corpora for natural language disambiguation. In Proceedings
of the 39th Meeting of the Association for Computational
Linguistics (ACL-01), pages 26–33. Toulouse, France.

Thorsten Brants and Alex Franz. 2006. Web 1T 5-gram corpus
version 1. Technical report, Google Research.

Gregory Grefenstette. 1999. The WWW as a resource for
example-based MT tasks. In ASLIB Translating and the
Computer Conference. London.

Tobias Hawker. 2007. USYD: WSD and lexical substitution
using the Web 1T corpus. In Proceedings of the Fourth
International Workshop on the Evaluation of Systems for
the Semantic Analysis of Text (SemEval-07), pages 446–453.
Prague, Czech Republic.

Frank Keller and Mirella Lapata. 2003. Using the web to obtain
frequencies for unseen bigrams. Computational Linguistics,
29(3):459–484.

Adam Kilgarriff. 2007. Googleology is bad science. Computa-
tional Linguistics, 33(1):147–151.

Vinci Liu and James R. Curran. 2006. Web text corpus for natu-
ral language processing. In Proceedings of the 11th Meeting
of the European Chapter of the Association for Computa-
tional Linguistics (EACL), pages 233–240.

Preslav Nakov and Marti Hearst. 2005. Search engine statistics
beyond the n-gram: Application to noun compound brack-
eting. In Proceedings of the Ninth Conference on Compu-
tational Natural Language Learning (CoNLL-2005), pages
17–24. Ann Arbor, Michigan.

Peter D. Turney. 2001. Mining the web for synonyms: PMI-
IR versus LSA on TOEFL. In Proceedings of the Twelfth
European Conference on Machine Learning (ECML-2001),
Freiburg, Germany, pages 491–502.

David Vadas and James R. Curran. 2007. Adding noun phrase
structure to the penn treebank. In Proceedings of the 45th
annual meeting of the Association for Computational Lin-
guistics (ACL), pages 240–247. Prague, Czech Republic.

Deniz Yuret. 2007. KU: Word sense disambiguation by substi-
tution. In Proceedings of the Fourth International Workshop
on the Evaluation of Systems for the Semantic Analysis of
Text (SemEval-07), pages 207–214. Prague, Czech Repub-
lic.

48




