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Abstract The third task is to detect and correglid
word errors—that is, errors which have resulted
in words (for instanceheir misspelled aghere).
This task requires the use of context: the error
can only be detected by identifying that a word
is out of place in its current context. Probabilis-
tic language models which estimate the likelihood
of words based on their neighbouring words have
been used quite successfully to identify valid word
errors (see e.g. Golding and Schabes (1996);
Mangu and Brill (1997); Brill and Moore (2000));
however, there are situations where these tech-
nigues are not able to identify the presence of er-
rors, and a richer model of context is needed, mak-
ing reference to syntax, semantics or pragmatics.
] In summary, two of the outstanding problems in
1 Introduction automated error correction are identifying proper

The process of identifying and correcting the er-names and detecting and correcting errors which
rors in an input utterance has been extensively€auire a sophisticated model of context.
studied. Kukich (1992) discusses three progres- In this paper, we consider a domain where
sively more difficult tasks. The first task is the these two problems arise with particular force:
identification of nonwords in the utterance. A computer-aided language learning dialogues (or
nonword is by definition a word which is not part CALL dialogues. In this domain, the system
of the language, and which therefore must musplays the role of a language tutor, and the user is a
have been misspelled or mistyped. The difficultystudent learning a target language: the student en-
in identifying nonwords is due to the impossibility gages with the system in a dialogue on some pre-
of assembling a list of all the actual words in a lan-set topic. One of the system’s key roles is to iden-
guage; some classes of actual words (in particulatify errors in the student’s utterances and to correct
proper names) are essentially unbounded. So thithese errors (either indirectly, by prompting the
system should have a reliable way of identifying student, or directly, by reporting what the student
when an unknown word is likely to belong to such should have said). In either case, it is crucial that
aclass. the system makes correct diagnoses about student
The second task is to suggest corrections for inerrors. While a regular spell-checker is relatively
dividual nonwords, based purely on their similar- passive, simply identifying possibly misspelled
ity to existing words, and a model of the likelihood words, a language tutor frequently takes interven-
of different sorts of errors. This task is performedtions when detecting errors, and initiates subdia-
quite well by the current generation of spellcheck-logues aimed at correcting them. (Of course, a tu-
ers, and is to some extent a solved problem. tor may choose to ignore some of the errors she

This paper describes a mechanism for
identifying errors made by a student dur-
ing a computer-aided language learning
dialogue. The mechanism generates a set
of ‘perturbations’ of the student’s origi-
nal typed utterance, each of which em-
bodies a hypothesis about an error made
by the student. Perturbations are then
passed through the system’s ordinary ut-
terance interpretation pipeline, along with
the student’s original utterance. An utter-
ance disambiguation algorithm selects the
best interpretation, performing error cor-
rection as a side-effect.
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identifies, to avoid overwhelming the student with of the grammatical rules of the language, and is
negative feedback, or to concentrate on a particulikely to make mistakes. These typically result in
lar educational topic. However, it is in the nature syntactically ill-formed sentences:

of a tutorial dialogue that the tutor frequently picks

up on a student’s errors.) In this domain, therefore(1) ~ T: How are you feeling®?

it is particularly important to get error correction S: I feeling well.

right. It may be that a bigram-based technique can iden-

The focus of the Paperis on our .Sys.tem s meChﬁfy errors of this kind. Butitis less likely that such
anism for error correction, which is tightly inte-

ted with th hanism for utt di a technique can reliablgorrectsuch errors. Cor-
grated wi € mechanism for utterance disaMs iong are likely to be locally suitable (i.e. within
biguation. Our claim is that a semantically rich

a,window of two or three words), but beyond this

utterance disambiguation scheme can be extende{ﬂ .
relatively easily to support a sophisticated model ere is no guarantee that the corrected sentence
y y pp P will be grammatically correct. In a CALL system,

(;::r:{iir:::(r)rfsc\t/:/%?(’:r']nacgdr':;? dﬂ;grsgl?rt%iicbiizengreat care must be taken to ensure that any correc-
. T tions suggested are at least syntactically correct.
gram models of context. We will begin in Sec-
; L . . Another common type of errors avecabulary
tion 2 by reviewing the kinds of error found in
. . . ._errors. Learners often confuse one word for an-
language-learning dialogues. In Section 3, we dis- . _ . )
i . other, either during interpretation of the tutor’s
cuss some different approaches to modelling lan- : )
! utterances or generation of their own utterances.
guage errors, and outline our own approach. |

. : . rhese can result in utterances which are syntacti-
Section 4 we introduce our dialogue-based CALL . 4
cally correct, but factually incorrect.

system. In Section 5 we discuss our approach to
error correction in detail: the basic suggestion is2) T: Where is the bucket?

to createperturbations of the original sentence S: Itis on the flour. [meaning ‘floor’]

and interpret these alongside the original sentence,

letting the regular utterance disambiguation mod{Note that vocabulary errors can manifest them-

ule decide which interpretation is most likely. In selves as grammatical errors if the wrongly used
Section 6 we discuss some examples of our sysword is of a different syntactic category.) To detect

tem in action, and in Section 7, we discuss howerrors of this sort, the system must have a means
the model can be extended with a treatment of unef checking utterances against a model of relevant

known words. facts in the world.
Thirdly, there argragmatic errors, which in-
2 Thetypesof error found in volve an utterance which is out of place in the cur-
language-learning dialogues rent dialogue context.

Learners of a language can be expected to makg) T: How are you feeling?

more errors than native speakers. If we restrict our S: You are feeling well.

errors to those present in typed utterances, some

types of error are essentially the same—in partic-T hese errors can result from a failure to compre-
ular, we can expect a similar proportion of typos inhend something in the preceding dialogue, or from
learners as in native speakers. Other types of errgt grammatical or vocabulary error which happens
will be qualitatively similar to those made by na- {0 result in a syntactically well-formed sentence.
tive speakers, but quantitatively more prevalent—I0 detect and correct errors of this type, a model
for instance, we expect to find more spelling mis-Of coherent dialogue is needed—in particular, a
takes in learners than in native speakers, but thEnodel of the relationship between questions and
mechanisms for detecting and correcting these araNSWers.

likely to be similar. However, there are some types These three types of error are relatively com-
of error which we are likely to find only in lan- mon in language-learning dialogues. Detecting

guage learners. We will consider two examplesthem requires relatively deep syntactic and seman-
here. tic processing of the utterances in the dialogue.

FlrStIy’ there aregrammatlcal errors. ] The 1T stands for ‘tutor’ in these examples, and S stands for
learner of a language does not have a firm grasgtudent’.
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Such processing is not yet feasible in an unretence cannot be parsed. The relaxation which re-
stricted dialogue with a native speaker—howeversults in a successful parse provides information
in a language-learning dialogue, there are sevabout the type of error which has occurred. This
eral extra constraints which make it more feasi-technique has been used effectively by Menzel
ble. Firstly, a language learner has a much smalleand Schroder (1998), and similar techniques have
grammar and vocabulary than a native speakebeen used by Fouvry (2003) for robust parsing.
Thus it may well be feasible to build a grammar However, as Foster and Vogel note, the technique
which covers all of the constructions and wordshas problems dealing with errors involving addi-
which the user currently knows. If the system’stions or deletions of whole words. In addition, the
grammar is relatively small, it may be possible model of errors is again something considerably
to limit the explosion of ambiguities which are more complicated than the models which teachers
characteristic of wide-coverage grammars. Sectse when analysing students’ utterances and pro-
ondly, the semantic domain of a CALL dialogue viding feedback.
is likely to be quite well circumscribed. For one In the scheme we propose, the parser is left un-
thing, the topics of conversation are limited by thechanged, only accepting syntactically correct sen-
syntax and vocabulary of the student. In practicetences; however, more than one initial input string
the topic of conversation is frequently dictated byis sent to the parser. In our scheme, the student’s
the tutor; there is a convention that the tutor is re-utterance is first permuted in different ways, in
sponsible for determining the content of language-accordance with a set of hypotheses about word-
learning exercises. Students are relatively happyevel or character-level errors which might have
to engage in semantically trivial dialogues whenoccurred. There are two benefits to this scheme.
learning a language, because the content of the dFirstly, hypotheses are expressed a ‘surface’ level,
alogue is not the main point; it is simply a meansin a way which is easy for non-specialists to under-
to the end of learning the language. stand. Secondly, creating multiple input strings in
In summary, while CALL dialogues create this way allows the process of error correction to
some special problems for an error correction sysbe integrated neatly with the process of utterance
tem, they also well suited to the deep utterance indisambiguation, as will be explained below.
terpretation techniques which are needed to pro-
vide the solutions to these problems. 4 Utteranceinterpretation and
disambiguation in our dialogue system

3 Alternative frameworks for modelling . -
language errors Our CALL dialogue system, called Te Kaitito

(Vlugter et al. (2004); Knott (2004); Slabbers

There are several basic schemes for modelling larand Knott (2005)) is designed to assist a student
guage errors. One scheme is to construct spee learn M aori. The system can ‘play’ one or more
cialised error grammars, which explicitly ex- characters, each of which enters the dialogue with
press rules governing the structures of sentences private knowledge base of facts and an agenda
containing errors. The parse tree for an error-of dialogue moves to make (principally questions
containing utterance then provides very specificto ask the student about him/herself). Each les-
information about the error that has been madeson is associated with an agenda of grammatical
We have explored using a system of this kindconstructions which the student must show evi-
(Vlugter et al, (2004), and others have pursueddence of having assimilated. The system supports
this direction quite extensively (see e.g. Michauda mixed-initiative multi-speaker dialogue: system
et al. (2001); Bendeet al. (2004); Foster and Vo- characters generate initiatives which (if possible)
gel (2004)). This scheme can be very effective—are relevant to the current topic, and feature gram-
however, creating the error rules is a very speimatical constructions which the student has not
cialised job, which has to be done by a grammalet assimilated. System characters can also ask
writer. We would prefer a system which makes it‘checking’ questions, to explicitly check the stu-
easy for language teachers to provide input aboutient’s assimilation of material presented earlier in
the most likely types of error made by students. the dialogue.

Another scheme is to introduce ways of relax- The system’s utterance interpretation mecha-
ing the constraints imposed by a grammar if a sennism takes the form of a pipeline. An utterance
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by the student is first parsed, using the LKB sys-level, we assume a constamninning margin for

tem (Copestake (2000)). Our system is configthat level, and treat all interpretations which score
ured to work with a small grammar of M aori, omwithin this margin of the top-scoring interpretation
a wide-coverage grammar of English, the Englishas joint winners at that level.

resource grammar (Copestaiteal. (2000)). Each If there is a single winning interpretation at the
syntactic analysis returned by the parser is assocdialogue level, it is chosen, regardless of its scores
ated with a single semantic representation. Fronat the lower levels. If there is a tie between sev-
each semantic representation a setipflates is  eral interpretations at the highest level, the scores
created, which make explicit how the presupposifor these interpretations at the next level down are
tions of the utterance are resolved, and what theonsulted, and so on. To resolve any remaining
role of the utterance is in the current dialogue con-ambiguities at the end of this process, clarification
text (i.e. whadialogue act it executes). Utterance questions are asked, which target syntactic or ref-
disambiguation is the process of deciding whicherential or dialogue-level ambiguities as appropri-
of these updates is the intended sense of the utteate.

ance.

To disambiguate, we make use of information® 1 N€error correction procedure

derived at each stage of the interpretation pipeline; jyq gisambiguation, error correction is a process
At the syntactic level, we prefer parses which,,hich involves selecting the most contextually ap-
are judged by the probabilistic grammar 10 bepqpriate interpretation of an utterance. If the ut-

most likely. At the discourse level, we prefer up-grance is uninterpretable as it stands, there are

dates which require the fewest presupposition aCatian several different possible corrections which

commodations, or which are densest in sSUCCESS3 e made. and the best of these must be se-
fully resolved presuppositions (Knott and VIugter joctaq  Even if the utterance is already inter-

(2003)). At the dialogue level, we prefer updatesy eiaple, it may be that the literal interpretation is
which discharge items from the dialogue stack: ing, harq to accept (either syntactically or semanti-
particular, if the most recent item was a questionqy,) that it is easier to hypothesise an error which
we prefer a dialogue act which provides an answeg, sed the utterance to deviate from a different,
over other dialogue acts. In addition, if & User'snq more natural, intended reading. The basic idea
question is ambiguous, we prefer an interpretationy modelling error correction by hypothesising in-
to which we can provide an answer. tended interpretations which are easier to explain
Our system takes a ‘look-ahead’ approach to utcomes from Hobbet al. (1993); in this section,
terance disambiguation (for details, see Lurcoclkwve present our implementation of this idea.
et al. (2004); Lurcock (2005)). We assume
that dialogue-level information is more useful for 5.1 Perturbations and perturbation scores

disambiguation than discourse-level information,gach error hypothesis is modelled ageatur ba-
which is in turn more useful than syntactic in- tjon of the original utterance (Lurcock (2005)).
formation. By preference, the system will de- Tyyg types of perturbation are createtar acter-
rive all dialogue-level interpretations of each pos-jeyel perturbations (assumed to be either ty-
sible syntactic analysis. However, if the numberyos or spelling errors) andord-level perturba-
of parses exceeds a set threshold, we use the progipns (assumed to reflect language errors). For
ability of parses as a heuristic to prune the searc@naracter-level perturbations, we adopt Kukich’s
Space. (1992) identification of four common error types:
Each interpretation computed receives ian  insertion of an extra charactedeletion of a char-
terpretation score at all three levels. Interpre- acter, transposition of two adjacent characters
tation scores are normalised to range between @ndsubstitution of one character by another. Ku-
and 10; 0 denotes an impossible interpretationkich notes that 80% of misspelled words contain
and 10 denotes a very likely one. (For the syn-a single instance of one of these error types. For
tax level, an interpretation is essentially a proba+word-level perturbations, we likewise permit in-
bility normalised to lie between 0 and 10, but for sertion, deletion, transposition and substitution of
other levels they are more heuristically defined.)words.
When interpretations are being compared within a Each perturbation created is associated with a
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‘perturbation score’. This score varies betweento be driven by a model of the errors which are
0 and 1, with 1 representing an error which is soactually made by students.
common that it costs nothing to assume it has oc- Our approach has been to compile a database of
curred, and O representing an error which nevecommonly occurring whole-word language errors.
occurs. (Note again that these scores are not prol-his database consists of a set of sentence pairs
abilities, though in some cases they are derivedsS,,,, S.), whereS,,.. is a sentence containing ex-
from probabilistic calculations.) When the inter- actly one whole-word insertion, deletion, substitu-
pretation scores of perturbed utterances are beinigon or transposition, and, is the same sentence
compared to determine their likelihood as the in-with the error corrected. This database is simple
tended sense of the utterance, these costs needttocompile from a technical point of view, but of
be taken into account. In the remainder of this seceourse requires domain expertise: in fact, the job
tion, we will describe how perturbations are cre-of building the database is not in fact very different
ated and assigned scores. Details can be found finom the regular job of correcting students’ written
van der Ham (2005). work. Our database was compiled by the teacher
of the introductory M aori course which our sys-
tem is designed to accompany. Figure 1 illustrates
In our current simple algorithm, we perform with some entries in a (very simple) database of
all possible character-level insertions, deIetionsEngnsh learner errors. (Note how missing words
substitutions and transpositions on every word.
(‘Space’ is included in the set of characters, to al{ Error sentence Correct sentence Error type

: : : | saw GAP do | saw a do Deletion (a
low for inappropriately placed word boundaries.)|=2t-225 dog e dgog el Etk?e)

Each perturbation is first checked against the sys=He piays the footbal|] He plays GAP football| Insertion (the)
tem’s lexicon, to eliminate any perturbations re-| I'saw a dog big I saw a big dog Transposition

sulting in nonwords. The remaining perturbations
are each associated with a score. The scoring fund=igure 1: Extracts from a simple database of
tion takes into account several factors, such aghole-word English language errors
phonological closeness and keyboard position of
characters. In addition, there is a strong penaltyn the error sentence are replaced with the token
for perturbations of very short words, reflecting “GAP”.)
the high likelihood that perturbations generate new Given the student’s input string, we consult the
words simply by chance. error database to generate a set of candidate word-
To illustrate the character-level perturbationlevel perturbations. The input string is divided into
scheme, if we use the ERG's lexicon and Englishpositions, one preceding each word. For each po-
parameter settings, the set of possible perturbesition, we consider the possibility of a deletion
tions for the user input worddortedis sorted  error (at that position), an insertion error (of the
sportedandsnorted The first of these results from word following that position), a substitution error
hypothesising a character insertion error; the lattefof the word following that position) and a trans-
two result from hypothesising character substitu{osition error (of the words preceding and follow-
tion errors. The first perturbation has a score ofng that position). To generate a candidate pertur-
0.76; the other two both have a score of 0.06. (Thdation, there must be supporting evidence in the
first scores higher mainly because of the closenesgTor database: in each case, there must be at least

5.1.1 Character-level perturbations

of the ‘s’ and ‘d’ keys on the keyboard.) one instance of the error in the database, involving
_ at least one of the same words. So, for instance,
512 Word-level perturbations to hypothesise an insertion error at the current po-

As already mentioned, we employ Kukich'’s tax- sition (i.e. an error where the word following
onomy of errors at the whole word level as well asthat position has been wrongly inserted and needs
at the single character level. Thus we consider & be removed) we must find at least one instance
range of whole-word insertions, deletions, substiin the database of an insertion error involving the
tutions and transpositions. Clearly it is not pos-wordw.
sible to explore the full space of perturbations at To calculate scores for each candidate perturba-
the whole word level, since the number of possibletion, we use the error database to generate a prob-
words is large. Instead, we want error hypotheseability model, in which each event isawriting of
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a given word sequencs,,;, as a perturbed word common spelling mistakes involving placement of
sequence,.,; (Which we write asS,;; — Spers.)  Macron accents, of which we allow three. (Where
The database may contain several different waythere are multiple perturbations, their scores are
of perturbing the word sequenc®,.;,. The rela- multiplied.)
tive frequencies of the different perturbations can Each perturbed sentence is passed to the utter-
be used to estimate perturbation probabilities, aance interpretation module. Most of the pertur-
follows: bations result in ungrammatical sentences, and so
fail at the first hurdle. However, for any which can
be parsed, one or more full updates is created. The
complete set of updates produced from the origi-
(The denominator holds the count of all perturba-nal sentence and all its selected perturbations are
tions of S, in the error database.) then passed to the disambiguation module.
Naturally, if we want useful counts, we cannot  The disambiguation module must now take into
look up a complete sentence in the error databas@ccount both the interpretation score and the per-
Instead, we work with an-gram model, in which  turbation score when deciding between alternative
the probability of a perturbed sentence is approxiinterpretations. Atany level, the module computes
mated by the probability of a perturbation inan gn aggregate score S, Which is the product of
word sequence centred on the perturbed word. ltthe perturbation Scors,..; (weighted by a pertur-
our model, the best approximation is a perturbedation penalty) and the interpretation scétg;:
trigram; thus if the student’s input string isaw
dog the probability of a perturbation creatirig . Spert «
saw the dogs given by 9 pert_penalty

t(Sorig—S.
P(Sorigg)spert) ~ coun ( orig— pert)

count(Sorig—-)

int

count(saw GAP dog — saw the dog) (The perturbation penalty is a system parameter,
count(saw GAP dog — _) which determines the importance of perturbation

Again, it is unlikely these counts are going to beScores relative to interpretation scores; it is cur-
high enough, so we also derive additional backed[ently set to 1.) To choose between alternative in-

off estimates, two based on bigrams and one basd§Pretations at a given level, we now take all in-
on unigrams: terpretations whose aggregate score is within the

winning margin of the highest aggregate score.
count(GAP dog — the dog)

count(GAP dog — ) 5.3 Respondingto the user’s utterance

After the utterance disambiguation process is
count(saw GAP — ) complete, gither a si'ngle interpretation remains,
or a set of interpretations whose aggregate scores
count(GAP — the) are too close to call at any of the three levels. In
count(GAP — ) either case, how the system responds depends on
See van der Ham (2005) for details of the backoffwhether the remaining interpretations derive from
and discounting schemes used to derive a singléhe unperturbed utterance or from a perturbed ver-
probability from these different approximations. sion.

If a single interpretation remains, then if it de-
rives from the original utterance, the dialogue
manager responds to it in the usual way. However,
When an incoming utterance is received, a set off it derives from a perturbed utterance, then the
perturbations is generated. Naturally, we do nokystem is confident that an error has occurred, and
want to hypothesise all possible perturbations, buthat it knows what the error is. In this case the sys-
only the most likely ones—i.e. those whose scoreem enters a subdialogue with the user to address
exceeds some threshold. The threshold is cukhe error. Our system’s current strategy is simply
rently set at 0.8. We also want to keep the num+g report the error explicitly:
ber of hypothesised perturbations to a minimum.

Currently we only allow one perturbation per ut- (4) | think you mean [perturbed utterance].
terance, except for a special class of particularly Please try again!

count(saw GAP — saw the)

5.2 Integrating perturbationsinto utterance
disambiguation
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(If the student’s utterance was responding to anterpretations are compared by the disambigua-
forward-looking dialogue act—e.g. a question—tion module, the perturbed version is preferred, be-
the system then reiterates this forward-looking actcause it is cheaper to incorporate into the current
to recreate the context for the student’s second atlialogue contextithe chiefrefers back to an ex-
tempt.) Note that a good tutor would probably giveisting discourse entity, whilthe chefrequires the
the student an opportunity to correct her error heraccommodation of a new one.

self; we are still exploring ways of doing this with- ~ Here is a final example, this time at the level of

out irritating the student. whole-word perturbations:
If more than one interpretation remains when _
utterance disambiguation is complete, what hap- S: Whatis your name?
pens again depends on where the interpretatiori®) U: Your name is Sally. _
come from. If they all come from the unper- S:  Ithink you meanMy name is Sally’.

_turbed utterance, an ordinary clarifiction questionThe error database contains enough instances of
is a.s_ked. (see Lurcock (2005) for details of hOWthe perturbatioryour—myto cause the system to
clarification questions are generated). If they all,.oa4e this candidate perturbation; an interpreta-

come froma singleperturbed utterance, we sim- tion for this perturbation is thus created alongside

pr:y prezent thhe suggestedhco:]rectl?]n, as gbove; {Fat of the original utterance. Again, the interpre-
the student then enters the hypothesised correg;, deriving from the perturbation is easier to

tion, a regular clarification question will be aSked'incorporate into the dialogue context, since it an-

However, it is also possible that the interpretations, s the system’s question, so the perturbed sen-

come from several different perturbations. In thistence is preferred over the original, even though
case, we formulate our error feedback as a quespe original contains no syntactic errors.

tion:
7 Futurework: incorporating a

5 Do you mean [perturbation 1] or (...) or
®) y lp for(.) treatment of unknown words

[perturbation n]?

The error correction scheme has performed rea-
sonably well ininformal user trials. However there
In this section, we give some examples of ouris one fairly major problem still to be addressed,
error-correction scheme in action. First, a simplerelating to unknown words. If a word in the stu-
character-level correction: dent’s utterance is not found in the system’s lex-

. icon, there are two possibilities: either the stu-
U: |am hapy . )
(6) ) . . , dent has made an error, or the word is one which

S: Ithink you mean ‘Il anhappy’. .
the system simply does not know. In the current

The perturbation here is motivated by syntacticscheme, only the first possibility is considered.
well-formedness: the original utterance does not We have already implemented a treatment of

6 Someexamples

parse, but the perturbed utterance does. unknown words, in which the system assumes an
Here is another character-level correction, thisunknown word is of a lexical type already defined
time informed by contextual appropriateness: in the grammar, and proceeds by asking the user

guestions embedding the word in example sen-
tences to help identify this type (see van Scha-
gen and Knott (2004)). However, word-authoring

, subdialogues would be a distraction for a student;
‘and in any case, it is fairly safe to assume that
There are two things to note about this exampleall unknown words used by the student are proper
Firstly, note that the user’s original utterance isnames. We therefore use a simpler treatment re-
syntactically correct, so a full interpretation will lated to the constraint-relaxation scheme of Fou-
be derived for this utterance as well as for thevry (2003), in which the system temporarily adds

version perturbinghefto chief When these two an unknown word to the class of proper names and
then attempts to reparse the sentence. A success-

2The question is formulated as a multiple choice questionf | is th int ted id that th
using the same format as some types of syntactic clarifircatio ul parse Is then Interpreted as evidence that the

question. unknown word is indeed a proper name.

U: |saw my chief

S: Okay

U: The chefis happy

S: 1think you mean ‘Thehief is happy

(7)
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A problem arises with this scheme when it iSF Fouvry. 2003. Lexicon acquisition with a large-coverage

used in conjunction with error-correction: wher- unifi cation-based grammar. i®th Conference of the Eu-
) ropean Chapter of the Association for Computational Lin-

ever it. i§ possible to use a proper name, hy-  guistics, Research notes and den®sdapest, Hungary.
pothesising a proper name gives a higher aggre- Goldi 4V Schabes. 1996. Combining based
. olding an chabes. . Combining trigram-base
ga_‘te scor_e than hypothesising an _error’. all Otheﬁ and feature-based methods for context-sensitive spelling
things being equal. The problem is serious, be- correction. InProceedings of the Thirty-Fourth Annual
cause grammars typically allow proper names in Meeting of the Association for Computational Linguistics

many different places, in particular as preposed; Hobbs, M Stickel, D Appelt, and P Martin. 1993. Interpre-
and postposed sentence adverbials functioning as tation as abductionArtificial Intelligence 63.

addreslsee terms (See Kn&tial. (2004)). To rem- A Knott and P Vlugter. 2003. Syntactic disambigua-
edy this problem, it is important to attach a cost tion using presupposition resolution. Rroceedings
to the Operatlon of hypotheSISIng a proper name, of the 4th Australasian Language Techn0|ogy WOkahOp
. (ALTW2003)Melbourne.
comparable to that of hypothesising an error.
In our (as_yet unimp|emented) combined A Knott, | Bayard, and P Vlugter. 2004. Multi-agent human-

K d d fi h if machine dialogue: issues in dialogue management and re-
unknown-word and error-correction scheme, | ferring expression semantics. Rroceedings of the 8th

there is an unknown word which can be inter- Pacific Rim Conference on Atrtificial Intelligence (PRICAI

ture Notes in Al.

prior to parsing, and perturbations are created as

usual. A specialinknown word cost is associated K Kukich. 1992. Techniques for automatically correcting
with the original utterance and with each of these V0'dS In text.Computing Survey4(4):377-439.
perturbations, except any perturbations whichP Lurcock, P Viugter, and A Knott. 2004. A framework

for utterance disambiguation in dialogue. Rroceedings
alter the unknown word (and thus do not rely of the 2004 Australasian Language Technology Workshop

on the hypothesised lexical item). The unknown (AL Tw) pages 101-108, Macquarie University.

word cost is another number between 0 and 1 _ _ o
d th t f int tati .P Lurcock. 2005. Techniques for utterance disambiguation
and the aggregate score ol an Interpretation 1S i, 3 hyman-computer dialogue system. MSc thesis, Dept

multiplied by this number when deciding amongst  of Computer Science, University of Otago.
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