
Proceedings of the 2006 Australasian Language Technology Workshop (ALTW2006), pages 26–33.

Computational Semantics in the Natural Language Toolkit

Ewan Klein

School of Informatics

University of Edinburgh

Scotland, UK

ewan@inf.ed.ac.uk

Abstract

NLTK, the Natural Language Toolkit, is an

open source project whose goals include

providing students with software and lan-

guage resources that will help them to

learn basic NLP. Until now, the pro-

gram modules in NLTK have covered such

topics as tagging, chunking, and parsing,

but have not incorporated any aspect of

semantic interpretation. This paper de-

scribes recent work on building a new se-

mantics package for NLTK. This currently

allows semantic representations to be built

compositionally as a part of sentence pars-

ing, and for the representations to be eval-

uated by a model checker. We present the

main components of this work, and con-

sider comparisons between the Python im-

plementation and the Prolog approach de-

veloped by Blackburn and Bos (2005).

1 Introduction

NLTK, the Natural Language Toolkit,1 is an open

source project whose goals include providing stu-

dents with software and language resources that

will help them to learn basic NLP. NLTK is imple-

mented in Python, and provides a set of modules

(grouped into packages) which can be imported

into the user’s Python programs.

Up till now, the modules in NLTK have covered

such topics as tagging, chunking, and parsing, but

have not incorporated any aspect of semantic inter-

pretation. Over the last year, I have been working

on remedying this lack, and in this paper I will de-

scribe progress to date. In combination with the

1http://nltk.sourceforge.net/

NLTK parse package, NLTK’s semantics pack-

age currently allow semantic representations to be

built compositionally within a feature-based chart

parser, and allows the representations to be evalu-

ated by a model checker.

One source of inspiration for this work came

from Blackburn and Bos’s (2005) landmark book

Representation and Inference for Natural Lan-

guage (henceforth referred to as B&B). The two

primary goals set forth by B&B are (i) automating

the association of semantic representations with

expressions of natural language, and (ii) using log-

ical representations of natural language to auto-

mate the process of drawing inferences. I will be

focussing on (i), and the related issue of defin-

ing satisfaction in a model for the semantic rep-

resentations. By contrast, the important topic of

(ii) will not be covered—as yet, there are no the-

orem provers in NLTK. That said, as pointed out

by B&B, for many inference problems in NLP it is

desirable to call external and highly sophisticated

first-order theorem provers.

One notable feature of B&B is the use of Pro-

log as the language of implementation. It is not

hard to defend the use of Prolog in defining logical

representations, given the presence of first-order

clauses in Prolog and the fundamental role of res-

olution in Prolog’s model of computation. Never-

theless, in some circumstances it may be helpful to

offer students access to an alternative framework,

such as the Python implementation presented here.

I also hope that the existence of work in both pro-

gramming paradigms will turn out to be mutually

beneficial, and will lead to a broader community

of upcoming researchers becoming involved in the

area of computational semantics.

26

2 Building Semantic Representations

The initial question that we faced in NLTK was

how to induce semantic representations for En-

glish sentences. Earlier efforts by Edward Loper

and Rob Speer had led to the construction of

a chart parser for (untyped) feature-based gram-

mars, and we therefore decided to introduce a

sem feature to hold the semantics in a parse tree

node. However, rather than representing the value

of sem as a feature structure, we opted for a more

traditional (and more succinct) logical formalism.

Since the λ calculus was the pedagogically obvi-

ous choice of ‘glue’ language for combining the

semantic representations of subconstituents in a

sentence, we opted to build on church.py,2 an in-

dependent implementation of the untyped λ cal-

culus due to Erik Max Francis. The NLTK mod-

ule semantics.logic extends church.py to bring

it closer to first-order logic, though the resulting

language is still untyped. (1) illustrates a repre-

sentative formula, translating A dog barks. From

a Python point of view, (1) is just a string, and has

to be parsed into an instance of the Expression

class from semantics.logic.

(1) some x.(and (dog x) (bark x))

The string (dog x) is analyzed as a func-

tion application. A statement such as Suzie

chases Fido, involving a binary relation chase ,

will be translated as another function applica-

tion: ((chase fido) suzie), or equiva-

lently (chase fido suzie). So in this case,

chase is taken to denote a function which, when

applied to an argument yields the second function

denoted by (chase fido). Boolean connec-

tives are also parsed as functors, as indicated by

and in (1). However, infix notation for Boolean

connectives is accepted as input and can also be

displayed.

For comparison, the Prolog counterpart of (1)

on B&B’s approach is shown in (2).

(2) some(X,(and(dog(X),bark(X))

(2) is a Prolog term and does not require any addi-

tional parsing machinery; first-order variables are

treated as Prolog variables.

(3) illustrates a λ term from semantics.logic

that represents the determiner a.

(3) \Q P.some x.(and (Q x) (P x))

2http://www.alcyone.com/pyos/church/.

\Q is the ascii rendering of λQ, and \Q P is short-

hand for λQλP .

For comparison, (4) illustrates the Prolog coun-

terpart of (3) in B&B.

(4) lam(Q,lam(P,some(X,

and(app(Q,X),app(P,X)))))

Note that app is used in B&B to signal the ap-

plication of a λ term to an argument. The right-

branching structure for λ terms shown in the Pro-

log rendering can become fairly unreadable when

there are multiple bindings. Given that readability

is a design goal in NLTK, the additional overhead

of invoking a specialized parser for logical repre-

sentations is arguable a cost worth paying.

Figure 1 presents a minimal grammar exhibiting

the most important aspects of the grammar formal-

ism extended with the sem feature. Since the val-

ues of the sem feature have to handed off to a sep-

arate processor, we have adopted the convention

of enclosing the values in angle brackets, except

in the case of variables (e.g., ?subj and ?vp),

which undergo unification in the usual way. The

app relation corresponds to function application;

In Figure 2, we show a trace produced by the

NLTK module parse.featurechart. This illus-

trates how variable values of the sem feature are

instantiated when completed edges are added to

the chart. At present, β reduction is not carried

out as the sem values are constructed, but has to

be invoked after the parse has completed.

The following example of a session with the

Python interactive interpreter illustrates how a

grammar and a sentence are processed by a parser

to produce an object tree; the semantics is ex-

tracted from the root node of the latter and bound

to the variable e, which can then be displayed in

various ways.

>>> gram = GrammarFile.read_file(’sem1.cfg’)

>>> s = ’a dog barks’

>>> tokens = list(tokenize.whitespace(s))

>>> parser = gram.earley_parser()

>>> tree = parser.parse(tokens)

>>> e = root_semrep(tree)

>>> print e

(\Q P.some x.(and (Q x) (P x)) dog \x.(bark x))

>>> print e.simplify()

some x.(and (dog x) (bark x))

>>> print e.simplify().infixify()

some x.((dog x) and (bark x))

Apart from the pragmatic reasons for choos-

ing a functional language as our starting point,

27

S[sem = <app(?subj,?vp)>] -> NP[sem=?subj] VP[sem=?vp]

VP[sem=?v] -> IV[sem=?v]

NP[sem=<app(?det,?n)>] -> Det[sem=?det] N[sem=?n]

Det[sem=<\Q P. some x. ((Q x) and (P x))>] -> ’a’

N[sem=<dog>] -> ’dog’

IV[sem=<\x.(bark x)>] -> ’barks’

Figure 1: Minimal Grammar with Semantics

Predictor |> . . .| S[sem=’(?subj ?vp)’] -> * NP[sem=?subj] VP[sem=?vp]

Predictor |> . . .| NP[sem=’(?det ?n)’] -> * Det[sem=?det] N[sem=?n]

Scanner |[-] . .| [0:1] ’a’

Completer |[-> . .| NP[sem=’(\\Q P.some x.(and (Q x) (P x)) ?n)’]

-> Det[sem=’\\Q P.some x.(and (Q x) (P x))’] * N[sem=?n]

Scanner |. [-] .| [1:2] ’dog’

Completer |[---] .| NP[sem=’(\\Q P.some x.(and (Q x) (P x)) dog)’]

-> Det[sem=’\\Q P.some x.(and (Q x) (P x))’] N[sem=’dog’] *
Completer |[---> .| S[sem=’(\\Q P.some x.(and (Q x) (P x)) dog ?vp)’]

-> NP[sem=’(\\Q P.some x.(and (Q x) (P x)) dog)’] * VP[sem=?vp]

Predictor |. . > .| VP[sem=?v] -> * V[sem=?v]

Scanner |. . [-]| [2:3] ’barks’

Completer |. . [-]| VP[sem=’bark’] -> V[sem=’bark’] *
Completer |[=====]| S[sem=’(\\Q P.some x.(and (Q x) (P x)) dog bark)’]

-> NP[sem=’(\\Q P.some x.(and (Q x) (P x)) dog)’] VP[sem=’bark’] *
Completer |[=====]| [INIT] -> S *

Figure 2: Parse tree for a dog barks

there are also theoretical attractions. It helps intro-

duce students to the tradition of Montague Gram-

mar (Montague, 1974; Dowty et al., 1981), which

in turn provides an elegant correspondence be-

tween binary syntax trees and semantic compo-

sition rules, in the style celebrated by categorial

grammar. In the next part of the paper, I will turn

to the issue of how to represent models for the log-

ical representations.

3 Representing Models in Python

Although our logical language is untyped, we will

interpret it as though it were typed. In partic-

ular, expressions which are intended to translate

unary predicates will be interpreted as functions

of type e → {0, 1} (from individuals to truth

values) and expressions corresponding to binary

predicates will be interpreted as though they were

of type e → (e → {0, 1}). We will start out by

looking at data structures which can be used to

provide denotations for such expressions.

3.1 Dictionaries and Boolean Types

The standard mapping type in Python is the dictio-

nary, which associates keys with arbitrary values.

Dictionaries are the obvious choice for represent-

ing various kinds of functions, and can be special-

ized by user-defined classes. This means that it is

possible to benefit from the standard Python op-

erations on dictionaries, while adding additional

features and constraints, or in some cases overrid-

ing the standard operations. Since we are assum-

ing that our logical language is based on function

application, we can readily construct the interpre-

tation of n-ary relations in terms of dictionaries-

as-functions.

Characteristic functions (i.e., functions that cor-

respond to sets) are dictionaries with Boolean val-

ues:

cf = {’d1’: True,

’d2’: True,

’d3’: False}

cf corresponds to the set {d1, d2}. Since func-

tions are being implemented as dictionaries, func-

28

tion application is implemented as indexing (e.g.,

cf[’d1’] applies cf to argument ’d1’). Note

that True and False are instances of the Python

built-in bool type, and can be used in any

Boolean context. Since Python also includes and

and not, we can make statements (here, using the

Python interactive interpreter) such as the follow-

ing:

>>> cf[’d1’] and not cf[’d3’]

True

As mentioned earlier, relations of higher arity are

also modeled as functions. For example, a bi-

nary relation will be a function from entities to a

characteristic function; we can call these ‘curryed

characteristic functions’.

cf2 = {’d2’: {’d1’: True},

’d3’: {’d2’: True}}

cf2 corresponds to the relation

{(d1, d2), (d2, d3)}, on two assumptions. First,

we are allowed to omit values terminating in

False, since arguments that are missing the

function will be taken to yield False. Second, as

in Montague Grammar, the ‘object’ argument of a

binary relation is consumed before the ‘subject’

argument. Thus we write ((love m) j) in place

of love(j, m). Recall that we also allow the

abbreviated form (love m j)
Once we have curryed characteristic functions

in place, it is straightforward to implement the

valuation of non-logical constants as a another

dictionary-based class Valuation, where con-

stants are the keys and the values are functions (or

entities in the case of individual constants).

While variable assignments could be treated as

a list of variable-value pairs, as in B&B, an al-

ternative is again to use a dictionary-based class.

This approach makes it relatively easy to impose

further restrictions on assignments, such as only

assigning values to strings of the form x, y, z, x0,

x1,

3.2 Sets

Python provides support for sets, including stan-

dard operations such as intersection and subset

relationships. Sets are useful in a wide variety

of contexts. For example, instances of the class

Valuation can be given a property domain,

consisting of the set of entities that act as keys

in curryed characteristic functions; then a con-

dition on objects in the Model class is that the

domain of some model m is a superset of m’s

valuation.domain:

m.domain.issuperset

(m.valuation.domain)

For convenience, Valuation objects have a

read method which allows n-ary predicates to

be specified as relations (i.e., sets of tuples) rather

than functions. In the following example, rel is

a set consisting of the pairs (’d1’, ’d2’) and

(’d2’, ’d3’).

val = Valuation()

rel = set([(’d1’, ’d2’),(’d2’, ’d3’)])

val.read([(’love’, rel)])

read converts rel internally to the curryed char-

acteristic function cf2 defined earlier.

4 Key Concepts

4.1 Satisfaction

The definition of satisfaction presupposes that

we have defined a first-order language, and

that we have a way of parsing that language

so that satisfaction can be stated recursively.

In the interests of modularity, it seems desir-

able to make the relationship between language

and interpretation less tightly coupled than it

is on the approach of B&B; for example, we

would like to be able apply similar evalua-

tion techniques to different logical representa-

tions. In the current NLTK implementation, the

nltk_lite.semantics.evaluatemodule

imports a second module logic, and calls a

parse method from this module to determine

whether a given Python string can be analysed as

first-order formula. However, evaluate tries to

make relatively weak assumptions about the re-

sulting parse structure. Specifically, given a parsed

expression, it tries to match the structure with one

of the following three kinds of pattern:

(binder, body)

(op, arg_list)

(fun, arg)

29

Any string which cannot be decomposed is taken

to be a primitive (that is, a non-logical constant or

individual variable).

A binder can be a λ or a quantifier (existen-

tial or universal); an op can be a Boolean con-

nective or the equality symbol. Any other paired

expression is assumed to be a function applica-

tion. In principle, it should be possible to in-

terface the evaluate module with any parser

for first-order formulas which can deliver these

structures. Although the model checker expects

predicate-argument structure as function applica-

tions, it would be straightforward to accept atomic

clauses that have been parsed into a predicate and

a list of arguments.

Following the functional style of interpreta-

tion, Boolean connectives in evaluate are inter-

preted as truth functions; for example, the connec-

tive and can be interpreted as the function AND:

AND = {True: {True: True,

False: False},

False: {True: False,

False: False}}

We define OPS as a mapping between the Boolean

connectives and their associated truth functions.

Then the simplified clause for the satisfaction of

Boolean formulas looks as follows:3

def satisfy(expr, g):

if parsed(expr) == (op, args)

if args == (phi, psi):

val1 = satisfy(phi, g)

val2 = satisfy(psi, g)

return OPS[op][val1][val2]

In this and subsequent clauses for satisfy,

the return value is intended to be one of Python’s

Boolean values, True or False. (The excep-

tional case, where the result is undefined, is dis-

cussed in Section 4.3.)

An equally viable (and probably more effi-

cient) alternative to logical connnectives would

be to use the native Python Boolean operators.

The approach adopted here was chosen on the

grounds that it conforms to the functional frame-

work adopted elsewhere in the semantic represen-

tations, and can be expressed succinctly in the sat-

isfaction clauses. By contrast, in the B&B Pro-

log implementation, and and or each require five

3In order to simplify presentation, tracing and some er-
ror handling code has been omitted from definitions. Object-
oriented uses of self have also been suppressed.

clauses in the satisfaction definition (one for each

combination of Boolean-valued arguments, and a

fifth for the ‘undefined’ case).

We will defer discussion of the quantifiers to the

next section. The satisfy clause for function

application is similar to that for the connectives.

In order to handle type errors, application is del-

egated to a wrapper function app rather than by

directly indexing the curryed characteristic func-

tion as described earlier.

...

elif parsed(expr) == (fun, arg):

funval = satisfy(fun, g)

argval = satisfy(psi, g)

return app(funval, argval)

4.2 Quantifers

Examples of quantified formulas accepted by

the evaluate module are pretty unexceptional.

Some boy loves every girl is rendered as:

’some x.((boy x) and

all y.((girl y) implies

(love y x)))’

The first step in interpreting quantified formulas

is to define the satisfiers of a formula that is open

in some variable. Formally, given an open formula

φ[x] dependent on x and a model with domain D,

we define the set sat(φ[x], g) of satisfiers of φ[x]
to be:

{u ∈ D : satisfy(φ[x], g[u/x]) = True}

We use ‘g[u/x]’ to mean that assignment which is

just like g except that g(x) = u. In Python, we

can build the set sat(φ[x], g) with a for loop.4

def satisfiers(expr, var, g):

candidates = []

if freevar(var, expr):

for u in domain:

g.add(u, var)

if satisfy(expr, g):

candidates.append(u)

return set(candidates)

An existentially quantified formula ∃x.φ[x] is held

to be true if and only if sat(φ[x], g) is nonempty.

In Python, len can be used to return the cardinal-

ity of a set.

4The function satisfiers is an instance method of the
Models class, and domain is an attribute of that class.

30

...

elif parsed(expr) == (binder, body):

if binder == (’some’, var):

sat = satisfiers(body, var, g)

return len(sat) > 0

In other words, a formula ∃x.φ[x] has the same

value in model M as the statement that the number

of satisfiers in M of φ[x] is greater than 0.

For comparison, Figure 3 shows the two Pro-

log clauses (one for truth and one for falsity) used

to evaluate existentially quantified formulas in the

B&B code modelChecker2.pl. One reason

why these clauses look more complex than their

Python counterparts is that they include code for

building the list of satisfiers by recursion. How-

ever, in Python we gain bivalency from the use of

Boolean types as return values, and do not need

to explicitly mark the polarity of the satisfaction

clause. In addition, processing of sets and lists is

supplied by a built-in Python library which avoids

the use of predicates such as memberList and

the [Head|Tail] notation.

A universally quantified formula ∀x.φ[x] is held

to be true if and only if every u in the model’s do-

main D belongs to sat(φ[x], g). The satisfy

clause above for existentials can therefore be ex-

tended with the clause:

...

elif parsed(expr) == (binder, body):

...

elif binder == (’all’, var):

sat = self.satisfiers(body,var,g)

return domain.issubset(sat)

In other words, a formula ∀x.φ[x] has the same

value in model M as the statement that the domain

of M is a subset of the set of satisfiers in M of

φ[x].

4.3 Partiality

As pointed out by B&B, there are at least two

cases where we might want the model checker

to yield an ‘Undefined’ value. The first is when

we try to assign a semantic value to an unknown

vocabulary item (i.e., to an unknown non-logical

constant). The second arises through the use of

partial variable assignments, when we try to eval-

uate g(x) for some variable x that is outside g’s

domain. We adopt the assumption that if any sub-

part of a complex expression is undefined, then the

whole expression is undefined.5 This means that

an ‘undefined’ value needs to propagate through

all the recursive clauses of the satisfy func-

tion. This is potentially quite tedious to imple-

ment, since it means that instead of the clauses

being able to expect return values to be Boolean,

we also need to allow some alternative return type,

such as a string. Fortunately, Python offers a nice

solution through its exception handling mecha-

nism.

It is possible to create a new class of ex-

ceptions, derived from Python’s Exception

class. The evaluate module defines the

class Undefined, and any function called by

satisfy which attempts to interpret unknown

vocabulary or assign a value to an out-of-domain

variable will raise an Undefined exception. A

recursive call within satisfy will automatically

raise an Undefined exception to the calling

function, and this means that an ‘undefined’ value

is automatically propagated up the stack with-

out any additional machinery. At the top level,

we wrap satisfy with a function evaluate

which handles the exception by returning the

string ’Undefined’ as value, rather than allow-

ing the exception to raise any higher.

EAFP stands for ‘Easier to ask for forgive-

ness than permission’. According to van Rossum

(2006), “this common Python coding style as-

sumes the existence of valid keys or attributes and

catches exceptions if the assumption proves false.”

It contrasts with LBYL (‘Look before you leap’),

which explicitly tests for pre-conditions (such as

type checks) before making calls or lookups. To

continue with the discussion of partiality, we can

see an example of EAFP in the definition of the i

function, which handles the interpretion of non-

logical constants and individual variables.

try:

return self.valuation[expr]

except Undefined:

return g[expr]

We first try to evaluate expr as a non-logical con-

stant; if valuation throws an Undefined ex-

ception, we check whether g can assign a value.

If the latter also throws an Undefined excep-

5This is not the only approach, since one could adopt the
position that a tautology such as p ∨ ¬p should be true even
if p is undefined.

31

satisfy(Formula,model(D,F),G,pos):-

nonvar(Formula),

Formula = some(X,SubFormula),

var(X),

memberList(V,D),

satisfy(SubFormula,model(D,F),[g(X,V)|G],pos).

satisfy(Formula,model(D,F),G,neg):-

nonvar(Formula),

Formula = some(X,SubFormula),

var(X),

setof(V,memberList(V,D),All),

setof(V,

(

memberList(V,D),

satisfy(SubFormula,model(D,F),[g(X,V)|G],neg)

),

All).

Figure 3: Prolog Clauses for Existential Quantification

tion, this will automatically be raised to the calling

function.

To sum up, an attractive consequence of this

approach in Python is that no additional stipula-

tions need to be added to the recursive clauses

for interpreting Boolean connectives. By con-

trast, in the B&B modelChecker2.pl code,

the clauses for existential quantification shown in

Figure 3 need to be supplemented with a separate

clause for the ‘undefined’ case. In addition, as re-

marked earlier, each Boolean connective receives

an additional clause when undefined.

5 Specifying Models

Models are specified by instantiating the Model

class. At initialization, two parameters are called,

determining the model’s domain and valuation

function. In Table 4, we start by creating a

Valuation object val (line 1), we then spec-

ify the valuation as a list v of constant-value pairs

(lines 2–9), using relational notation. For exam-

ple, the value for ’adam’ is the individual ’d1’

(i.e., a Python string); the value for ’girl’ is the

set consisting of individuals ’g1’ and ’g1’; and

the value for ’love’ is a set of pairs, as described

above. We use the parse method to update val

with this information (line 10). As mentioned ear-

lier, a Valuation object has a domain prop-

erty (line 11), and in this case dom will evaluate to

the set set([’b1’, ’b2’, ’g1’, ’g2’,

’d1’]). It is convenient to use this set as the

value for the model’s domain when it is initial-

ized (line 12). We also declare an Assignment

object (line 13), specifying that its domain is the

same as the model’s domain.

Given model m and assignment g, we can eval-

uate m.satisfiers(formula, g), for var-

ious values of formulas. This is quite a handy

way of getting a feel for how connectives and

quantifiers interact. A range of cases is illustrated

in Table 5. As pointed out earlier, all formulas are

represented as Python strings, and therefore need

to be parsed before being evaluated.

6 Conclusion

In this paper, I have tried to show how various as-

pects of Python lend themselves well to the task of

interpreting first-order formulas, following closely

in the footsteps of Blackburn and Bos. I argue that

at least in some cases, the Python implementation

compares quite favourably to a Prolog-based ap-

proach. It will be observed that I have not consid-

ered efficiency issues. Although these cannot be

ignored (and are certainly worth exploring), they

are not a priority at this stage of development. As

discussed at the outset, our main goal is develop

a framework that can be used to communicate key

ideas of formal semantics to students, rather than

to build systems which can scale easily to tackle

large problems.

Clearly, there are many design choices to be

made in any implementation, and an alternative

framework which overlaps in part with what I have

presented can be found in the Python code supple-

ment to (Russell and Norvig, 2003).6 One impor-

tant distinction is that the approach adopted here

6http://aima.cs.berkeley.edu/python

32

val = Valuation() 1

v = [(’adam’, ’b1’), (’betty’, ’g1’), (’fido’, ’d1’),\ 2

(’girl’, set([’g1’, ’g2’])),\ 3

(’boy’, set([’b1’, ’b2’])),\ 4

(’dog’, set([’d1’])),\ 5

(’love’, set([(’b1’, ’g1’),\ 6

(’b2’, ’g2’),\ 7

(’g1’, ’b1’),\ 8

(’g2’, ’b1’)]))] 9

val.parse(v) 10

dom = val.domain 11

m = Model(dom, val) 12

g = Assignment(dom, {’x’: ’b1’, ’y’: ’g2’}) 13

Figure 4: First-order model m

Formula open in x Satisfiers

’(boy x)’ set([’b1’, ’b2’])

’(x = x)’ set([’b1’, ’b2’, ’g2’, ’g1’, ’d1’])

’((boy x) or (girl x))’ set([’b2’, ’g2’, ’g1’, ’b1’])

’((boy x) and (girl x))’ set([])

’(love x adam)’ set([’g1’])

’(love adam x)’ set([’g2’, ’g1’])

’(not (x = adam))’ set([’b2’, ’g2’, ’g1’, ’d1’])

’some y.(love x y)’ set([’g2’, ’g1’, ’b1’])

’all y.((girl y) implies (love y x))’ set([])

’all y.((girl y) implies (love x y))’ set([’b1’])

’((girl x) implies (dog x))’ set([’b1’, ’b2’, ’d1’])

’all y.((dog y) implies (x = y))’ set([’d1’])

’(not some y.(love x y))’ set([’b2’, ’d1’])

’some y.((love y adam) and (love x y))’ set([’b1’])

Figure 5: Satisfiers in model m

is explicitly targeted at students learning computa-

tional linguistics, rather than being intended for a

more general artificial intelligence audience.

While I have restricted attention to rather ba-

sic topics in semantic interpretation, there is no

obstacle to addressing more sophisticated top-

ics in computational semantics. For example,

I have not tried to address the crucial issue

of quantifier scope ambiguity. However, work

by Peter Wang (author of the NLTK module

nltk_lite.contrib.hole) implements the

Hole Semantics of B&B. This module contains a

‘plugging’ algorithm which converts underspeci-

fied representations into fully-specified first-order

logic formulas that can be displayed textually or

graphically. In future work, we plan to extend the

semantics package in various directions, in par-

ticular by adding some basic inferencing mecha-

nisms to NLTK.

Acknowledgements

I am very grateful to Steven Bird, Patrick Black-

burn, Alex Lascarides and three anonymous re-

viewers for helpful feedback and comments.

References

Steven Bird. 2005. NLTK-Lite: Efficient scripting for
natural language processing. In Proceedings of the
4th International Conference on Natural Language
Processing (ICON), pages 11–18, New Delhi, De-
cember. Allied Publishers.

Patrick Blackburn and Johan Bos. 2005. Represen-
tation and Inference for Natural Language: A First
Course in Computational Semantics. CSLI Publica-
tions.

D. R. Dowty, R. E. Wall, and S. Peters. 1981. Introduc-
tion to Montague Semantics. Studies in Linguistics
and Philosophy. Reidel, Dordrecht.

Richard Montague. 1974. The proper treatment of
quantification in ordinary English. In R. H. Thoma-
son, editor, Formal Philosphy: Selected Papers of
Richard Montague, pages 247–270. Yale University
Press, New Haven.

Stuart Russell and Peter Norvig. 2003. Artifical Intel-
ligence: A Modern Approach. Prentice Hall. 2nd
edition.

Guido van Rossum. 2006. Python Tutorial. March.
Release 2.4.3.

33

