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Preface

This volume contains the papers accepted for presentation at the Australasian Language Technology
Workshop (ALTW) 2006, held at the University of Sydney, Sydney, Australia, on November 30 –
December 1, 2006. This is the fourth annual installment of the workshop in its most-recent incarnation,
and the continuation of an annual workshop series that has existed under various guises since the early
90s.

The goals of the workshop are:

• to bring together the growing Language Technology (LT) community in Australia and New
Zealand and encourage interactions;

• to foster interaction between academic and industrial researchers;

• to encourage dissemination of research results for new and ongoing projects; and

• to increase the visibility of LT research in Australia and New Zealand.

This year’s Australasian Language Technology Workshop includes regular talks as well as poster
presentations and student posters. Of the 36 papers submitted, 19 papers were selected by the program
committee for publication and appear in these proceedings. Of these, 13 are oral presentations papers
and 6 are poster presentations. Additionally, we have included 6 student posters to encourage feedback
on early results. Each full-length submission was independently peer reviewed by at least two members
of the international program committee, in accordance with the DEST requirements for E1 conference
publications.

We would like to thank all the authors who submitted papers, as well as the members of the program
committee for the time and effort they contributed in reviewing the papers. Our thanks also go to local
organizer Rolf Schwitter, to Jiawen Rong for installing and configuring the submission management
system, and to members of the ALTA executive for their support in organizing the workshop.

This year, ALTW is held as part of the HCSNet (ARC Network in Human Communication Science)
SummerFest. We thank HCSNet for its invaluable financial and organisational support, including
organising the venue and refreshments, printing the proceedings, handling registration, and particularly
for providing travel funds to all presenters, including the invited international speaker: Michael
Johnston (AT&T Labs Research). A special thanks goes to Kym Buckley of HCSNet for her immense
effort in managing the organisation of the HCSNet events, including ALTW.

Lawrence Cavedon and Ingrid Zukerman
Program Chairs
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Proceedings of the 2006 Australasian Language Technology Workshop (ALTW2006), pages 1–1.

Robust Multimodal Understanding for Interactive Systems

Michael Johnston
AT&T Labs Research

The ongoing convergence of the web with telephony, driven by technologies such as voice over IP, 
high-speed mobile data networks, and hand-held computers and smartphones, enables widespread 
deployment of multimodal interfaces which combine graphical user interfaces with natural human input 
modalities such as speech and pen. In order to support effective multimodal interaction, natural language 
processing techniques, which have typically been applied to linear sequences of speech or text, need to 
be extended to support integration and understanding of multimodal language distributed over multiple 
different simultaneous input modes. 

Multimodal grammars (Johnston and Bangalore 2000) combine speech and gesture parsing, integration, 
and understanding all within a single formalism. Their finite-state implementation enables efficient 
processing of lattice input from speech and gesture recognition and mutual compensation for errors and 
ambiguities. However, like other approaches based on hand-crafted rules, multimodal grammars can be 
brittle with respect to unexpected, erroneous, or disfluent input. 

In this talk, I will illustrate and evaluate the use of multimodal grammars to support spoken input 
combined with complex freehand pen input in the context of a multimodal conversational system, and 
explore a range of methods for improving their robustness. These include techniques for building 
effective language models for speech recognition when little or no training data is available and 
techniques for robust multimodal understanding that draw on classification, machine translation, and
sequence edit methods.
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Proceedings of the 2006 Australasian Language Technology Workshop (ALTW2006), pages 2–2.

User Modelling for Language Technologists

Judy Kay
School of Information Technologies

University of Sydney

This talk overviews some of the potential roles that user modelling can play in improving effective 
communication between people and machines, with a focus on language technology.  Essentially, these 
relate to
improving the machine's ability to understand a person as well as improved communication from the 
machine to the person.  The talk will present examples of the use of methods of language technology for 
personalisation and outline some of the barriers to greater user modelling in language-based interfaces.
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Efficient Combinatory Categorial Grammar Parsing

Bojan Djordjevic and James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

{bojan,james}@it.usyd.edu.au

Abstract

Efficient wide-coverage parsing is integral
to large-scale NLP applications. Unfortu-
nately, parsers for linguistically motivated
formalisms, e.g. HPSG and TAG, are often
too inefficient for these applications.

This paper describes two modifications
to the standard CKY chart parsing algo-
rithm used in the Clark and Curran (2006)
Combinatory Categorial Grammar (CCG)
parser. The first modification extends the
tight integration of the supertagger and
parser, so that individual supertags can be
added to the chart, which is then repaired
rather than rebuilt. The second modifica-
tion adds constraints to the chart that re-
strict which constituents can combine.

Parsing speed is improved by 30–35%
without a significant accuracy penalty and
a small increase in coverage when both of
these modifications are used.

1 Introduction

Parsing is the process of determining the syntactic
structure of a sentence. It is an integral part of the
deep semantic analysis that any sophisticated Nat-
ural Language Processing (NLP) system, such as
Question Answering and Information Extraction
systems, must perform.

The sentences Bob killed Alice, Alice was killed by
Bob and Bob was the man who killed Alice convey
the same information. If we treat the sentence as
a bag or sequence of words by assuming limited
structure, the sentences appear to be very differ-
ent. These examples demonstrate that full parsing
is necessary for accurate semantic interpretation.
Further, sophisticated linguistic analysis capable
of modelling a wider range of phenomena should
give us the most information.

Unfortunately, parsing is very inefficient be-
cause of the large degree of ambiguity present
in natural language. This is particularly true for
wide-coverage grammars in linguistically expres-
sive formalisms, especially those automatically
extracted from a treebank.

Many NLP systems use shallow parsing be-
cause full parsing is too slow (Grishman, 1997).
To improve the approximate structure identified
by shallow parsers, many systems use domain-
specific knowledge to extract dependencies (Gr-
ishman, 1997; Cole et al., 1997). Ciravegna et al.
(1997) show that the accuracy can be improved by
using a better parser. The ability of NLP systems to
extract useful and correct information could there-
fore be improved substantially if the speed of full
parsing was acceptable.

The C&C CCG parser (Clark and Curran, 2006)
is the fastest linguistically motivated parser in the
literature, but it is still limited to about 25 sen-
tences per second on commodity hardware.

This paper describes two modifications to the
C&C parser that significantly improve parsing ef-
ficiency without reducing accuracy or coverage.
The first involves chart repair, where the CKY

chart is repaired when new categories are added,
instead of rebuilt from scratch. This allows an
even tighter integration of the parser and supertag-
ger (described below) which results in an 11%
speed improvement over the original parser.

The second modification involves parsing with
constraints, that is, requiring certain spans to be
constituents. This reduces the search space con-
siderably by eliminating a large number of con-
stituents that cross the boundary of these spans.
The best set of constraints results in a 10% im-
provement over the original parser. These con-
straints are also useful for other tasks. Finally,
when both chart repair and constraints are used,
a 30-35% speed improvement is achieved while
coverage increases and the accuracy is unchanged.
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The cat ate the hat that I made

NP/N N (S\NP)/NP NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
> > >T

NP NP S/(S\NP)
>B

S/NP
>

NP\NP
<

NP
>

S\NP
<

S

Figure 1: A Combinatory Categorial Grammar derivation

2 Combinatory Categorial Grammar

Context free grammars (CFGs) have traditionally
been used for parsing natural language. How-
ever, some constructs in natural language require
more expressive grammars. Mildly context sensi-
tive grammars, e.g. HPSG and TAG, are powerful
enough to describe natural language but like CFGs
(Younger, 1967) are polynomial time parseable
(Vijay-Shanker and Weir, 1990).

Combinatory Categorial Grammar (CCG) is an-
other mildy context sensitive grammar (Steedman,
2000) that has significant advantages over CFGs,
especially for analysing constructions involving
coordination and long range dependencies. Con-
sider the following sentence:

Give a teacher an apple and a policeman a flower.

There are local dependencies between give and
teacher, and between give and apple. The addi-
tional dependencies between give, and policeman
and flower are long range, but are extracted easily
using CCG. a policeman a flower is a non-standard
constituent that CCG deals with very elegantly, al-
lowing a teacher an apple and a policeman a flower to
be coordinated before attachment to the verb give.

In CCG each word is assigned a category which
encodes sub-categorisation information. Cate-
gories are either atomic, such as N , NP and S for
noun, noun phrase or sentence; or complex, such
as NP/N for a word that combines with a noun
on the right to form a noun phrase. NP\N is sim-
ilarly a word that combines with a noun on the left
to create an NP . The categories are then com-
bined using combinatory rules such as forward ap-
plication > (X/Y Y ⇒ X) and forward compo-
sition >B (X/Y Y/Z ⇒B X/Z).

An example derivation that uses a number of
combination rules is shown in Figure 1. The exam-
ple demonstrates how CCG handles long range de-

pendencies such as the hat . . . I made. Type raising
(>T) and forward composition (>B) on I made are
used to derive the same predicate-argument struc-
ture as if it was written as I made the hat.

A derivation creates predicate-argument depen-
dencies, which are 5-tuples 〈hf , f, s, ha, l〉, where
hf is the word of the category representing the re-
lationship, f is the category itself, s is the argu-
ment slot, ha is the head word of the argument and
l indicates if the dependency is local.

The argument slot is used to identify the
different arguments of words like bet in [Alice]1 bet
[Bob]2 [five dollars]3 [that they win]4. The dependency
between bet and Bob would be represented as
〈bet, (((S\NP1)/NP2)/NP3)/S[em]4, 2, Bob,−〉.
The C&C parser is evaluated by comparing ex-
tracted dependencies against the gold standard.
Derivations are not compared directly because
different derivations can produce the same
dependency structure.

The parser is trained on CCGbank, a version of
Penn Treebank translated semi-automatically into
CCG derivations and predicate-argument depen-
dencies (Hockenmaier and Steedman, 2006). The
resulting corpus contains 99.4% of the sentences
in the Penn Treebank. Hockenmaier and Steed-
man also describe how a large CCG grammar can
be extracted from CCGbank. A grammar automat-
ically extracted from CCGbank is used in the C&C

parser and supertagger.

3 C&C CCG Parser

The C&C parser takes one or more syntactic struc-
tures (categories) assigned to each word and at-
tempts to build a spanning analysis of the sen-
tence. Typically every category that a word was
seen with in the training data is assigned.

4



Supertagging (Bangalore and Joshi, 1999) was
introduced for Lexicalized Tree Adjoining Gram-
mar (LTAG) as a way of assigning fewer categories
to each word thus reducing the search space of the
parser and improving parser efficiency.

Clark (2002) introduced supertagging for CCG

parsing. The supertagger used in the C&C parser is
a maximum entropy (Berger et al., 1996) sequence
tagger that uses words and part of speech (POS)
tags in a five word window as features. The label
set consists of approximately 500 categories (or
supertags) so the task is significantly harder than
other NLP sequence tagging tasks.

The supertagger assigns one or more possible
categories to each word together with the proba-
bility for each of the guesses. Clark and Curran
(2004) discovered that initially assigning a very
small number of categories per word and then at-
tempting to parse was not only faster but more
accurate than assigning many categories. If no
spanning analysis could be found the parser re-
quested more categories from the supertagger, and
the parsing process was repeated until the number
of attempts exceeded a limit (typically 5 levels of
supertagger ambiguity). This tight integration of
the supertagger and the parser resulted in state of
the art accuracy and a massive improvement in ef-
ficiency, reaching up to 25 sentences a second.

Up until now, when a spanning analysis was
not found the chart was destroyed, then extra cat-
egories are assigned to each word, and the chart
is built again from scratch. However the chart re-
building process is very wasteful because the new
chart is always a superset of the previous one and
could be created by just updating the old chart in-
stead of rebuilding it.

This has limited how small the initial ambiguity
levels can be set and thus how closely the parser
and supertagger can interact. The first modifica-
tion we describe below is to implement chart re-
pair which allows additional categories to be as-
signed to an existing chart and the CKY algorithm
to run efficiently over just the modified section.

4 Chart Parsing

Given a sentence of n words, we define position
pos ∈ {0, . . . , n− 1} to be the starting position of
a span (contiguous sequence of words), and span,
its size. So the hat in the cat ate the hat would
have pos = 3 and span = 2. Each span can be
parsed in a number of ways so a set of deriva-

tions will be created for each valid (pos, span)
pair. Let (pos, span) represent this set of deriva-
tions. Then, the derivations for (pos, span) will be
combinations of derivations in (pos, k) and (pos+
k, span − k) for all k ∈ {1, . . . , span − 1}. The
naı̈ve way to parse a sentence using these defini-
tions is to find the derivations that span the whole
sentence (0, n) by recursively finding derivations
in (0, k) and (k, n − k) for all k ∈ {1, . . . , n −
1}. However, this evaluates derivations for each
(pos, span) pair multiple times, making the time
complexity exponential in n.

To make the algorithm polynomial time, dy-
namic programming can be used by storing the
derivations for each (pos, span) when they are
evaluated, and then reusing the stored values. The
chart data structure is used to store the deriva-
tions. The chart is a two dimensional array in-
dexed by pos and span. The valid pairs corre-
spond to pos + span ≤ n, that is, to spans that
do not extend beyond the end of the sentence.
The squares represent valid cells in Figure 2. The
location of cell(3, 4) is marked with a diamond.
cell(3, 4) stores the derivations whose yield is the
four word sequence indicated.

The CKY (also called CYK or Cocke-Younger-
Kasami) algorithm used in the C&C parser has an
O(n3) worst case time complexity. Sikkel and
Nijholt (1997) give a formal description of CKY

(Younger, 1967) and similar parsing algorithms,
such as the Earley parser (Earley, 1970).

The CKY algorithm is a bottom up algorithm
and works by combining adjacent words to give
a span of size two (second row from the bottom in
Figure 2). It then combines adjacent spans in the
first two rows to create all allowable spans of size
three in the row above. This process is continued
until a phrase that spans the whole sentence (top
row) is reached.

The (lexical) categories in the bottom row (on
the lexical items themselves) are assigned by the
supertagger (Clark and Curran, 2004). The num-
ber of categories assigned to each word can be
varied dynamically. Assigning a small number of
categories (i.e. keeping the level of lexical cate-
gory ambiguity low) increases the parsing speed
significantly but does not always produce a span-
ning derivation. The original C&C parser uses a
small number of categories first, and if no span-
ning tree is found the process is repeated with a
larger number of categories.

5



Figure 2: Cells affected by adding a constraint. The axes are the cell indices in the chart with pos the
starting position, and span the length of the span, of constituents in the cell.

5 Constraints

The original C&C parser uses a supertagger to as-
sign a number of categories to each word, together
with the probability of each category (Clark and
Curran, 2004). In the first iteration, only cate-
gories with β ≥ 0.075 are used, where β is the ra-
tio of the probability of the category and the proba-
bility of the most likely category for that word. For
example, if the categories for dog are N , NP and
N/N with probabilities 0.8, 0.12 and 0.08 then β
value of N/N is 0.08/0.8 = 0.1. If there is no
spanning tree, a lower value is used for the cutoff β
in the next iteration so that more tags are assigned
to each word. The previous chart is destroyed and
the new chart is built from scratch. Since the as-
signed categories are always a superset of the pre-
viously assigned ones, the derivations in the new
chart will include all the derivations in the previ-
ous chart.

Instead of rebuilding the chart when new cate-
gories are added it can be simply repaired by mod-
ifying cells that are affected by the new tags. Con-
sidering the case where a single tag is added to
the ith word in an n word sentence, the new tag
can only affect the cells that satisfy pos ≤ i and
pos + span > i. These cells are shown in Figure
3. The chart can therefore be repaired bottom up
by updating a third of the cells on average.

The number of affected cells is (n− pos)× pos

and the total number of cells is approximately n2

2 .
The average number of affected cells is approxi-

mately 1
n

∫ n
0 (n − p)p dp = n2

6 , so on average a
third of the cells are affected.

The chart is repaired bottom up. A new cate-
gory is added to one word by adding it to the list
of categories in the appropriate cell in the bottom
row. The list is marked so that we know which
categories are new. For each cell C in the second
row we look for each pair of cells A and B whose
spans combine to create the span of C. In the orig-
inal algorithm all categories from A are combined
with all categories from B, but during the repair
this is only done if at least one of them is new be-
cause otherwise the resulting category would al-
ready be in C. Again the list of categories in C
is marked so that cells higher in the chart know
which categories are new. This is repeated for all
affected cells.

This speeds up the parser not only because pre-
vious computations are reused, but also because
categories can be added one at a time until a span-
ning derivation is found. This increases coverage
slightly because the number of categories can be
varied one by one. In the original parser it was
possible to have sentences that a spanning tree
cannot be found for using for example 20 cate-
gories, but increasing the number of categories to
25 causes the total number of derivations in the
chart to exceed a predefined limit, so the sentence
does not get parsed even if 23 categories would
produce a spanning tree without exceeding the
limit.
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Figure 3: Cells affected by chart repair.

6 Chart Repair

Adding constraints to the parser was originally de-
signed to enable more efficient manual annotation.
The parser has been used for semi-automatic pars-
ing of sentences to create gold standard deriva-
tions. It is used to produce a guess, which is then
manually corrected. Adding a constraint could
speed this process up by allowing annotators to
quickly tell the parser which part it got wrong.

For example if the Royal Air Force contract was
parsed as (the Royal (Air Force contract)), meaning
that the Air Force contract was royal, instead of
manually annotating the category for each word
the annotator could simply create a constraint on
Royal Air Force requiring it to be a constituent, and
thus making the previous derivation impossible.
The correct derivation, (the ((Royal Air Force) con-
tract)) would then very likely be produced without
further effort from the annotator.

However, parsing would be much faster in gen-
eral if the search space could be constrained by re-
quiring known spans P to be a single constituent.
This reduces the search space because P must be
the yield of a single cell CP (posP , spanP ), so the
cells with yields that cross the boundary of P do
not need to be considered at all (grey squares in
Figure 2). The problem of what spans are known
in advance is described below.

In addition, if a cell contains P as a prefix or
suffix (wavy pattern cells in Figure 2) then it also
has constraints on how it can be created. In Fig-
ure 2, P = cell(3, 4) is required, i.e. the span
starting at word 3 of length 4 containing words 3,

4, 5 and 6 is a constituent. Consider cell(3, 7). It
includes words 3 to 9 and contains P as the pre-
fix. Normally cell(3, 7) can be created by com-
bining cell(3, 1) with cell(4, 6), . . . , cell(pos, s)
with cell(pos + s, span − s), . . . , and cell(3, 6)
with cell(9, 1). However the first three of these
combinations are not allowed because the second
component would cross the boundary of P . This
gives a lower limit for the span of the left compo-
nent. Similarly if P is the suffix of the span of a
cell then there is a lower limit on the span of the
right component.

This eliminates a lot of work during parsing and
can provide a significant speed increase. In the
quick brown foxes like dogs, the following phrases
would all be possible constituents: foxes like dogs,
brown foxes like dogs, . . . , and the quick brown foxes
like dogs. Since the chart is built bottom up the
parser has no knowledge of the surrounding words
so each of those appears like a valid constituent
and would need to be created. However if the quick
brown foxes is known to be a constituent then only
the last option becomes possible.

7 Creating Constraints

How can we know that specific spans must be
yielded by constituents in advance? Surely the
parsing is already solved if we have this informa-
tion? In this paper, we have experimented with
constraints determined from shallow parsing and
hints in the sentence itself.

Chunk tags (gold standard and from the C&C

chunker) were used to create constraints. Only NPs
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were used because the accuracy for other chunks
is low. The chunks required modification because
the Penn Treebank has different analyses to CCG-
bank, e.g. Larry’s dog is chunked as [Larry]NP [’s
dog]NP, which is different to the CCGbank analy-
sis. Adjacent NPs of this form are concatenated.

A number of punctuation constraints were used
and had a significant impact especially for longer
sentences. The punctuation rules in CCGbank are
very productive. For example the final punctua-
tion in The dog ate a bone. will create all of these
constituents: bone., a bone., . . . , The dog ate a bone.
However, in CCGbank the sentence final punctu-
ation is always attached at the root. A constraint
on the the first n− 1 words was added to force the
parser to only attach the sentence final punctuation
once the rest of the sentence has been parsed.

Constraints are also placed on parenthesised ex-
pressions. In The dog ( a hungry Pomeranian ) ate a
bone, the phrase a hungry Pomeranian clearly needs
to be parsed first and then attached to the rest of
the sentence. However, CCGbank would allow the
right parenthesis to be absorbed by Pomeranian be-
fore hungry is attached. The same would apply to
quoted expressions but CCGbank has removed the
quotation marks. However, the parser must still
deal with quoted expressions in practical systems.

Finally constraints are placed on phrases
bounded by semicolons, colons and hyphens. This
is especially useful with longer sentences of the
form Alice paid $5; Bob paid $6; . . . , where many
clauses are separated by semicolons. This reduces
the sentence to a number of smaller units which
significantly improves parsing efficiency.

If the parser cannot parse the sentence with con-
straints then they are removed and the sentence is
parsed again. This increases the coverage because
the reduced search space means that longer sen-
tences can be parsed without exceeding the mem-
ory or time limit. However if the constraint accu-
racy is low a large number of sentences will need
to be parsed twice which would cancel out any-
thing gained from using them.

8 Experiments

The parser is trained on CCGbank sections 02-21,
with section 00 being used for development. The
performance is measured in terms of coverage, ac-
curacy and parsing time. The time reported in-
cludes loading the grammar and statistical model,
which is ∼5 seconds, and parsing the 1913 sen-

tences in section 00. Accuracy is measured in
terms of the dependency F-score.

The failure rate (the opposite of coverage) is
broken down into sentences with length up to 40
and with length over 40 because the longer sen-
tences are the most problematic ones and the orig-
inal parser already has high coverage on sentences
with up to 40 words. There are 1784 1-40 word
sentences and 129 41+ word sentences. The aver-
age length and standard deviation in 41+ are 50.8
and 31.5 respectively.

All experiments used gold standard POS tags.
Some experiments use gold standard chunks to de-
termine an upper bound on the utility of chunk
constraints. Original and Original+repair do not
use any constraints. NP(gold) indicates that gold
standard noun phrase constraints are used. NP
uses the C&C chunker, and punctuation adds punc-
tuation constraints. The times reported for NP (us-
ing the C&C chunker) include the time to load the
chunker model (∼1.3 seconds).

Finally the best performing system was com-
pared against the original on section 23, which has
2257 sentences of length 1-40 and 153 of length
41+. The maximum sentence length is only 65,
which explains the high coverage for the 41+ sec-
tion.

9 Results

The results in Table 1 show that using gold stan-
dard noun phrases does not improve efficiency,
while using noun phrases identified by the chun-
ker decreases speed by 10.8%. This is not sur-
prising because the chunk data was not obtained
from CCGbank and the chunker is not very ac-
curate. Some frequent problems were fixed in
a preprocessing step as explained in Section 5,
but there could be less frequent constructions that
cause problems. A more detailed analysis of these
constructions is required.

Chart repair (without constraints) gave an
11.1% improvement in speed and 0.21% improve-
ment in accuracy. The accuracy was improved
because of the way the repair process adds new
categories. Categories are added in decreasing or-
der of probability and parsing stops once a span-
ning tree is found. This effectively allows the
parser to use the probabilities which the supertag-
ger assigns, which are not directly modelled in the
parser. Once supertagger probabilities are added
to the parser statistical model there should be no
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TIME ACC COVER FAIL RATE %
secs % % % n ≤ 40 n > 40

Original 88.3 — 86.54 98.85 0.392 11.63
punctuation 79.1 10.4 86.56 99.22 0.168 9.30
NP(gold) 88.4 -0.1 86.27 99.06 0.224 10.85
NP 97.8 -10.8 86.31 99.16 0.224 9.30
NP(gold) + punctuation 69.8 20.5 86.24 99.27 0.168 8.53
NP + punctuation 97.0 -9.9 86.31 99.16 0.168 10.08
Original + repair 78.5 11.1 86.75 99.01 0.336 10.08
NP(gold) + repair 65.0 26.4 86.04 99.37 0.224 6.20
NP + repair 77.5 12.2 86.35 99.37 0.224 6.20
punctuation + repair 57.2 35.2 86.61 99.48 0.168 5.43
NP(gold) + punctuation + repair 48.2 45.4 86.14 99.48 0.168 5.43
NP + punctuation + repair 63.2 28.4 86.43 99.53 0.163 3.88

Table 1: Parsing performance on section 00 with constraints and chart repair.

accuracy difference between the original method
and chart repair.

The best results for parsing with constraints
(without repair) were with gold standard noun
phrase and punctuation constraints, with 20.5%
improvement in speed and 0.42% in coverage. In
that case, however the accuracy decreases by 0.3%
which is again possibly because CCG constituents
do not match up with the chunks every time. The
best results obtained without a decrease in accu-
racy is using only punctuation constraints, with
10.4% increase in speed and 0.37% in coverage.

The best overall result was obtained when gold
standard noun phrase and punctuation constraints
were used with chart repair, with a 45.4% im-
provement in speed and 0.63% in coverage, and
a 0.4% drop in accuracy. Again the best results
without a drop in accuracy were with only punc-
tuation constraints and chart repair, with improve-
ments of 35.2% and 0.63%.

The results also show that coverage of both
short and long sentences is improved using these
methods. For example the best results show a
43% and 67% decrease in failure rate for sentence
lengths in the ranges 1-40 and 41+.

Comparing the last three rows allows us to
guess how accurate the chunker will need to be
to achieve a faster speed than just using punctua-
tion constraints. Noun phrases clearly have an im-
pact on speed because using gold standard chunks
gives a significant improvement, however the C&C

chunker is currently not accurate enough. The
chunker would need to have about half the error
rate it currently has in order to be useful.

Table 2 shows the performance of the punctu-
ation constraints and chart repair system on sec-
tion 23. The results are consistent with previous
results, showing a 30.9% improvement in speed
and 0.29% in coverage, with accuracy staying at
roughly the same level.

10 Future Work

A detailed analysis of where NPs chunks do not
match the CCG constituents is required if NPs are
to be used as constraints. The results show that
NPs can provide a large improvement in efficiency
if identified with sufficient precision.

The chart repair has allowed an even greater
level of integration of the supertagger and parser.
We intend to explore strategies for determining
which category to add next if a parse fails.

Constraints and chart repair both manipulate the
chart for more efficient parsing. Other methods of
chart manipulation for pruning the search space
will be investigated. Agenda based parsing, in
particular A* parsing (Klein and Manning, 2003),
will be implemented in the C&C parser, which will
allow only the most probable parts of the chart to
be built, improving efficiency while guaranteeing
the optimal derivation is found.

11 Conclusion

We have introduced two modifications to CKY

parsing for CCG that significantly increase pars-
ing efficiency without an accuracy or coverage
penalty.

Chart repair improves efficiency by reusing
the partial CKY chart from the previous parse at-
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TIME ACC COVER FAIL RATE %
secs % % % n ≤ 40 n > 40

Original 91.9 — 86.92 99.29 0.621 1.961
punctuation + repair 63.5 30.9 86.89 99.58 0.399 0.654

Table 2: Parsing performance on Section 23 with constraints and chart repair.

tempts. This allows us to further exploit the tight
integration of the supertagger and parser by adding
one lexical category at a time until a parse of the
sentence is found. Chart repair alone gives an 11%
improvement in speed.

Constraints improve efficiency by avoiding the
construction of sub-derivations that will not be
used. They have a significant impact on parsing
speed and coverage without reducing the accuracy,
provided the constraints are identified with suffi-
cient precision.

When both methods are used the speed in-
creases by 30-35%, the failure rate decreases
by 40-65%, both for sentences of length 1-40
and 41+, while the accuracy is not decreased.
The result is an even faster state-of-the-art wide-
coverage CCG parser.
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Abstract

Supervised word sense disambiguation
has proven incredibly difficult. Despite
significant effort, there has been little suc-
cess at using contextual features to accu-
rately assign the sense of a word. Instead,
few systems are able to outperform the de-
fault sense baseline of selecting the high-
est ranked WordNet sense. In this pa-
per, we suggest that the situation is even
worse than it might first appear: the high-
est ranked WordNet sense is not even the
best default sense classifier. We evalu-
ate several default sense heuristics, using
supersenses and SemCor frequencies to
achieve significant improvements on the
WordNet ranking strategy.

1 Introduction

Word sense disambiguation is the task of select-
ing the sense of a word intended in a usage con-
text. This task has proven incredibly difficult:
in the SENSEVAL 3 all words task, only five of
the entered systems were able to use the contex-
tual information to select word senses more ac-
curately than simply selecting the sense listed as
most likely in WordNet (Fellbaum, 1998). Suc-
cessful WSD systems mostly fall back to the first-
sense strategy unless the system was very confi-
dent in over-ruling it (Hoste et al., 2001).

Deciding which sense of a word is most likely,
irrespective of its context, is therefore a crucial
task for word sense disambiguation. The decision
is complicated by the high cost (Chklovski and
Mihalcea, 2002) and low inter-annotator agree-
ment (Snyder and Palmer, 2004) of sense-tagged
corpora. The high cost means that the corpora are

small, and most words will have only a few ex-
amples. The low inter-annotator agreement exac-
erbates this problem, as the already small samples
are thus also somewhat noisy. These difficulties
mean that different sense frequency heuristics can
significantly change the performance of a ‘base-
line’ system. In this paper we discuss several such
heuristics, and find that most outperform the com-
monly used first-sense strategy, one by as much as
1.3%.

The sense ranks in WordNet are derived from
semantic concordance texts used in the construc-
tion of the database. Most senses have explicit
counts listed in the database, although sometimes
the counts will be reported as 0. In these cases,
the senses are presumably ranked by the lexicog-
rapher’s intuition. Usually these counts are higher
than the frequency of the sense in the SemCor
sense-tagged corpus (Miller et al., 1993), although
not always. This introduces the first alternative
heuristic: using SemCor frequencies where avail-
able, and using the WordNet sense ranking when
there are no examples of the word in SemCor. We
find that this heuristic performs significantly better
than the first-sense strategy.

Increasing attention is also being paid to coarse
grained word senses, as it is becoming obvious
that WordNet senses are too fine grained (Hovy
et al., 2006). Kohomban and Lee (2005) explore
finding the most general hypernym of the sense
being used, as a coarser grained WSD task. Sim-
ilarly, Ciaramita and Altun (2006) presents a sys-
tem that uses sequence tagging to assign ‘super-
senses’ — lexical file numbers — to words. Both
of these systems compare their performance to a
baseline of selecting the coarse grained parent of
the first-ranked fine grained sense. Ciaramita and
Altun also use this baseline as a feature in their
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model. We explore different estimates of the most
frequent super-sense, and find that aggregating the
counts of the fine-grained senses is a significantly
better heuristic for this task.

We believe that one of the reasons coarse
grained senses are useful is that they largely ame-
liorate the inter-annotator agreement issues of fine
grained sense tagging. Not only are there fewer
senses to choose from, but the senses are more dis-
tinct, and therefore should be less easily confused.
The super-sense tags are therefore probably less
noisy than the fine-grained senses, which would
make corpus-based estimates of their frequency
more reliable. The best performing fine grained
frequency heuristic we present exploits this prop-
erty of supersenses, by making the assumption
that the most frequent sense of a word will be the
most frequent member of the most frequent super-
sense. Essentially, when the overall most frequent
sense of a word is a member of a minority super-
sense, we find that it is better to avoid selecting
that sense. This system scores 63.8% on the SEN-
SEVAL 3 all words task, significantly higher than
the relevant baseline of 62.5% — using no contex-
tual information at all.

2 Preliminaries: WordNet Sense Ranks,
Frequencies and Supersenses

This paper discusses different methods of select-
ing a ‘default’ sense of a word from the WordNet
(Fellbaum, 1998) sense inventory. These methods
draw on four different sources of information as-
sociated with the lexicon: WordNet sense ranks,
WordNet sense counts, the SemCor sense tagged
corpus, and WordNet lexical file numbers.

Each word entry in WordNet consists of a
lemma under a part-of-speech and an inventory
of its senses. These senses are ranked by the
lexicographers according to their frequencies in
“various semantic concordance texts” (Fellbaum,
1998). These frequencies are often given in the
database. We refer to them as WordNet counts to
distinguish them from the frequencies we obtain
from the SemCor corpus. The SemCor corpus is
a subset of the semantic concordance texts used to
calculate WordNet counts.

Each WordNet sense is categorised under one of
forty-five lexicographer files. Each lexicographer
file covers only one part of speech. The main cate-
gorisation is applied to nouns and verbs, as there is
only one file for adverbs, and three for adjectives.

Lexical files are interesting because they represent
broad, or coarse-grained, semantic categories; and
therefore a way around the commonly noted prob-
lem that WordNet senses are generally too fine
grained. We describe a first-sense heuristic that
takes advantage of this property of the lexicogra-
pher files (often referred to as ‘supersenses’ (Cia-
ramita and Johnson, 2003) — we use both terms
interchangeably). We also discuss first supersense
heuristics, as increasing attention is being paid to
supervised supersense tagging (Ciaramita and Al-
tun, 2006).

3 First Order Models for Word Sense
Disambiguation

Supervised word sense disambiguation (WSD) is
the task of finding the most likely sense s from a
sense inventory S given a usage context C:

arg max
s∈S

P (s|C) (1)

These models are usually compared to models of
the form:

arg max
s∈S

P (s) (2)

in order to evaluate how much the context is in-
forming the model. Since we are primarily inter-
ested in the argmax, it is usually sufficient to sim-
ply define a function that selects the most likely
sense, even if a full probability distribution is not
defined. Selecting the sense listed first in WordNet
is one such function.

As a WSD system, a first order model has an
inherent upper bound, as if a word is used with
more than one sense, a first order model cannot
get all examples correct. However, Figure 1 shows
that on the SENSEVAL 3 data, this upper bound is
far higher than the performance of state-of-the-art
WSD systems. The upper bound was calculated by
selecting the most frequent sense of each word in
the test data. It is effectively a system with oracle
frequency information. Because the correct sense
will always be given to words that only occur once,
it is interesting to see how the upper bound decays
if the system is forced to use the first-sense heuris-
tic instead for words that occur less than n times
in the test data. For n > 14, the oracle system
either falls back to or makes the same prediction
as the first-sense system for every instance, and so
the systems are effectively identical.

McCarthy et al. (2004) described a first or-
der word sense disambiguation system that ac-
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Figure 1: Upper performance bound of one-sense per term strategy for SenseEval

quired ‘predominant’ senses automatically from
un-annotated data using distributional similarity as
a proxy for context, and WordNet-based semantic
similarity as a sense distinction heuristic. The au-
thors reported an accuracy of 64%, but their sys-
tem was evaluated on the nouns from the SENSE-
VAL 2 all words task, and hence cannot be directly
compared with the results we report.

4 Experiments

In this section we describe several default sense
heuristics and evaluate them on the SENSEVAL 3
English all words test data set. All of the systems
use the tokenisation, lemmatisation and part-of-
speech tags supplied in the data.

Table 1 presents the results for the systems de-
scribed below. Each system selects a source of
information to select a supersense (None, Word-
Net, SemCor) and a fine grained sense (WordNet
or SemCor). When supersenses are being used,
the fine grained sense is chosen from within the
selected supersense, effectively filtering out the
senses that belong to other lexical files.

4.1 Supersense: None; Fine Sense: WordNet

This is the default sense heuristic used as the base-
line in SENSEVAL 3, and is the most common
heuristic used for WSD. The heuristic involves
simply choosing the lowest numbered sense in

the WordNet sense inventory. As this is the only
heuristic we explore that does not require extra
data, it is the only one that has perfect coverage
of WordNet’s vocabulary — there is guaranteed to
be a sense rank for every WordNet lemma. When
there is a coverage problem for one of the other
heuristics, such as a case where a word has not
occurred in the frequency estimation corpus, that
heuristic is allowed to fall back to the WordNet
sense rank, rather than being forced to select a
sense arbitrarily.

4.2 Supersense: None; Fine Sense: SemCor

As noted in Section 2, SemCor is effectively a sub-
set of the information used to produce the Word-
Net sense ranks. We evaluated a default sense
heuristic that preferred SemCor-only frequncy es-
timates for words that occurred at least once in the
SemCor corpus. This only results in a different
prediction from the first-sense heuristic 7% of the
time. Nevertheless, the systems perform signifi-
cantly differently.

4.3 Supersense: WordNet; Fine Sense:
WordNet

WordNet sense ranks can also be straight-
forwardly used as the basis of a default super-
sense heuristic. Ciaramita and Altun (2006) se-
lect the supersense of the first fine grained sense
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S.S. Source Sense Source S.S. Acc. WSD Acc. ∆ Coverage ∆ Acc. ∆ Baseline
None WordNet 79.5 62.5 N/A N/A N/A
None SemCor 80.6 63.4 7.0% 36.2 23.2

WordNet WordNet 79.9 62.3 3.6% 25.3 30.1
WordNet SemCor 79.9 62.3 3.5% 25.3 31.0
SemCor WordNet 81.3 63.8 5.9% 42.3 19.5
SemCor SemCor 81.3 63.1 5.7% 31.0 20.3

Table 1: Disambiguation Performance for Frequency Estimation Strategies

in WordNet as the baseline system for supersense
tagging. A slightly more motivated default super-
sense heuristic is to aggregate the WordNet counts
for each supersense, and select the overall most
frequent one. If there are more than two senses,
there may be multiple senses after the first that
share the same lexicographer file, and together
their counts may outweigh the supersense of the
first-ranked sense. This situation — having a mi-
nority supersense for the first-ranked sense — is
quite rare: this heuristic only makes a different
prediction from the baseline in 3.6% of cases.

The fine-grained WSD performance of this sys-
tem is evaluated by choosing the sense with the
highest WordNet rank from among the members
of the default supersense.

4.4 Supersense: WordNet; Fine Sense:
SemCor

Default supersenses in this system are again ob-
tained from the sum of WordNet counts. The sense
with the highest count in SemCor from the mem-
bers of that supersense is then used as the fine-
grained sense. The difference from the baseline
for this system is even slighter — a different pre-
diction is made in only 3.5% of cases. We would
expect this system to have low fine-grained sense
accuracy, as the data used to determine the fine-
grained sense is effectively a subset of that used
for the previous system.

4.5 Supersense: SemCor; Fine Sense:
WordNet

The SemCor frequencies can be substituted for
WordNet counts to form an alternative supersense
heuristic, contrasting with the system described in
Section 4.3. The frequency of each supersense
is estimated as the sum of the frequencies of its
member senses. The supersense with the highest
frequency is deemed the default supersense.

In this system, WordNet sense rankings are

used to choose a fine-grained sense from among
the members of the default supersense as selected
from SemCor frequencies.

4.6 SuperSense: SemCor; Fine Sense:
SemCor

We also evaluated the fine-grained WSD perfor-
mance of SemCor-based supersense selection us-
ing the counts from SemCor itself.

5 Results

Table 1 gives the WSD and supersense accura-
cies of the methods outlined in Section 4. Accu-
racy was calculated with the scorer2 program
provided for evaluation of SENSEVAL 3 systems.
The best results for each measure are highlighted
in bold.

The S.S. Acc. column shows the accuracy of su-
persense predictions as obtained from the super-
sense of the default sense, over the SENSEVAL 3
test set. The WSD Acc. column shows the accu-
racy at fine-grained WSD. ∆ Coverage indicates
the proportion of content tokens in the test data
where the heuristic makes a different prediction
from the first-sense baseline. The ∆ Acc. col-
umn shows the accuracy of the strategy on these
tokens, while the ∆ Baseline is the performance
of the baseline on these same tokens.

First, it is apparent that the SemCor derived
heuristics outperform those calculated from the
WordNet counts. This is slightly surprising, as the
SemCor frequencies are a subset of the informa-
tion represented by the WordNet counts, which are
used to create the sense rankings. The first sense
baseline is also far more widely used, and is the
comparison point for SENSEVAL 3 all words sys-
tems. The best system at SENSEVAL 3 (Decadt
et al., 2004) scored only 2.7% higher than this
baseline.

The SemCor strategies ‘cover’ tokens where
the sense distributions in the WordNet counts and
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Token Type SenseEval Counts SemCor Counts Newly Wrong Newly Correct Net Gain
feel.v 12 207 4 1 -3
state.n 12 184 2 10 8
time.n 11 511 3 3 0
take.v 10 357 0 4 4
policy.n 6 59 0 6 6
thing.n 6 271 1 0 -1
hold.v 5 143 0 0 0
trouble.n 4 52 2 2 0
appear.v 3 152 1 1 0
rate.n 3 108 0 3 3
cloud.n 2 26 2 0 -2
couple.n 2 29 0 2 2
line.n 2 124 0 0 0
suppose.v 2 53 2 0 -2
tremor.n 2 1 0 2 2
hapax legomena 34 927 6 16 10
not in SenseEval - 5,022 - - -
Totals 116 (5.9%) 8,226 (4.4%) 23 (1.1%) 50 (2.4%) 27 (1.3%)

Table 2: Performance Change by Token Type

the SemCor frequencies disagree. The ∆ Base-
line column shows that the first-sense strategy per-
forms very poorly on these tokens. It is unsurpris-
ing that these tokens are difficult cases. The fact
that a different sense is most frequent in a subset
of the WordNet concordance data from the total
sample is a good indication that the sense frequen-
cies might be highly domain dependent. It is pos-
sible that the SemCor corpus better matches the
domains of the SENSEVAL texts, producing more
useful sense frequencies for these volatile cases.

No SemCor information is represented in the
supersense with highest WordNet count heuristic
described in Section 4.3. This heuristic has sub-
stantially lower coverage than the SemCor meth-
ods, and the baseline performs much higher on the
tokens that it does make a prediction for. This sup-
ports the interpretation that it is the SemCor fre-
quencies that are the important factor in the im-
proved results.

The highest performance, however, is achieved
by calculating the most frequent supersense with
the SemCor information, and then using that to ex-
clude senses which belong to a minority lexicogra-
pher file. This is statistically significant compared
to the baseline (paired t-test, p < 0.01), and is
only 1.4% lower than Decadt et al. (2004)’s sys-
tem. The baseline performs particularly poorly on

the samples these strategies (described in Section
4.5) cover, suggesting that having the first sense
belong to a minority supersense is a good indica-
tion that the WordNet sense rank is suboptimal.
One of these systems performs significantly better
than the other, however (paired t-test, p < 0.01).
It seems that having identified a volatile example,
and a vague concept area the default sense should
belong to, it is then best to use all of the available
information to choose a sense.

This would explain why the system that uses
SemCor counts to choose a supersense and then
the WordNet sense-rank to choose a fine grained
sense from within it performs the best. This sys-
tem has the advantage of the SemCor data and the
supersense to identify the best subset of volatile
examples — the baseline performs at only 19.5%
on the examples this system makes a different pre-
diction on, roughly the same number as the other
system that uses Semcor supersenses, on which
the baseline performs at 20.3%. However, once
this subset has been identified, selecting the fine
grained sense with the sense rank produces 42%
accuracy on the covered tokens, while using the
SemCor frequency achieves only 31% ∆ Acc..

The performance of the first sense baseline and
S.S by SemCor strategies are shown in Figure 1 for
comparison with oracle one-sense-per-word accu-
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racy.
The difference in correctly assigning senses be-

tween the baseline and best-performing systems is
statistically significant (paired t-test, p < 0.01).

5.1 Token Types

Table 2 shows the behaviour of the best perform-
ing system for the tokens it covers. The ha-
pax legomena row aggregates scores for content
words in this category that occur only once in the
test data. The Newly Wrong and Newly Correct
columns refer to the number of instances where
the change of default sense has changed from cor-
rect to incorrect or vice versa, as compared to the
first-sense baseline. The Net Gain column indi-
cates the overall contribution from this token type
to the performance of the system. The Not in Sen-
seval row indicates the tokens where the default
sense would be changed, but did not occur in the
SENSEVAL test data. Including these tokens in
the count allows an accurate comparison of the to-
tal coverage of the changed tokens for both cor-
pora.

The table shows that there are both gains and
losses for the strategy when compared to the base-
line, as should be expected for a classifier limited
to assigning only one sense per term. However, the
net effect is significantly positive. The table also
shows that this positive performance is not simply
down to one or two frequent words the heuristic
happens to make the right decision on. Almost
one third of the newly correct tokens come from
decisions made on words that occur only once in
the test data. This supports the suggestion above
that the heuristic is identifying a range of volatile
terms.

6 Conclusions

We have evaluated several heuristics for assigning
a default WordNet sense to terms. Our results con-
sistently showed that heuristics which were more
sensitive to frequencies in the SemCor corpus out-
performed heuristics exclusively based on Word-
Net sense rankings — suggesting that the stated
baselines for SENSEVAL 3 are actually lower
than they should be. This is somewhat alarm-
ing, considering that systems struggle to make
even marginal improvements over the first sense
baseline. Since the SemCor data is used to train
the supervised systems, the most frequent sense
can be inferred — allowing a system to compare

favourably with the baseline even if it does not ac-
tually gain anything significant from the context of
the word.

We have shown that a more nuanced default
sense heuristic can achieve some performance
gains over simple frequency heuristics, as sense
tagged corpora are not large enough to produce en-
tirely reliable fine-grained sense frequencies. By
using the frequency of coarse-grained senses, in
the form of the lexicographer file number, we are
able to identify instances where these frequencies
are particularly suspect, thus making slightly more
accurate default sense predictions. We have also
shown that a system limited to selecting default
senses still has an upper bound far beyond current
state of the art — even excluding rare words.

This is consistent with the results reported by
McCarthy et al. (2004), who show that a classifier
limited to selecting one sense per word was able to
perform well if the sense was chosen intelligently.
Their method, which relies on distributional simi-
larity, might be adopted as a supersense selection
heuristic. This might prove useful, as we have
shown that using a different method to choose a
supersense can be used to change the default pre-
diction in cases where the simple baseline system
performs poorly.
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Abstract

We present a set of experiments involving
sentence classification, addressing issues
of representation and feature selection,
and we compare our findings with simi-
lar results from work on the more general
text classification task. The domain of our
investigation is an email-based help-desk
corpus. Our investigations compare the
use of various popular classification algo-
rithms with various popular feature selec-
tion methods. The results highlight simi-
larities between sentence and text classifi-
cation, such as the superiority of Support
Vector Machines, as well as differences,
such as a lesser extent of the usefulness
of features selection on sentence classifi-
cation, and a detrimental effect of com-
mon preprocessing techniques (stop-word
removal and lemmatization).

1 Introduction

Classification tasks applied to textual data have
been receiving increasing attention due to the ex-
plosion in digital presentation and storage of tex-
tual information, such as web pages, emails, publi-
cations, and discussion forums. The bulk of the re-
search concerns the classification of complete doc-
uments, such as spam detection in emails (Drucker
et al., 1999), and the classification of news arti-
cles (Yang and Pedersen, 1997; Joachims, 1998).
These kinds of tasks are widely known as text clas-
sification (TC). A text document is best character-
ized by the words and terms it contains, and conse-
quently the representation of textual data is often
of a very high dimensionality. Thus, an important

aspect of TC is feature selection (Yang and Peder-
sen, 1997; Forman, 2003).

There are numerous examples of textual docu-
ments whose content conveys communication be-
tween multiple parties. In such documents, it may
be useful to classify individual sentences that ex-
press communicative acts, either to obtain a more
meaningful description of the documents, or sim-
ply to extract meaningful components, such as ac-
tion items or opinions. The computational lin-
guistics community devotes considerable research
into speech and dialogue acts, and has developed
a markup convention for coding both spoken and
written language (Core and Allen, 1997, for exam-
ple). The classifications we use for sentences are
inspired by such conventions.

Although there are existing implementations of
sentence classification (SC) (Zhou et al., 2004;
Wang et al., 2005; McKnight and Srinivasan,
2003), including ones where sentences convey
communicative acts (Cohen et al., 2004; Corston-
Oliver et al., 2004; Ivanovic, 2005), comparatively
little attention has been given to SC in general. In
particular, there are no empirical demonstrations
of the effect of feature selection in SC tasks, to the
best of our knowledge.

This paper presents a study into sentence clas-
sification, with particular emphasis on representa-
tional issues of extracting features from sentences,
and applying feature selection (FS) methods. We
experiment with various widely accepted FS meth-
ods and classification algorithms, and relate our
findings to results from TC reported in the litera-
ture. Note that we do not offer any new methods
in this paper. Rather, we offer some insight into
the characteristics of SC and what distinguishes
it from the more general TC, and this insight is
driven by empirical findings. We believe that sen-
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Sentence Class Frequency Percentage Sentence Class Frequency Percentage

APOLOGY 23 1.5% SALUTATION 129 8.7%
INSTRUCTION 126 8.5% SIGNATURE 32 2.2%

INSTRUCTION-ITEM 94 6.3% SPECIFICATION 41 2.8%
OTHERS 22 1.5% STATEMENT 423 28.5%

QUESTION 24 1.6% SUGGESTION 55 3.7%
REQUEST 146 9.8% THANKING 228 15.3%

RESPONSE-ACK 63 4.2% URL 80 5.4%

Table 1: Sentence class distribution.

tence classification is emerging as an important
task to investigate, due to the increasing interest
in detecting intentional units at a sub-document
level.

The rest of the paper is organized as follows. In
the next section we present our domain of inves-
tigation. In Section 3 we discuss the experiments
that we carried out, and we conclude the paper in
Section 4.

2 Domain

Our corpus consists of 160 email dialogues
between customers and operators at Hewlett-
Packard’s help-desk. These deal with a variety
of issues, including requests for technical assis-
tance, inquiries about products, and queries about
how to return faulty products or parts. As an ini-
tial step in our study, we decided to focus only on
the response emails, as they contain well-formed
grammatical sentences, as opposed to the cus-
tomers’ emails. In future work we intend to ex-
tend our study to include both types of emails.
The response emails contain 1486 sentences over-
all, which we have divided into the classes shown
in Table 1. The classes are inspired by the SWBD-
DAMSL tag set (Jurafsky et al., 1997), an adap-
tation of the Dialog Act Markup in Several Lay-
ers (DAMSL) annotation scheme (Core and Allen,
1997) for switchboard conversations. For exam-
ple, RESPONSE-ACK refers to an acknowledge-
ment by the operator of receiving the customer’s
request:Your email was submitted to the HP eSer-
vices Commercial Support group; INSTRUCTION-
ITEM is similar to INSTRUCTION but appears as
part of a list of instructions.

We can see from Table 1 that there is a high dis-
tribution skew, where some classes are very small.
This means that many of the classes have very few
positive examples to learn from. We will see var-
ious implications of this high skew in our investi-
gation (Section 3).

When annotating the sentences, problems arose
when a sentence was of compound form, which
consisted of multiple independent clauses con-
nected by conjunctions, like“and” , “but” , and
“or” . For example, the sentence“Please send us
the error message and we will be able to help.”.
The two clauses could be labeled asREQUESTand
STATEMENT respectively. As our study consid-
ered only one tag per sentence, the annotators were
asked to consider the most dominant clause to tag
the sentence as a whole. Another tricky problem
when tagging the sentences dealt with the com-
plex sentences, which contained one independent
clause and one or more dependent clauses, for ex-
ample“If you see any error message, please for-
ward it to us”. The first clause is a dependent
clause, while the second one is an independent
clause. To solve this problem, the annotators were
asked to consider only the independent clause to
determine which tag to use. Despite these dif-
ficulties, we obtained a high inter-tagger agree-
ment, measured with the widely used Kappa statis-
tic (Carletta, 1996) as 0.85. We had three anno-
tators, and we considered only the sentences on
which at least two of the annotators agreed. This
was the case in all but 21 of the sentences.

3 Experiments

Our experiments involve three classification algo-
rithms, Naive Bayes (NB), Decision Tree (DT),
and Support Vector Machine (SVM). The evalu-
ation platform is the machine learning software
toolkit WEKA (Witten and Frank, 2005). For the
SVM, the multi-class task is implemented as a se-
ries of binary classification tasks. We employ a
stratified 10-fold validation procedure, where the
labelled sentences are randomly allocated to train-
ing and testing data splits.

A standard measure for classification perfor-
mance is classification accuracy. However, for
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datasets with skewed distribution this measure can
be misleading, and so instead we have used the F1

measure, derived from precision and recall (Salton
and McGill, 1983), as follows. The precision of a
classi is defined as

Precision=
# sentences correctly classified into class i

# of sentences classified into class i

and the recall of classi is defined as

Recall=
# sentences correctly classified into class i

# of sentences that are truly in class i

and thenF1, the harmonic mean between precision
and recall, is defined as

F1 =
2× Precision× Recall

Precision+ Recall

Once the F1 measure is calculated for all the
classes, we average it to get an overall indication
of performance, and also look at the standard de-
viation as an indication of consistency. The aver-
age can be computed in two different methods to
reflect the importance of small classes. The first
method, calledmacro averaging, gives an equal
weight to each class. The second, calledmicro
averaging, gives proportional weight according to
the proportion of the classes in the dataset. For
classes with only a few positive training data, it
is generally more difficult to achieve good classi-
fication, and their poor performance will have a
larger effect on the overall performance when the
macro average is used. The choice between the
two measures depends on the relative preference
that an experimenter places on the smaller classes.
Since the classes in our corpus have unbalanced
distributions (Table 1) we consider both alterna-
tives and discuss their differences.

3.1 Experiments with representation

Before looking at feature selection, we investigate
different techniques for extracting features from
sentences. Finding a useful representation for tex-
tual data can be very challenging, and the success
of classification hinges on this crucial step. Many
different techniques have been suggested for text
classification, and we have investigated the most
common ones.

3.1.1 Representation techniques

Bag-of-words (BoW). Each distinct word in the
text corresponds to a feature, and the text is trans-
formed to a vector ofN weights (< w1, w2, . . . ,

wN >), whereN is the total number of distinct
words in the entire corpus, andwk is the weight
of the kth word in the vector. Information about
sentence order, word order and the structure of
the text and sentence are discarded. The BoW
representation is widely used due to its simplicity
and computational efficiency (Cardoso-Cachopo
and Oliveira, 2003). There are various methods
for setting the weights, for example, solely tak-
ing into account the presence of the word, or also
considering the frequency of the word. Since we
are dealing with sentences that are usually quite
short, we do not believe that the frequency of each
word conveys any meaning. This is in contrast to
typical text classification tasks. We use a binary
word-presence representation, indicating whether
a word is present or absent from the sentence.1

Stop-word removal. Generally, the first step to
reduce the feature space is to remove the stop-
words (connective words, such as“of” , “the” ,
“in” ). These words are very common words and
are conjectured in TC to provide no information to
the classifier. Stop-word removal is said to be used
in almost all text classification experiments (Scott
and Matwin, 1999).

Tokenization. This involves separating any
symbols from the numbers or alphabets. For ex-
ample, the word“(manual12.txt)” is separated
into five tokens,“(” , “manual12”, “.” , “txt” and
“)” , all considered as features. Without tokeniza-
tion, a word that is coupled with different sym-
bols may lose its discriminative power because
the BoW treats each coupling as a distinct fea-
ture. Similarly, the symbols lose any discrimina-
tive power.

Lemmatization. The process of mapping words
into their base form. For example, the words“in-
stalled”, “installs” and “installing” are mapped
to “install” . This mapping makes the bag-of-
words approach treat words of different forms as a
single feature, hence reducing the total number of
features. This mapping can increase the discrim-
inative power of a word if that word appears in a
particular sentence class but in different forms.

Grouping. This involves grouping certain types
of words into a single feature. For instance, all
words that are valid numbers, like“1” , “444” and

1We have also attempted a bigram representation, how-
ever, our results so far are inconclusive and require further
investigation.
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Representation Num Features Measure NB DT SVM
Basic 2710 micro-F1 ave 0.481 0.791 0.853

macro-F1 ave 0.246 0.693 0.790
Best 1622 micro-F1 ave 0.666 0.829 0.883

macro-F1 ave 0.435 0.803 0.866

Table 2: Classification performance using different representations.

“9834” , are grouped to represent a single feature.
Grouping was also applied to email addresses,
phone numbers, URLs, and serial numbers. As
opposed to the other techniques mentioned above,
grouping is a domain-specific preprocessing step.

3.1.2 Results.

We begin our investigation by looking at the
most basic representation, involving a binary BoW
without any further processing. The first row in
Table 2 shows the results obtained with this ba-
sic setup. The second column shows the num-
ber of features resulting from this representation,
the third column shows the performance measure,
and the last three columns show the results for the
three classifiers. We see that SVM outperforms
the other classifiers on both measures. We also
inspected the standard deviations of the macro av-
erages and observed that SVM is the most con-
sistent (0.037 compared to 0.084 and 0.117 for
DT and NB, respectively). This means the SVM’s
performance is most consistent across the differ-
ent classes. These results are in line with obser-
vations reported in the literature on the superior-
ity of SVMs in classification tasks involving text,
where the dimensionality is high. We will return
to this issue in the next sub-section when we dis-
cuss feature selection. We can also see from Ta-
ble 2 that the micro F1 average consistently re-
ports a better performance than the macro F1 av-
erage. This is expected due to the existence of
very small classes: their performance tends to be
poorer, but their influence on the micro average is
proportional to their size, as opposed to the macro
average which takes equal weights.

We have experimented with different combi-
nations of the various representation techniques
mentioned above (Anthony, 2006). The best one
turned out to be one that uses tokenization and
grouping, and its results are shown in the second
row of Table 2. We can see that it results in a sig-
nificant reduction in the number of features (ap-
proximately 40%). Further, it provides a consis-
tent improvement in all performance measures for

all classifiers, with the exception of NB, for which
the standard deviation is slightly increased. We
see that the more significant improvements are re-
ported by the macro F1 average, which suggests
that the smaller classes are particularly benefit-
ing from this representation. For example, serial
numbers occur often inSPECIFICATION class. If
grouping was not used, serial numbers often ap-
pear in different variation, making them distinct
from each other. Grouping makes them appear as a
single more predictive feature. To test this further,
the SPECIFICATION class was examined with and
without grouping. Its classification performance
improved from 0.64 (no grouping) to 0.8 (with
grouping) with SVM as the classifier. An example
of the effect of tokenization can be observed for
the QUESTION class, which improved largely be-
cause of the question mark symbol ‘?’ being de-
tected as a feature after the tokenization process.
Notice that there is a similar increase in perfor-
mance for NB when considering either the micro
or macro average. That is, NB has a more gen-
eral preference to the second representation, and
we conjecture that this is due to the fact that it
does not deal well with many features, because of
the strong assumption it makes about the indepen-
dence of features.

The surprising results from our investigations
are that two of the most common preprocessing
techniques, stop-word removal and lemmatization,
proved to be harmful to performance. Lemmatiza-
tion can harm classification when certain classes
rely on the raw form of certain words. For ex-
ample, theINSTRUCTION class often has verbs in
imperative form, for example, “install the driver”,
but these same verbs can appear in a different
form in other classes, for example theSUGGES-
TION sentence “I would try installing the driver”,
or theQUESTIONsentence “Have you installed the
driver?”. Stop-words can also carry crucial infor-
mation about the structure of the sentence, for ex-
ample, “what”, “how”, and “please”. In fact, often
the words in our stop-list appeared in the top list of
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words produced by the feature selection methods.
We conclude that unlike text classification tasks,
where each item to be classified is rich with tex-
tual information, sentence classification involves
small textual units that contain valuable cues that
are often lost when techniques such as lemmatiza-
tion and stop-word removal are employed.

3.2 Experiments with feature selection

Since there can be thousands or even tens of thou-
sands of distinct words in the entire email corpus,
the feature space can be very large, as we have
seen in our baseline experiments (Table 2). This
means that the computational load on a classifi-
cation algorithm can be very high. Thus feature
selection (FS) is desirable for reducing this load.
However, it has been demonstrated in text classi-
fication tasks that FS can in fact improve classi-
fication performance as well (Yang and Pedersen,
1997).

We investigate four FS methods that have
been shown to be competitive in text classifica-
tion (Yang and Pedersen, 1997; Forman, 2003;
Gabrilovich and Markovitch, 2004), but have not
been investigated in sentence classification.

3.2.1 Feature selection algorithms

Chi-squared (χ2). Measures the lack of statis-
tical independence between a feature and a class
(Seki and Mostafa, 2005). If the independence is
high, then the feature is considered not predictive
for the class. For each word,χ2 is computed for
each class, and the maximum score is taken as the
χ2 statistic for that word.

Information Gain (IG). Measures the entropy
when the feature is present versus the entropy
when the feature is absent (Forman, 2003). It is
quite similar toχ2 in a sense that it considers the
usefulness of a feature not only from its presence,
but also from its absence in each class.

Bi-Normal Separation (BNS). This is a rela-
tively new FS method (Forman, 2003). It mea-
sures the separation along a Standard Normal Dis-
tribution of two thresholds that specify the preva-
lence rate of the feature in the positive class versus
the negative class. It has been shown to be as com-
petitive asχ2 and IG (Forman, 2003; Gabrilovich
and Markovitch, 2004), and superior when there is
a large class skew, as there is in our corpus.

Sentence Frequency (SF). This is a baseline FS
method, which simply removes features that are
infrequent. The sentence frequency of a word is
the number of sentences in which the word ap-
pears. Thus this method is much cheaper compu-
tationally than the others, but has been shown to
be as competitive when at least 10% of the words
are kept (Yang and Pedersen, 1997).

3.2.2 Results.

We evaluate the various FS methods by inspect-
ing the performance of the classifiers when trained
with increasing number of features, where we re-
tain the top features as determined by each FS
method. Figure 1(a) shows the results obtained
with the χ2 method, reported using the macro F1

average, where the error bars correspond to the
95% confidence intervals of these averages. We
can see from the figure that SVM and DT are far
less sensitive to feature selection than NB. As con-
jectured in the previous sub-section, NB does not
deal well with many features, and indeed we can
see here that it performs poorly and inconsistently
when many of the features are retained. As we
filter out more features, its performance starts to
improve and become more consistent. In contrast,
the SVM seems to prefer more features: its perfor-
mance degrades slightly if less than 300 features
are retained (although it still outperforms the other
classifiers), and levels out when at least 300 fea-
tures are used. As well as having an overall bet-
ter performance than the other two classifiers, it
also has the smallest variability, indicating a more
consistent and robust behaviour. SVMs have been
shown in text classification to be more robust to
many features (Joachims, 1998).

When comparing the FS methods against each
other, it seems their performance is not signifi-
cantly distinguishable. Figure 1(b) shows the per-
formance of the four methods for the NB classi-
fier. We see that when at least 300 features are re-
tained, the performances of the FS methods are in-
distinguishable, with IG andχ2 slightly superior.
When less than 300 features are retained, the per-
formance of the SF method deteriorates compared
to the others. This means that if we only want
very few features to be retained, a frequency-based
method is not advisable. This is due to the fact that
we have small classes in our corpus, whose cue
words are therefore infrequent, and therefore we
need to select features more carefully. However,
if we can afford to use many features, then this
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Figure 1: Results from feature selection: (a) the effect of theχ2 method on different classifiers, (b) the
effect of different feature selection methods on the Naive Bayes classifier.

simple method is adequate. We have observed the
pattern seen in Figure 1(b) also with the other clas-
sifiers, and with the micro F1 average (Anthony,
2006).

Our observations are in line with those from text
classification experiments: the four FS methods
perform similarly, except when only a small pro-
portion is retained, when the simple frequency-
based method performs worse. However, we ex-
pected the BNS method to outperform the oth-
ers given that we are dealing with classes with a
high distributional skew. We offer two explana-
tions for this result. First, the size of our corpus is
smaller than the one used in the text classification
experiments involving skewed datasets (Forman,
2003) (these experiments use established bench-
mark datasets consisting of large sets of labelled
text documents, but there are no such datasets with
labelled sentences). Our smaller corpus therefore
results in a substantially fewer number of features
(1622 using the our “best” representation in Ta-
ble 2 compared with approximately 5000 in the
text classification experiments). Thus, it is pos-
sible that the effect of BNS can only be observed
when a more substantial number of features is pre-
sented to the selection algorithm. The second ex-
planation is that sentences are less textually rich
than documents, with fewer irrelevant and noisy
features. They might not rely on feature selection
to the extent that text classification tasks do. In-
deed, our results show that as long as we retain
a small proportion of the features, a simple FS
method suffices. Therefore, the effect of BNS can-
not be observed.

3.3 Class-by-class analysis

So far we have presented average performances of
the classifiers and FS methods. It is also inter-
esting to look at the performance individually for
each class. Table 3 shows how well each class was
predicted by each classifier, using the macro F1

average and standard deviation in brackets. The
standard deviation was calculated over 10 cross-
validation folds. These results are obtained with
the “best” representation in Table 2, and with the
χ2 feature selection method retaining the top 300
features.

We can see that a few classes have F1 of above
0.9, indicating that they were highly predictable.
Some of these classes have obvious cue words
to distinguish them from other classes. For in-
stance, “inconvenience”, “sorry” , “apologize”
and “apology” to discriminateAPOLOGY class,
“?” to discriminateQUESTION, “please” to dis-
criminateREQUEST and “thank” to discriminate
THANKING .

It is more interesting to look at the less
predictable classes, such asINSTRUCTION,
INSTRUCTION-ITEM, SUGGESTIONandSPECIFI-
CATION. They are also the sentence classes that
are considered more useful to know than some
others, likeTHANKING , SALUTATION and so on.
For instance, by knowing which sentences are
instructions in the emails, they can be extracted
into a to-do list of the email recipient. We have
inspected the classification confusion matrix to
better understand the less predictable classes. We
saw that INSTRUCTION, INSTRUCTION-ITEM,
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Sentence Class NB DT SVM
Apology 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
Instruction 0.593 (0.109) 0.619 (0.146) 0.675 (0.126)
Instruction-item 0.718 (0.097) 0.582 (0.141) 0.743 (0.127)
Others 0.117 (0.249) 0.411 (0.283) 0.559 (0.282)
Question 0.413 (0.450) 1.000 (0.000) 1.000 (0.000)
Request 0.896 (0.042) 0.930 (0.046) 0.940 (0.047)
Response-ack 0.931 (0.061) 0.902 (0.037) 0.942 (0.057)
Salutation 0.908 (0.029) 0.972 (0.028) 0.981 (0.020)
Signature 0.370 (0.362) 0.960 (0.064) 0.986 (0.045)
Specification 0.672 (0.211) 0.520 (0.218) 0.829 (0.151)
Statement 0.837 (0.042) 0.843 (0.040) 0.880 (0.035)
Suggestion 0.619 (0.206) 0.605 (0.196) 0.673 (0.213)
Thanking 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
Url 0.870 (0.071) 0.970 (0.041) 0.988 (0.025)

Table 3: Class-by-class performance

SUGGESTION and STATEMENT were often mis-
classified as one another. This means that there
were not enough distinguishing features to clearly
separate these classes. The highest confusion was
between INSTRUCTION and STATEMENT, and
indeed, sentences of the form“the driver must
be installed before the device will work”can be
interpreted as both an instruction and a general
statement. This suggests that the usage of some of
these sentence classes may need to be revised.

4 Conclusions

We have presented a set of experiments involv-
ing sentence classification. While the successful
deployment of classification algorithms for sen-
tences has been demonstrated previously, this kind
of classification has received far less attention than
the one involving complete documents. In particu-
lar, the usefulness of feature selection for sentence
classification has not been investigated, to the best
of our knowledge.

There are many types of documents where in-
dividual sentences carry important information re-
garding communicative acts between parties. In
our experiments this corresponds to email re-
sponses to technical help-desk inquiries. However,
there are many more examples of such documents,
including different kinds of emails (both personal
and professional), newsgroup and forum discus-
sions, on-line chat, and instant messaging. There-
fore, sentence classification is a useful task that
deserves more investigation. In particular, such
investigations need to relate results to the more
well established ones from text classification ex-
periments, and thus highlight the significant dif-
ferences between these two tasks.

Our results confirm some observations made

from text classification. The SVM classification
algorithm generally outperforms other common
ones, and is largely insensitive to feature selec-
tion. Further, the effect of non-trivial feature se-
lection algorithms is mainly observed when an ag-
gressive selection is required. When a less ag-
gressive selection is acceptable (that is, retain-
ing more features), a simple and computationally
cheap frequency-based selection is adequate. Our
results also show some important differences be-
tween text and sentence classification. Sentences
are much smaller than documents, and less rich
with textual information. This means that in prun-
ing the feature space one needs to be very care-
ful not to eliminate strong discriminative features,
especially when there is a large class distribu-
tion skew. We saw that lemmatization and stop-
word removal proved detrimental, whereas they
have been demonstrated to provide a useful di-
mensionality reduction in text classification. This
difference between sentences and documents may
also be responsible for obscuring the effect of a
particular feature selection method (BNS), which
has been demonstrated to outperform others when
there is a large distribution skew. We conclude
from these observations that while feature selec-
tion is useful for reducing the dimensionality of
the classification task and even improving the per-
formance of some classifiers, the extent of its use-
fulness is not as large as in text classification.
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Abstract

NLTK, the Natural Language Toolkit, is an
open source project whose goals include
providing students with software and lan-
guage resources that will help them to
learn basic NLP. Until now, the pro-
gram modules in NLTK have covered such
topics as tagging, chunking, and parsing,
but have not incorporated any aspect of
semantic interpretation. This paper de-
scribes recent work on building a new se-
mantics package for NLTK. This currently
allows semantic representations to be built
compositionally as a part of sentence pars-
ing, and for the representations to be eval-
uated by a model checker. We present the
main components of this work, and con-
sider comparisons between the Python im-
plementation and the Prolog approach de-
veloped by Blackburn and Bos (2005).

1 Introduction

NLTK, the Natural Language Toolkit,1 is an open
source project whose goals include providing stu-
dents with software and language resources that
will help them to learn basic NLP. NLTK is imple-
mented in Python, and provides a set of modules
(grouped into packages) which can be imported
into the user’s Python programs.

Up till now, the modules in NLTK have covered
such topics as tagging, chunking, and parsing, but
have not incorporated any aspect of semantic inter-
pretation. Over the last year, I have been working
on remedying this lack, and in this paper I will de-
scribe progress to date. In combination with the

1http://nltk.sourceforge.net/

NLTK parse package, NLTK’s semantics pack-
age currently allow semantic representations to be
built compositionally within a feature-based chart
parser, and allows the representations to be evalu-
ated by a model checker.

One source of inspiration for this work came
from Blackburn and Bos’s (2005) landmark book
Representation and Inference for Natural Lan-
guage (henceforth referred to as B&B). The two
primary goals set forth by B&B are (i) automating
the association of semantic representations with
expressions of natural language, and (ii) using log-
ical representations of natural language to auto-
mate the process of drawing inferences. I will be
focussing on (i), and the related issue of defin-
ing satisfaction in a model for the semantic rep-
resentations. By contrast, the important topic of
(ii) will not be covered—as yet, there are no the-
orem provers in NLTK. That said, as pointed out
by B&B, for many inference problems in NLP it is
desirable to call external and highly sophisticated
first-order theorem provers.

One notable feature of B&B is the use of Pro-
log as the language of implementation. It is not
hard to defend the use of Prolog in defining logical
representations, given the presence of first-order
clauses in Prolog and the fundamental role of res-
olution in Prolog’s model of computation. Never-
theless, in some circumstances it may be helpful to
offer students access to an alternative framework,
such as the Python implementation presented here.
I also hope that the existence of work in both pro-
gramming paradigms will turn out to be mutually
beneficial, and will lead to a broader community
of upcoming researchers becoming involved in the
area of computational semantics.
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2 Building Semantic Representations

The initial question that we faced in NLTK was
how to induce semantic representations for En-
glish sentences. Earlier efforts by Edward Loper
and Rob Speer had led to the construction of
a chart parser for (untyped) feature-based gram-
mars, and we therefore decided to introduce a
sem feature to hold the semantics in a parse tree
node. However, rather than representing the value
of sem as a feature structure, we opted for a more
traditional (and more succinct) logical formalism.
Since the λ calculus was the pedagogically obvi-
ous choice of ‘glue’ language for combining the
semantic representations of subconstituents in a
sentence, we opted to build on church.py,2 an in-
dependent implementation of the untyped λ cal-
culus due to Erik Max Francis. The NLTK mod-
ule semantics.logic extends church.py to bring
it closer to first-order logic, though the resulting
language is still untyped. (1) illustrates a repre-
sentative formula, translating A dog barks. From
a Python point of view, (1) is just a string, and has
to be parsed into an instance of the Expression
class from semantics.logic.

(1) some x.(and (dog x) (bark x))

The string (dog x) is analyzed as a func-
tion application. A statement such as Suzie
chases Fido, involving a binary relation chase ,
will be translated as another function applica-
tion: ((chase fido) suzie), or equiva-
lently (chase fido suzie). So in this case,
chase is taken to denote a function which, when
applied to an argument yields the second function
denoted by (chase fido). Boolean connec-
tives are also parsed as functors, as indicated by
and in (1). However, infix notation for Boolean
connectives is accepted as input and can also be
displayed.

For comparison, the Prolog counterpart of (1)
on B&B’s approach is shown in (2).

(2) some(X,(and(dog(X),bark(X))

(2) is a Prolog term and does not require any addi-
tional parsing machinery; first-order variables are
treated as Prolog variables.

(3) illustrates a λ term from semantics.logic
that represents the determiner a.

(3) \Q P.some x.(and (Q x) (P x))

2http://www.alcyone.com/pyos/church/.

\Q is the ascii rendering of λQ, and \Q P is short-
hand for λQλP .

For comparison, (4) illustrates the Prolog coun-
terpart of (3) in B&B.

(4) lam(Q,lam(P,some(X,
and(app(Q,X),app(P,X)))))

Note that app is used in B&B to signal the ap-
plication of a λ term to an argument. The right-
branching structure for λ terms shown in the Pro-
log rendering can become fairly unreadable when
there are multiple bindings. Given that readability
is a design goal in NLTK, the additional overhead
of invoking a specialized parser for logical repre-
sentations is arguable a cost worth paying.

Figure 1 presents a minimal grammar exhibiting
the most important aspects of the grammar formal-
ism extended with the sem feature. Since the val-
ues of the sem feature have to handed off to a sep-
arate processor, we have adopted the convention
of enclosing the values in angle brackets, except
in the case of variables (e.g., ?subj and ?vp),
which undergo unification in the usual way. The
app relation corresponds to function application;

In Figure 2, we show a trace produced by the
NLTK module parse.featurechart. This illus-
trates how variable values of the sem feature are
instantiated when completed edges are added to
the chart. At present, β reduction is not carried
out as the sem values are constructed, but has to
be invoked after the parse has completed.

The following example of a session with the
Python interactive interpreter illustrates how a
grammar and a sentence are processed by a parser
to produce an object tree; the semantics is ex-
tracted from the root node of the latter and bound
to the variable e, which can then be displayed in
various ways.

>>> gram = GrammarFile.read_file(’sem1.cfg’)
>>> s = ’a dog barks’
>>> tokens = list(tokenize.whitespace(s))
>>> parser = gram.earley_parser()
>>> tree = parser.parse(tokens)
>>> e = root_semrep(tree)
>>> print e
(\Q P.some x.(and (Q x) (P x)) dog \x.(bark x))
>>> print e.simplify()
some x.(and (dog x) (bark x))
>>> print e.simplify().infixify()
some x.((dog x) and (bark x))

Apart from the pragmatic reasons for choos-
ing a functional language as our starting point,
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S[sem = <app(?subj,?vp)>] -> NP[sem=?subj] VP[sem=?vp]
VP[sem=?v] -> IV[sem=?v]
NP[sem=<app(?det,?n)>] -> Det[sem=?det] N[sem=?n]

Det[sem=<\Q P. some x. ((Q x) and (P x))>] -> ’a’
N[sem=<dog>] -> ’dog’
IV[sem=<\x.(bark x)>] -> ’barks’

Figure 1: Minimal Grammar with Semantics

Predictor |> . . .| S[sem=’(?subj ?vp)’] -> * NP[sem=?subj] VP[sem=?vp]
Predictor |> . . .| NP[sem=’(?det ?n)’] -> * Det[sem=?det] N[sem=?n]
Scanner |[-] . .| [0:1] ’a’
Completer |[-> . .| NP[sem=’(\\Q P.some x.(and (Q x) (P x)) ?n)’]

-> Det[sem=’\\Q P.some x.(and (Q x) (P x))’] * N[sem=?n]
Scanner |. [-] .| [1:2] ’dog’
Completer |[---] .| NP[sem=’(\\Q P.some x.(and (Q x) (P x)) dog)’]

-> Det[sem=’\\Q P.some x.(and (Q x) (P x))’] N[sem=’dog’] *
Completer |[---> .| S[sem=’(\\Q P.some x.(and (Q x) (P x)) dog ?vp)’]

-> NP[sem=’(\\Q P.some x.(and (Q x) (P x)) dog)’] * VP[sem=?vp]
Predictor |. . > .| VP[sem=?v] -> * V[sem=?v]
Scanner |. . [-]| [2:3] ’barks’
Completer |. . [-]| VP[sem=’bark’] -> V[sem=’bark’] *
Completer |[=====]| S[sem=’(\\Q P.some x.(and (Q x) (P x)) dog bark)’]

-> NP[sem=’(\\Q P.some x.(and (Q x) (P x)) dog)’] VP[sem=’bark’] *
Completer |[=====]| [INIT] -> S *

Figure 2: Parse tree for a dog barks

there are also theoretical attractions. It helps intro-
duce students to the tradition of Montague Gram-
mar (Montague, 1974; Dowty et al., 1981), which
in turn provides an elegant correspondence be-
tween binary syntax trees and semantic compo-
sition rules, in the style celebrated by categorial
grammar. In the next part of the paper, I will turn
to the issue of how to represent models for the log-
ical representations.

3 Representing Models in Python

Although our logical language is untyped, we will
interpret it as though it were typed. In partic-
ular, expressions which are intended to translate
unary predicates will be interpreted as functions
of type e → {0, 1} (from individuals to truth
values) and expressions corresponding to binary
predicates will be interpreted as though they were
of type e → (e → {0, 1}). We will start out by
looking at data structures which can be used to
provide denotations for such expressions.

3.1 Dictionaries and Boolean Types

The standard mapping type in Python is the dictio-
nary, which associates keys with arbitrary values.
Dictionaries are the obvious choice for represent-
ing various kinds of functions, and can be special-
ized by user-defined classes. This means that it is
possible to benefit from the standard Python op-
erations on dictionaries, while adding additional
features and constraints, or in some cases overrid-
ing the standard operations. Since we are assum-
ing that our logical language is based on function
application, we can readily construct the interpre-
tation of n-ary relations in terms of dictionaries-
as-functions.

Characteristic functions (i.e., functions that cor-
respond to sets) are dictionaries with Boolean val-
ues:

cf = {’d1’: True,
’d2’: True,
’d3’: False}

cf corresponds to the set {d1, d2}. Since func-
tions are being implemented as dictionaries, func-
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tion application is implemented as indexing (e.g.,
cf[’d1’] applies cf to argument ’d1’). Note
that True and False are instances of the Python
built-in bool type, and can be used in any
Boolean context. Since Python also includes and
and not, we can make statements (here, using the
Python interactive interpreter) such as the follow-
ing:

>>> cf[’d1’] and not cf[’d3’]
True

As mentioned earlier, relations of higher arity are
also modeled as functions. For example, a bi-
nary relation will be a function from entities to a
characteristic function; we can call these ‘curryed
characteristic functions’.

cf2 = {’d2’: {’d1’: True},
’d3’: {’d2’: True}}

cf2 corresponds to the relation
{(d1, d2), (d2, d3)}, on two assumptions. First,
we are allowed to omit values terminating in
False, since arguments that are missing the
function will be taken to yield False. Second, as
in Montague Grammar, the ‘object’ argument of a
binary relation is consumed before the ‘subject’
argument. Thus we write ((love m) j) in place
of love(j, m). Recall that we also allow the
abbreviated form (love m j)

Once we have curryed characteristic functions
in place, it is straightforward to implement the
valuation of non-logical constants as a another
dictionary-based class Valuation, where con-
stants are the keys and the values are functions (or
entities in the case of individual constants).

While variable assignments could be treated as
a list of variable-value pairs, as in B&B, an al-
ternative is again to use a dictionary-based class.
This approach makes it relatively easy to impose
further restrictions on assignments, such as only
assigning values to strings of the form x, y, z, x0,
x1, . . . .

3.2 Sets
Python provides support for sets, including stan-
dard operations such as intersection and subset
relationships. Sets are useful in a wide variety
of contexts. For example, instances of the class
Valuation can be given a property domain,

consisting of the set of entities that act as keys
in curryed characteristic functions; then a con-
dition on objects in the Model class is that the
domain of some model m is a superset of m’s
valuation.domain:

m.domain.issuperset
(m.valuation.domain)

For convenience, Valuation objects have a
read method which allows n-ary predicates to
be specified as relations (i.e., sets of tuples) rather
than functions. In the following example, rel is
a set consisting of the pairs (’d1’, ’d2’) and
(’d2’, ’d3’).

val = Valuation()
rel = set([(’d1’, ’d2’),(’d2’, ’d3’)])
val.read([(’love’, rel)])

read converts rel internally to the curryed char-
acteristic function cf2 defined earlier.

4 Key Concepts

4.1 Satisfaction

The definition of satisfaction presupposes that
we have defined a first-order language, and
that we have a way of parsing that language
so that satisfaction can be stated recursively.
In the interests of modularity, it seems desir-
able to make the relationship between language
and interpretation less tightly coupled than it
is on the approach of B&B; for example, we
would like to be able apply similar evalua-
tion techniques to different logical representa-
tions. In the current NLTK implementation, the
nltk_lite.semantics.evaluatemodule
imports a second module logic, and calls a
parse method from this module to determine
whether a given Python string can be analysed as
first-order formula. However, evaluate tries to
make relatively weak assumptions about the re-
sulting parse structure. Specifically, given a parsed
expression, it tries to match the structure with one
of the following three kinds of pattern:

(binder, body)
(op, arg_list)
(fun, arg)
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Any string which cannot be decomposed is taken
to be a primitive (that is, a non-logical constant or
individual variable).

A binder can be a λ or a quantifier (existen-
tial or universal); an op can be a Boolean con-
nective or the equality symbol. Any other paired
expression is assumed to be a function applica-
tion. In principle, it should be possible to in-
terface the evaluate module with any parser
for first-order formulas which can deliver these
structures. Although the model checker expects
predicate-argument structure as function applica-
tions, it would be straightforward to accept atomic
clauses that have been parsed into a predicate and
a list of arguments.

Following the functional style of interpreta-
tion, Boolean connectives in evaluate are inter-
preted as truth functions; for example, the connec-
tive and can be interpreted as the function AND:

AND = {True: {True: True,
False: False},

False: {True: False,
False: False}}

We define OPS as a mapping between the Boolean
connectives and their associated truth functions.
Then the simplified clause for the satisfaction of
Boolean formulas looks as follows:3

def satisfy(expr, g):
if parsed(expr) == (op, args)

if args == (phi, psi):
val1 = satisfy(phi, g)
val2 = satisfy(psi, g)
return OPS[op][val1][val2]

In this and subsequent clauses for satisfy,
the return value is intended to be one of Python’s
Boolean values, True or False. (The excep-
tional case, where the result is undefined, is dis-
cussed in Section 4.3.)

An equally viable (and probably more effi-
cient) alternative to logical connnectives would
be to use the native Python Boolean operators.
The approach adopted here was chosen on the
grounds that it conforms to the functional frame-
work adopted elsewhere in the semantic represen-
tations, and can be expressed succinctly in the sat-
isfaction clauses. By contrast, in the B&B Pro-
log implementation, and and or each require five

3In order to simplify presentation, tracing and some er-
ror handling code has been omitted from definitions. Object-
oriented uses of self have also been suppressed.

clauses in the satisfaction definition (one for each
combination of Boolean-valued arguments, and a
fifth for the ‘undefined’ case).

We will defer discussion of the quantifiers to the
next section. The satisfy clause for function
application is similar to that for the connectives.
In order to handle type errors, application is del-
egated to a wrapper function app rather than by
directly indexing the curryed characteristic func-
tion as described earlier.

...
elif parsed(expr) == (fun, arg):

funval = satisfy(fun, g)
argval = satisfy(psi, g)
return app(funval, argval)

4.2 Quantifers
Examples of quantified formulas accepted by
the evaluate module are pretty unexceptional.
Some boy loves every girl is rendered as:

’some x.((boy x) and
all y.((girl y) implies

(love y x)))’

The first step in interpreting quantified formulas
is to define the satisfiers of a formula that is open
in some variable. Formally, given an open formula
φ[x] dependent on x and a model with domain D,
we define the set sat(φ[x], g) of satisfiers of φ[x]
to be:

{u ∈ D : satisfy(φ[x], g[u/x]) = True}

We use ‘g[u/x]’ to mean that assignment which is
just like g except that g(x) = u. In Python, we
can build the set sat(φ[x], g) with a for loop.4

def satisfiers(expr, var, g):
candidates = []
if freevar(var, expr):

for u in domain:
g.add(u, var)
if satisfy(expr, g):

candidates.append(u)
return set(candidates)

An existentially quantified formula ∃x.φ[x] is held
to be true if and only if sat(φ[x], g) is nonempty.
In Python, len can be used to return the cardinal-
ity of a set.

4The function satisfiers is an instance method of the
Models class, and domain is an attribute of that class.
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...
elif parsed(expr) == (binder, body):

if binder == (’some’, var):
sat = satisfiers(body, var, g)
return len(sat) > 0

In other words, a formula ∃x.φ[x] has the same
value in model M as the statement that the number
of satisfiers in M of φ[x] is greater than 0.

For comparison, Figure 3 shows the two Pro-
log clauses (one for truth and one for falsity) used
to evaluate existentially quantified formulas in the
B&B code modelChecker2.pl. One reason
why these clauses look more complex than their
Python counterparts is that they include code for
building the list of satisfiers by recursion. How-
ever, in Python we gain bivalency from the use of
Boolean types as return values, and do not need
to explicitly mark the polarity of the satisfaction
clause. In addition, processing of sets and lists is
supplied by a built-in Python library which avoids
the use of predicates such as memberList and
the [Head|Tail] notation.

A universally quantified formula ∀x.φ[x] is held
to be true if and only if every u in the model’s do-
main D belongs to sat(φ[x], g). The satisfy
clause above for existentials can therefore be ex-
tended with the clause:

...
elif parsed(expr) == (binder, body):

...
elif binder == (’all’, var):

sat = self.satisfiers(body,var,g)
return domain.issubset(sat)

In other words, a formula ∀x.φ[x] has the same
value in model M as the statement that the domain
of M is a subset of the set of satisfiers in M of
φ[x].

4.3 Partiality

As pointed out by B&B, there are at least two
cases where we might want the model checker
to yield an ‘Undefined’ value. The first is when
we try to assign a semantic value to an unknown
vocabulary item (i.e., to an unknown non-logical
constant). The second arises through the use of
partial variable assignments, when we try to eval-
uate g(x) for some variable x that is outside g’s
domain. We adopt the assumption that if any sub-
part of a complex expression is undefined, then the

whole expression is undefined.5 This means that
an ‘undefined’ value needs to propagate through
all the recursive clauses of the satisfy func-
tion. This is potentially quite tedious to imple-
ment, since it means that instead of the clauses
being able to expect return values to be Boolean,
we also need to allow some alternative return type,
such as a string. Fortunately, Python offers a nice
solution through its exception handling mecha-
nism.

It is possible to create a new class of ex-
ceptions, derived from Python’s Exception
class. The evaluate module defines the
class Undefined, and any function called by
satisfy which attempts to interpret unknown
vocabulary or assign a value to an out-of-domain
variable will raise an Undefined exception. A
recursive call within satisfy will automatically
raise an Undefined exception to the calling
function, and this means that an ‘undefined’ value
is automatically propagated up the stack with-
out any additional machinery. At the top level,
we wrap satisfy with a function evaluate
which handles the exception by returning the
string ’Undefined’ as value, rather than allow-
ing the exception to raise any higher.

EAFP stands for ‘Easier to ask for forgive-
ness than permission’. According to van Rossum
(2006), “this common Python coding style as-
sumes the existence of valid keys or attributes and
catches exceptions if the assumption proves false.”
It contrasts with LBYL (‘Look before you leap’),
which explicitly tests for pre-conditions (such as
type checks) before making calls or lookups. To
continue with the discussion of partiality, we can
see an example of EAFP in the definition of the i
function, which handles the interpretion of non-
logical constants and individual variables.

try:
return self.valuation[expr]

except Undefined:
return g[expr]

We first try to evaluate expr as a non-logical con-
stant; if valuation throws an Undefined ex-
ception, we check whether g can assign a value.
If the latter also throws an Undefined excep-

5This is not the only approach, since one could adopt the
position that a tautology such as p ∨ ¬p should be true even
if p is undefined.
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satisfy(Formula,model(D,F),G,pos):-
nonvar(Formula),
Formula = some(X,SubFormula),
var(X),
memberList(V,D),
satisfy(SubFormula,model(D,F),[g(X,V)|G],pos).

satisfy(Formula,model(D,F),G,neg):-
nonvar(Formula),
Formula = some(X,SubFormula),
var(X),
setof(V,memberList(V,D),All),
setof(V,

(
memberList(V,D),
satisfy(SubFormula,model(D,F),[g(X,V)|G],neg)
),
All).

Figure 3: Prolog Clauses for Existential Quantification

tion, this will automatically be raised to the calling
function.

To sum up, an attractive consequence of this
approach in Python is that no additional stipula-
tions need to be added to the recursive clauses
for interpreting Boolean connectives. By con-
trast, in the B&B modelChecker2.pl code,
the clauses for existential quantification shown in
Figure 3 need to be supplemented with a separate
clause for the ‘undefined’ case. In addition, as re-
marked earlier, each Boolean connective receives
an additional clause when undefined.

5 Specifying Models

Models are specified by instantiating the Model
class. At initialization, two parameters are called,
determining the model’s domain and valuation
function. In Table 4, we start by creating a
Valuation object val (line 1), we then spec-
ify the valuation as a list v of constant-value pairs
(lines 2–9), using relational notation. For exam-
ple, the value for ’adam’ is the individual ’d1’
(i.e., a Python string); the value for ’girl’ is the
set consisting of individuals ’g1’ and ’g1’; and
the value for ’love’ is a set of pairs, as described
above. We use the parse method to update val
with this information (line 10). As mentioned ear-
lier, a Valuation object has a domain prop-
erty (line 11), and in this case dom will evaluate to
the set set([’b1’, ’b2’, ’g1’, ’g2’,
’d1’]). It is convenient to use this set as the
value for the model’s domain when it is initial-
ized (line 12). We also declare an Assignment
object (line 13), specifying that its domain is the

same as the model’s domain.
Given model m and assignment g, we can eval-

uate m.satisfiers(formula, g), for var-
ious values of formulas. This is quite a handy
way of getting a feel for how connectives and
quantifiers interact. A range of cases is illustrated
in Table 5. As pointed out earlier, all formulas are
represented as Python strings, and therefore need
to be parsed before being evaluated.

6 Conclusion

In this paper, I have tried to show how various as-
pects of Python lend themselves well to the task of
interpreting first-order formulas, following closely
in the footsteps of Blackburn and Bos. I argue that
at least in some cases, the Python implementation
compares quite favourably to a Prolog-based ap-
proach. It will be observed that I have not consid-
ered efficiency issues. Although these cannot be
ignored (and are certainly worth exploring), they
are not a priority at this stage of development. As
discussed at the outset, our main goal is develop
a framework that can be used to communicate key
ideas of formal semantics to students, rather than
to build systems which can scale easily to tackle
large problems.

Clearly, there are many design choices to be
made in any implementation, and an alternative
framework which overlaps in part with what I have
presented can be found in the Python code supple-
ment to (Russell and Norvig, 2003).6 One impor-
tant distinction is that the approach adopted here

6http://aima.cs.berkeley.edu/python
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val = Valuation() 1

v = [(’adam’, ’b1’), (’betty’, ’g1’), (’fido’, ’d1’),\ 2

(’girl’, set([’g1’, ’g2’])),\ 3

(’boy’, set([’b1’, ’b2’])),\ 4

(’dog’, set([’d1’])),\ 5

(’love’, set([(’b1’, ’g1’),\ 6

(’b2’, ’g2’),\ 7

(’g1’, ’b1’),\ 8

(’g2’, ’b1’)]))] 9

val.parse(v) 10

dom = val.domain 11

m = Model(dom, val) 12

g = Assignment(dom, {’x’: ’b1’, ’y’: ’g2’}) 13

Figure 4: First-order model m

Formula open in x Satisfiers
’(boy x)’ set([’b1’, ’b2’])
’(x = x)’ set([’b1’, ’b2’, ’g2’, ’g1’, ’d1’])
’((boy x) or (girl x))’ set([’b2’, ’g2’, ’g1’, ’b1’])
’((boy x) and (girl x))’ set([])
’(love x adam)’ set([’g1’])
’(love adam x)’ set([’g2’, ’g1’])
’(not (x = adam))’ set([’b2’, ’g2’, ’g1’, ’d1’])
’some y.(love x y)’ set([’g2’, ’g1’, ’b1’])
’all y.((girl y) implies (love y x))’ set([])
’all y.((girl y) implies (love x y))’ set([’b1’])
’((girl x) implies (dog x))’ set([’b1’, ’b2’, ’d1’])
’all y.((dog y) implies (x = y))’ set([’d1’])
’(not some y.(love x y))’ set([’b2’, ’d1’])
’some y.((love y adam) and (love x y))’ set([’b1’])

Figure 5: Satisfiers in model m

is explicitly targeted at students learning computa-
tional linguistics, rather than being intended for a
more general artificial intelligence audience.

While I have restricted attention to rather ba-
sic topics in semantic interpretation, there is no
obstacle to addressing more sophisticated top-
ics in computational semantics. For example,
I have not tried to address the crucial issue
of quantifier scope ambiguity. However, work
by Peter Wang (author of the NLTK module
nltk_lite.contrib.hole) implements the
Hole Semantics of B&B. This module contains a
‘plugging’ algorithm which converts underspeci-
fied representations into fully-specified first-order
logic formulas that can be displayed textually or
graphically. In future work, we plan to extend the
semantics package in various directions, in par-
ticular by adding some basic inferencing mecha-
nisms to NLTK.
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Abstract

The driving vision for our work is to
provide intelligent, automated assistance
to users in understanding the status of
their email conversations. Our approach
is to create tools that enable the detec-
tion and connection of speech acts across
email messages. We thus require a mech-
anism for tagging email utterances with
some indication of their dialogic function.
However, existing dialog act taxonomies
as used in computational linguistics tend
to be too task- or application-specific for
the wide range of acts we find repre-
sented in email conversation. The Ver-
bal Response Modes (VRM) taxonomy of
speech acts, widely applied for discourse
analysis in linguistics and psychology, is
distinguished from other speech act tax-
onomies by its construction from cross-
cutting principles of classification, which
ensure universal applicability across any
domain of discourse. The taxonomy cat-
egorises on two dimensions, characterised
as literal meaning and pragmatic mean-
ing. In this paper, we describe a statisti-
cal classifier that automatically identifies
the literal meaning category of utterances
using the VRM classification. We achieve
an accuracy of 60.8% using linguistic fea-
tures derived from VRM’s human annota-
tion guidelines. Accuracy is improved to
79.8% using additional features.

1 Introduction

It is well documented in the literature that users are
increasingly using email for managing requests

and commitments in the workplace (Bellotti et al.,
2003). It has also been widely reported that users
commonly feel overloaded when managing mul-
tiple ongoing tasks through email communication
e.g. (Whittaker and Sidner, 1996).

Given significant task-centred email usage, one
approach to alleviating email overload in the
workplace is to draw on Speech Act Theory
(Searle, 1969) to analyse the intention behind
email messages and use this information to help
users process and prioritise their email. The basic
tenet of Speech Act Theory is that when we utter
something, we also act. Examples of such acts can
include stating, questioning or advising.

The idea of identifying and exploiting patterns
of communicative acts in conversations is not new.
Two decades ago, Flores and Winograd (1986)
proposed that workplace workflow could be seen
as a process of creating and maintaining networks
of conversations in which requests and commit-
ments lead to successful completion of work.

Recently, these ideas have begun to be ap-
plied to email messages. Existing work analysing
speech acts in email messages differs as to whether
speech acts should be annotated at the message
level, e.g., (Cohen et al., 2004; Leuski, 2004), or
at the utterance or sentence level, e.g., (Corston-
Oliver et al., 2004). Our thesis is that a single
email message may contain multiple commitments
on a range of tasks, and so our work focuses on
utterance-level classification, with the aim of be-
ing able to connect together the rich tapestry of
threads that connect individual email messages.

Verbal Response Modes (VRM) (Stiles, 1992)
is a principled taxonomy of speech acts for clas-
sifying the literal and pragmatic meaning of utter-
ances. The hypothesis we pose in this work is that
VRM annotation can be learned to create a classi-
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fier of literal utterance meaning.
The driving vision for our work is to eventually

provide intelligent, automated assistance to email
users in understanding the status of their current
email conversations and tasks. We wish to as-
sist users to identify outstanding tasks easily (both
for themselves and their correspondents) through
automatically flagging incomplete conversations,
such as requests or commitments that remain un-
fulfilled. This capability should lead to novel
forms of conversation-based search, summarisa-
tion and navigation for collections of email mes-
sages and for other textual, computer-mediated
conversations. The work described here represents
our first steps towards this vision.

This paper is structured as follows. First, in Sec-
tion 2, we describe related work on automatically
classifying speech and dialogue acts. In Section 3
we introduce the VRM taxonomy, comparing and
contrasting it with other speech act taxonomies in
Section 4. Then, in Section 5, we describe our
statistical VRM classifier, and in Section 6 we
present what we believe are the first results in the
field for automatic VRM classification of the lit-
eral meaning of utterances. Finally, in Section 7
we discuss our results. Section 8 presents some
concluding remarks and pointers to future work.

2 Related Work

There is much existing work that explores au-
tomated processing of speech and dialogue acts.
This collection of work has predominantly fo-
cused around two related problems: dialogue act
prediction and dialogue act recognition. Our work
focuses on the second problem, and more specifi-
cally on speech act recognition.

Examples of dialogue act recognition include
work by Core (1998) which uses previous and
current utterance information to predict possible
annotations from the DAMSL scheme (Core and
Allen, 1997). Similar work by Chu-Carroll (1998)
on statistical “discourse act” recognition also uses
features from the current utterance and discourse
history to achieve accuracy of around 51% for a set
of 15 discourse acts. In particular, Chu-Carroll’s
results were significantly improved by taking into
account the syntactic form of each utterance.

The use of n-gram language models is also
a popular approach. Reithinger and Kle-
sen (1997) apply n-gram language models to
the VERBMOBIL corpus (Alexandersson et al.,

1998) and report tagging accuracy of 74.7% for a
set of 18 dialogue acts. In common with our own
work, Webb et al. (2005) approach dialogue act
classification using only intra-utterance features.
They found that using only features derived from
n-gram cue phrases performed moderately well on
the SWITCHBOARD corpus of spoken dialogue
(Godfrey et al., 1992).

To our knowledge, however, there has been no
previous work that attempts to identify VRM cat-
egories for utterances automatically.

3 Verbal Response Modes

Verbal Response Modes (VRM) is a principled
taxonomy of speech acts that can be used to clas-
sify literal and pragmatic meaning within utter-
ances. Each utterance is coded twice: once for
its literal meaning, and once for its communica-
tive intent or pragmatic meaning. The same VRM
categories are used in each case.

Under the VRM system, every utterance from
a speaker can be considered to concern either the
speaker’s or the other’s experience. For example,
in the utterance “I like pragmatics.”, the source of
experience is the speaker. In contrast, the source
of experience for the utterance “Do you like prag-
matics?” is the other interlocutor.

Further, in making an utterance, the speaker
may need to make presumptions about experience.
For example, in saying “Do you like pragmatics?”,
the speaker does not need to presume to know
what the other person is, was, will be, or should
be thinking, feeling, perceiving or intending. Such
utterances require a presumption of experience of
the speaker only. In contrast, the utterance “Like
pragmatics!” attempts to impose an experience
(a liking for pragmatics) on the other interlocutor,
and has a presumption of experience for the other.

Finally a speaker may represent the experience
either from their own personal point of view, or
from a viewpoint that is shared or held in common
with the other interlocutor. The three example ut-
terances above all use the speaker’s frame of ref-
erence because the experience is understood from
the speaker’s point of view. In contrast, the ut-
terance “You like pragmatics.” takes the other’s
frame of reference, representing the experience as
the other interlocutor views it.

These three principles — source of experience,
presumption about experience and frame of ref-
erence — form the basis of the VRM taxonomy.
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The principles are dichotomous — each can take
the value of speaker or other (other interlocutor)
— and thus define eight mutually exclusive VRM
categories, as shown in Table 1.

With 8 VRM modes and 2 separate dimensions
of coding (literal and pragmatic meaning), there
are 64 possible form-intent combinations. The 8
combinations of codings in which the literal and
pragmatic meanings coincide are referred to as
pure modes. The other 56 modes are labelled
mixed modes. An example of a mixed-mode ut-
terance is “Can you pass the sugar?” which is
coded QA. This is read Question in service of Ad-
visement, meaning that the utterance has a Ques-
tion form (literal meaning) but Advisement intent
(pragmatic meaning). In this way, the VRM tax-
onomy is designed to simply and consistently clas-
sify and distinguish direct and indirect speech acts.

4 Comparison with Other Speech Act
Taxonomies

There are, of course, alternate speech and dia-
logue act taxonomies, some of which have been
applied within natural language processing appli-
cations. Unfortunately, many of these taxonomies
tend to offer competing, rather than complemen-
tary approaches to classifying speech acts, mak-
ing it difficult to compare experimental results and
analyses that are based on different taxonomies. It
would clearly be desirable to unambiguously re-
late categories between different taxonomies.

One specific drawback of many speech and dia-
logue act taxonomies, including taxonomies such
as those developed in the VERBMOBIL project
(Alexandersson et al., 1998), is that they are do-
main or application specific in their definition and
coverage of speech act categories. This often
stems from the taxonomy being developed and
used in a rather ad hoc, empirical manner for
analysing discourse and utterances from a single
or small set of application domains.

While the VRM research grew from studying
therapist interventions in psychotherapy (Stiles,
1992; Wiser and Goldfried, 1996), the VRM sys-
tem has been applied to a variety of discourse
genres. These include: American Presidential
speeches (Stiles et al., 1983), doctor-patient inter-
actions (Meeuswesen et al., 1991), courtroom in-
terrogations (McGaughey and Stiles, 1983), busi-
ness negotiations (Ulijn and Verweij, 2000), per-
suasive discourse (Kline et al., 1990) and tele-

vision commercials (Rak and McMullen, 1987).
VRM coding assumes only that there is a speaker
and an intended audience (other), and thus can be
applied to any domain of discourse.

The wide applicability of VRM is also due to
its basis of clearly defined, domain-independent,
systematic principles of classification. This en-
sures that the VRM categories are both extensive
and exhaustive, meaning that all utterances can
be meaningfully classified with exactly one VRM
category1 . In contrast, even widely-applied, com-
plex taxonomies such as DAMSL (Core and Allen,
1997) resort to the inclusion of an other category
within the speech act component, to be able to
classify utterances across domains.

In addition, the VRM principles facilitate more
rigorous and comparable coding of utterances
from which higher-level discourse properties can
be reliably calculated, including characterisation
of the roles played by discourse participants. If re-
quired, the eight VRM modes can also be further
divided to identify additional features of interest
(for example, the Question category could be split
to distinguish open and closed questions). Impor-
tantly, this can be done within the existing frame-
work of categories, without losing the principled
basis of classification, or the ability to compare di-
rectly with other VRM analyses.

Table 2 compares the VRM categories with
Searle’s five major speech act categories (1969;
1979). Searle’s categories are largely subsumed
under the subset of VRM categories that offer
the speaker’s source of experience and/or frame
of reference (Disclosure, Edifications, Advise-
ments and Questions). The coverage of Searle’s
speech acts seems more limited, given that the
other VRMs (Reflection, Interpretation, Confir-
mation and Acknowledgement), all other on at
least two principles, have no direct equivalents in
Searle’s system, except for some Interpretations
which might map to specific subcategories of Dec-
laration.

5 Building a VRM Classifier

As discussed earlier, the VRM system codes both
the literal and pragmatic meaning of utterances.
The pragmatic meaning conveys the speaker’s ac-
tual intention, and such meaning is often hidden or

1The only exceptions are utterances that are inaudible or
incomprehensible in spoken dialogue, which are coded Un-
codable (U).
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Source of Presumption Frame of VRM Description
Experience about Reference Mode

Experience

Speaker Speaker Speaker Disclosure (D) Reveals thoughts, feelings,
perceptions or intentions.
E.g., I like pragmatics.

Other Edification (E) States objective information.
E.g., He hates pragmatics.

Other Speaker Advisement (A) Attempts to guide behaviour;
suggestions, commands,
permission, prohibition.
E.g., Study pragmatics!

Other Confirmation (C) Compares speaker’s experience
with other’s; agreement, disagree-
ment, shared experience or belief.
E.g., We both like pragmatics.

Other Speaker Speaker Question (Q) Requests information or guidance.
E.g., Do you like pragmatics?

Other Acknowledgement (K) Conveys receipt of or receptive-
ness to other’s communication;
simple acceptance, salutations.
E.g., Yes.

Other Speaker Interpretation (I) Explains or labels the other;
judgements or evaluations of the
other’s experience or behaviour.
E.g., You’re a good student.

Other Reflection (R) Puts other’s experience
into words; repetitions, re-
statements, clarifications.
E.g., You dislike pragmatics.

Table 1: The Taxonomy of Verbal Response Modes from (Stiles, 1992)

Searle’s Classification Corresponding VRM

Commissive Disclosure
Expressive Disclosure
Representative Edification
Directive Advisement; Question
Declaration Interpretation; Disclo-

sure; Edification

Table 2: A comparison of VRM categories with
Searle’s speech acts

highly dependent on discourse context and back-
ground knowledge. Because we classify utter-
ances using only intra-utterance features, we can-
not currently encode any information about the
discourse context, so could not yet plausibly tackle
the prediction of pragmatic meaning. Discern-
ing literal meaning, while somewhat simpler, is

akin to classifying direct speech acts and is widely
recognised as a challenging computational task.

5.1 Corpus of VRM Annotated Utterances

Included with the VRM coding manual (Stiles,
1992) is a VRM coder training application for
training human annotators. This software, which
is freely available online2 , includes transcripts
of spoken dialogues from various domains seg-
mented into utterances, with each utterance anno-
tated with two VRM categories that classify both
its literal and pragmatic meaning.

These transcripts were pre-processed to remove
instructional text and parenthetical text that was
not actually part of a spoken and coded utter-

2The VRM coder training application and
its data files are available to download from
http://www.users.muohio.edu/stileswb/archive.htmlx
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ance. Several additional example utterances were
extracted from the coding manual to increase the
number of instances of under-represented VRM
categories (notably Confirmations and Interpreta-
tions).

The final corpus contained 1368 annotated ut-
terances from 14 dialogues and several sets of iso-
lated utterances. Table 3 shows the frequency of
each VRM mode in the corpus.

VRM Instances Percentage

Disclosure 395 28.9%
Edification 391 28.6%
Advisement 73 5.3%
Confirmation 21 1.5%
Question 218 15.9%
Acknowledgement 97 7.1%
Interpretation 64 4.7%
Reflection 109 8.0%

Table 3: The distribution of VRMs in the corpus

5.2 Features for Classification

The VRM annotation guide provides detailed in-
structions to guide humans in correctly classifying
the literal meaning of utterances. These suggested
features are shown in Table 4.

We have attempted to map these features to
computable features for training our statistical
VRM classifier. Our resulting set of features is
shown in Table 5 and includes several additional
features not identified by Stiles that we use to fur-
ther characterise utterances. These additional fea-
tures include:

• Utterance Length: The number of words in
the utterance.

• First Word: The first word in each utter-
ance, represented as a series of independent
boolean features (one for each unique first
word present in the corpus).

• Last Token: The last token in each utterance
– either the final punctuation (if present) or
the final word in the utterance. As for the
First Word features, these are represented as
a series of independent boolean features.

• Bigrams: Bigrams extracted from each ut-
terance, with a variable threshold for includ-
ing only frequent bigrams (above a specified
threshold) in the final feature set.

VRM Category Form Criteria

Disclosure Declarative; 1st person
singular or plural where
other is not a referent.

Edification Declarative; 3rd person.
Advisement Imperative or 2nd per-

son with verb of permis-
sion, prohibition or obli-
gation.

Confirmation 1st person plural where
referent includes the
other (i.e., “we” refers to
both speaker and other).

Question Interrogative, with
inverted subject-verb
order or interrogative
words.

Acknowledgement Non-lexical or content-
less utterances; terms of
address or salutation.

Interpretation 2nd person; verb implies
an attribute or ability of
the other; terms of eval-
uation.

Reflection 2nd person; verb im-
plies internal experience
or volitional action.

Table 4: VRM form criteria from (Stiles, 1992)

The intuition for including the utterance length as
a feature is that different VRMs are often associ-
ated with longer or shorter utterances - e.g., Ac-
knowledgement utterances are often short, while
Edifications are often longer.

To compute our utterance features, we made use
of the Connexor Functional Dependency Gram-
mar (FDG) parser (Tapanainen and Jarvinen,
1997) for grammatical analysis and to extract syn-
tactic dependency information for the words in
each utterance. We also used the morphological
tags assigned by Connexor. This information was
used to calculate utterance features as follows:

• Functional Dependencies: Dependency
functions were used to identify main subjects
and main verbs within utterances, as required
for features including the 1st/2nd/3rd person
subject, inverted subject-verb order and im-
perative verbs.

• Syntactic Functions: Syntactic function in-
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formation was determined using the Con-
nexor parser. This information was used to
identify the main utterance subject where de-
pendency information was not available.

• Morphology: Morphological tags, also gen-
erated by Connexor, were used to distinguish
between first and third person pronouns, as
well as between singular and plural forms of
first person pronouns. Additionally, we used
morphological tags from Connexor to iden-
tify imperative verbs.

• Hand-constructed word lists: Several of the
features used relate to closed sets of com-
mon lexical items (e.g., verbs of permission,
interrogative words, variations of “yes” and
“no”). For these features, we employ hand-
constructed simple lists, using online thesauri
to expand our lists from an initial set of seed
words. While some of the lists are not ex-
haustive, they seem to help our results and
involved only a small amount of effort; none
took more than an hour to construct.

Feature Likely VRM

1st person singular subject D,Q
1st person plural singular
subject

D,C

3rd person subject E,Q
2nd person subject A,Q,I,R
Inverted subject-verb order Q
Imperative verb A
Verbs of permission, prohi-
bition, obligation

A

Interrogative words Q
Non-lexical content K
Yes/No variants K
Terms of evaluation I
Utterance length all
First word all
Last token all
Bi-grams all

Table 5: Features used in VRM Classifier

6 Results

Our classification results using several different
learning algorithms and variations in feature sets
are summarised in Table 6. We experimented
with using only the linguistic features suggested

by Stiles, using only the additional features we
identified, and using a combination of all features
shown in Table 5. All our results were validated
using stratified 10-fold cross validation.

We used supervised learning methods imple-
mented in Weka (Witten and Frank, 2005) to train
our classifier. Through experimentation, we found
that Weka’s Support Vector Machine implemen-
tation (SMO) provided the best classification per-
formance. Encouragingly, other relatively simple
approaches, such as a Bayesian Network classifier
using the K2 hill-climbing search algorithm, also
performed reasonably well.

The baseline against which we compare our
classifier’s performance is a OneR (one rule) clas-
sifier using an identical feature set. This baseline
system is a one-level decision tree, (i.e., based on
a set of rules that test only the single most discrim-
inative feature). As shown in Table 6, the accuracy
of this baseline varies from 42.76% to 49.27%, de-
pending on the exact features used. Regardless of
features or algorithms, our classifier performs sig-
nificantly better than the baseline system.

Mean
Algorithm Feature Set Accuracy Abs

Error

SVM All 79.75% 0.19
SVM Only Stiles’ 60.82% 0.20
SVM No Stiles’ 74.49% 0.19

Bayes Net All 78.51% 0.06
Bayes Net Only Stiles’ 60.16% 0.12
Bayes Net No Stiles’ 75.68% 0.07

Baseline All 49.27% 0.36
Baseline Only Stiles’ 49.27% 0.36
Baseline No Stiles’ 42.76% 0.38

Table 6: VRM classifier results

Another tunable parameter was the level of
pruning of n-grams from our feature set according
to their frequency of occurrence. Heuristically, we
determined that a cut-off of 5 (i.e., only n-grams
that occur five or more times in our corpus of utter-
ances were included as features) gave us the high-
est accuracy for the learning algorithms tested.

7 Discussion

This work appears to be the first attempt to au-
tomatically classify utterances according to their
literal meaning with VRM categories. There are
thus no direct comparisons to be easily drawn for
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our results. In classifying only the literal meaning
of utterances, we have focused on a simpler task
than classifying in-context meaning of utterances
which some systems attempt.

Our results do, however, compare favourably
with previous dialogue act classification work, and
clearly validate our hypothesis that VRM annota-
tion can be learned. Previous dialogue act clas-
sification results include Webb et al. (2005) who
reported peak accuracy of around 71% with a vari-
ety of n-gram, word position and utterance length
information on the SWITCHBOARD corpus us-
ing the 42-act DAMSL-SWBD taxonomy. Earlier
work by Stolcke et al. (2000) obtained similar re-
sults using a more sophisticated combination of
hidden markov models and n-gram language mod-
els with the same taxonomy on the same corpus.
Reithinger and Klesen (1997) report a tagging ac-
curacy of 74.7% for a set of 18 dialogue acts over
the much larger VERBMOBIL corpus (more than
223,000 utterances, compared with only 1368 ut-
terances in our own corpus).

VRM Instances Precision Recall
D 395 0.905 0.848
E 391 0.808 0.872
A 73 0.701 0.644
C 21 0.533 0.762
Q 218 0.839 0.885
K 97 0.740 0.763
I 64 0.537 0.453
R 109 0.589 0.514

Table 7: Precision and recall for each VRM

In performing an error analysis of our results,
we see that classification accuracy for Interpre-
tations and Reflections is lower than for other
classes, as shown in Table 7. In particular, our con-
fusion matrix shows a substantial number of trans-
posed classifications between these two VRMs.
Interestingly, Stiles makes note that these two
VRMs are very similar, differing only on one prin-
ciple (frame of reference), and that they are often
difficult to distinguish in practice. Additionally,
some Reflections repeat all or part of the other’s
utterance, or finish the other’s previous sentence.
It is impossible for our current classifier to detect
such phenomena, since it looks at utterances in
isolation, not in the context of a larger discourse.
We plan to address this in future work.

Our results also provide support for using both

linguistic and statistical features in classifying
VRMs. In the cases where our feature set con-
sists of only the linguistic features identified by
Stiles, our results are substantially worse. Sim-
ilarly, when only n-gram, word position and ut-
terance length features are used, classifier perfor-
mance also suffers. Table 6 shows that our best
results are obtained when both types of features
are included.

Finally, another clear trend in the performance
of our classifier is that the VRMs for which we
have more utterance data are classified substan-
tially more accurately.

8 Conclusion

Supporting the hypothesis posed, our results sug-
gest that classifying utterances using Verbal Re-
sponse Modes is a plausible approach to com-
putationally identifying literal meaning. This is
a promising result that supports our intention to
apply VRM classification as part of our longer-
term aim to construct an application that exploits
speech act connections across email messages.

While difficult to compare directly, our classifi-
cation accuracy of 79.75% is clearly competitive
with previous speech and dialogue act classifica-
tion work. This is particularly encouraging con-
sidering that utterances are currently being clas-
sified in isolation, without any regard for the dis-
course context in which they occur.

In future work we plan to apply our classifier to
email, exploiting features of email messages such
as header information in the process. We also plan
to incorporate discourse context features into our
classification and to explore the classification of
pragmatic utterance meanings.
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Abstract

The current situation for Word Sense Dis-
ambiguation (WSD) is somewhat stuck
due to lack of training data. We present
in this paper a novel disambiguation al-
gorithm that improves previous systems
based on acquisition of examples by incor-
porating local context information. With
a basic configuration, our method is able
to obtain state-of-the-art performance. We
complemented this work by evaluating
other well-known methods in the same
dataset, and analysing the comparative re-
sults per word. We observed that each
algorithm performed better for different
types of words, and each of them failed for
some particular words. We proposed then
a simple unsupervised voting scheme that
improved significantly over single sys-
tems, achieving the best unsupervised per-
formance on both the Senseval 2 and Sen-
seval 3 lexical sample datasets.

1 Introduction

Word Sense Disambiguation (WSD) is an interme-
diate task that potentially can benefit many other
NLP systems, from machine translation to index-
ing of biomedical texts. The goal of WSD is to
ground the meaning of words in certain contexts
into concepts as defined in some dictionary or lex-
ical repository.

Since 1998, the Senseval challenges have been
serving as showcases for the state-of-the-art WSD
systems. In each competition, Senseval has been
growing in participants, labelling tasks, and tar-
get languages. The most recent Senseval work-
shop (Mihalcea et al., 2004) has again shown

clear superiority in performance of supervised sys-
tems, which rely on hand-tagged data, over other
kinds of techniques (knowledge-based and un-
supervised). However, supervised systems use
large amounts of accurately sense-annotated data
to yield good results, and such resources are very
costly to produce and adapt for specific domains.
This is the so-called knowledge acquisition bottle-
neck, and it has to be tackled in order to produce
technology that can be integrated in real applica-
tions. The challenge is to make systems that dis-
ambiguate all the words in the context, as opposed
to techniques that work for a handful of words.

As shown in the all-words tasks in Senseval-
3 (B. Snyder and M. Palmer, 2004), the current
WSD techniques are only able to exceed the most
frequent sense baseline by a small margin. We be-
lieve the main reason for that is the lack of large
amounts of training material for English words
(not to mention words in other languages). Un-
fortunately developing such resources is difficult
and sometimes not feasible, which has been mo-
tivating us to explore unsupervised techniques to
open up the knowledge acquisition bottleneck in
WSD.

The unsupervised systems that we will apply on
this paper require raw corpora and a thesaurus with
relations between word senses and words. Al-
though these resources are not available for all lan-
guages, there is a growing number of WordNets in
different languages that can be used1. Other ap-
proach would be to apply methods based on dis-
tributional similarity to build a thesaurus automat-
ically from raw corpora (Lin, 1998). The relations
can then be applied in our algorithm. In this paper
we have focused on the results we can obtain for

1http://www.globalwordnet.org/gwa/wordnettable.htm
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English, relying on WordNet as thesaurus (Fell-
baum, 1998).

A well known approach for unsupervised WSD
consists of the automatic acquisition of training
data by means of monosemous relatives (Leacock
et al., 1998). This technique roughly follows these
steps: (i) select a set of monosemous words that
are related to the different senses of the target
word, (ii) query the Internet to obtain examples
for each relative, (iii) create a collection of training
examples for each sense, and (iv) use an ML algo-
rithm trained on the acquired collections to tag the
test instances. This method has been used to boot-
strap large sense-tagged corpora (Mihalcea, 2002;
Agirre and Martinez, 2004).

Two important shortcomings of this method are
the lack of monosemous relatives for some senses
of the target words, and the noise introduced by
some distant relatives. In this paper we directly ad-
dress those problems by developing a new method
that makes use of polysemous relatives and relies
on the context of the target word to reduce the
presence of noisy examples.

The remaining of the paper is organised as fol-
lows. In Section 2 we describe related work in
this area. Section 3 briefly introduces the monose-
mous relatives algorithm, and our novel method
is explained in Section 4. Section 5 presents our
experimental setting, and in Section 6 we report
the performance of our technique and the improve-
ment over the monosemous relatives method. Sec-
tion 7 is devoted to compare our system to other
unsupervised techniques and analyse the prospects
for system combination. Finally, we conclude and
discuss future work in Section 8.

2 Related Work

The construction of unsupervised WSD systems
applicable to all words in context has been the goal
of many research initiatives, as can be seen in spe-
cial journals and devoted books - see for instance
(Agirre and Edmonds, 2006) for a recent book. We
will now describe different trends that are being
explored.

Some recent techniques seek to alleviate the
knowledge acquisition bottleneck by combining
training data from different words. Kohomban and
Lee (2005) build semantic classifiers by merging
data from words in the same semantic class. Once
the class is selected, simple heuristics are applied
to obtain the fine-grained sense. The classifier fol-

lows memory-based learning, and the examples
are weighted according to their semantic similarity
to the target word. Niu et al. (2005) use all-words
training data to build a word-independent model
to compute the similarity between two contexts.
A maximum entropy algorithm is trained with the
all-words corpus, and the model is used for clus-
tering the instances of a given target word. One
of the problems of clustering algorithms for WSD
is evaluation, and in this case they map the clus-
ters to Senseval-3 lexical-sample data by looking
at 10% of the examples in training data. One of
the drawbacks of these systems is that they still
require hand-tagged data.

Parallel corpora have also been widely used
to avoid the need of hand-tagged data. Re-
cently Chan and Ng (2005) built a classifier from
English-Chinese parallel corpora. They grouped
senses that share the same Chinese translation, and
then the occurrences of the word on the English
side of the parallel corpora were considered to
have been disambiguated and “sense tagged” by
the appropriate Chinese translations. The system
was successfully evaluated in the all-words task
of Senseval-2. However, parallel corpora is an
expensive resource to obtain for all target words.
A related approach is to use monolingual corpora
in a second language and use bilingual dictionar-
ies to translate the training data (Wang and Car-
roll, 2005). Instead of using bilingual dictionaries,
Wang and Martinez (2006) tried to apply machine
translation on translating text snippets in foreign
languages back into English and achieved good re-
sults on English WSD.

Regarding portability, methods to automatically
rank the senses of a word given a raw corpus, such
as (McCarthy et al., 2004), have shown good flex-
ibility to adapt to different domains, which is a de-
sirable feature of all-words systems. We will com-
pare the performance of the latter two systems and
our approach in Section 7.

3 Monosemous Relatives method

The “monosemous relatives” approach is a tech-
nique to acquire training examples automatically
and then feed them to a Machine Learning (ML)
method. This algorithm is based on (Leacock et
al., 1998), and follows these steps: (i) select a
set of monosemous words that are related to the
different senses of the target word, (ii) query the
Internet to obtain examples for each relative, (iii)
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create a collection of training examples for each
sense, and (iv) use an ML algorithm trained on the
acquired collections to tag the test instances. This
method has been applied in different works (Mi-
halcea, 2002; Agirre and Martinez, 2004). We de-
scribe here the approach by Agirre and Martinez
(2004), which we will apply to the same datasets
as the novel method described in Section 4.

In this implementation, the monosemous rela-
tives are obtained using WordNet, and different
relevance weights are assigned to these words de-
pending on the distance to the target word (syn-
onyms are the closest, followed by immediate hy-
pernyms and hyponyms). These weights are used
to determine an order of preference to construct
the training corpus from the queries, and 1,000 ex-
amples are then retrieved for each query. As ex-
plained in (Agirre and Martinez, 2004), the num-
ber of examples taken for each sense has a big
impact in the performance, and information on
the expected distribution of senses influences the
results. They obtain this information using dif-
ferent means, such as hand-tagged data distribu-
tion (from Semcor), or a prior algorithm like (Mc-
Carthy et al., 2004). In this paper we present the
results of the basic approach that uses all the re-
trieved examples per sense, which is the best stan-
dalone unsupervised alternative.

The ML technique Agirre and Martinez (2004)
applied is Decision Lists (Yarowsky, 1994). In this
method, the sensesk with the highest weighted
feature fi is selected, according to its log-
likelihood (see Formula 1). For this implemen-
tation, they used a simple smoothing method: the
cases where the denominator is zero are smoothed
by the constant 0.1.

weight(sk , fi) = log(
Pr(sk|fi)

∑
j 6=k Pr(sj|fi)

) (1)

The feature set consisted of local colloca-
tions (bigrams and trigrams), bag-of-words fea-
tures (unigrams and salient bigrams), and do-
main features from the WordNet Domains re-
source (Magnini and Cavagliá, 2000). The Deci-
sion List algorithm showed good comparative per-
formance with the monosemous relatives method,
and it had the advantage of allowing hands-on
analysis of the different features.

4 Relatives in Context

The goal of this new approach is to use the Word-
Net relatives and the contexts of the target words
to overcome some of the limitations found in the
“monosemous relatives” technique. One of the
main problems is the lack of close monosemous
relatives for some senses of the target word. This
forces the system to rely on distant relatives whose
meaning is far from the intended one. Another
problem is that by querying only with the relative
word we do not put any restrictions on the sen-
tences we retrieve. Even if we are using words
that are listed as monosemous in WordNet, we can
find different usages of them in a big corpus such
as Internet (e.g. Named Entities, see example be-
low). Including real contexts of the target word in
the queries could alleviate the problem.

For instance, let us assume that we want to clas-
sify church with one of the 3 senses it has in
Senseval-2: (1) Group of Christians, (2) Church
building, or (3) Church service. When querying
the Internet directly with monosemous relatives of
these senses, we find the following problems:

• Metaphors: the relativecathedral(2nd sense)
appears in very different collocations that are
not related to any sense ofchurch, e.g. the
cathedral of football.

• Named entities: the relativekirk (2nd sense),
which is a name for a Scottish church, will
retrieve sentences that use Kirk as a proper
noun.

• Frequent words as relatives: relatives likehe-
braism (1st sense) could provide useful ex-
amples, but if the query is not restricted can
also be the source of many noisy examples.

The idea behind the “relatives in context”
method is to combine local contexts of the target
word with the pool of relatives in order to obtain
a better set of examples per sense. Using this ap-
proach, we only gather those examples that have a
close similarity with the target contexts, defined by
a set of pre-defined features. We will illustrate this
with the following example from the Senseval-2
dataset, where the goal is to disambiguate the word
church:

The church was rebuilt in the 13th
century and further modifications and
restoration were carried out in the 15th
century.
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We can extract different features from this con-
text, for instance using a dependency parser. We
can obtain that there is a object-verb relation be-
tween church and rebuild. Then we can incor-
porate this knowledge to the relative-based query
and obtain training examples that are closer to our
target sentence. In order to implement this ap-
proach with rich features we require tools that al-
low for linguistic queries, such as the linguist’s en-
gine (Resnik and Elkiss, 2005), but other approach
would be to use simple features, such as strings of
words, in order to benefit directly from the exam-
ples coming from search engines in the Internet.
In this paper we decided to explore the latter tech-
nique to observe the performance we can achieve
with simple features. Thus, in the example above,
we query the Internet with snippets such as “The
cathedralwas rebuilt” to retrieve training exam-
ples. We will go back to the example at the end of
this section.

With this method we can obtain a separate train-
ing set starting from each test instance and the pool
of relatives for each sense. Then, a ML algorithm
can be trained with the acquired examples. Al-
ternatively, we can just rank the different queries
according to the following factors:

• Length of the query: the longer the match,
the more similar the new sentence will be to
the target.

• Distance of the relative to the target word: ex-
amples that are obtained with synonyms will
normally be closer to the original meaning.

• Number of hits: the more common the snip-
pet we query, the more reliable.

We observed a similar performance in prelim-
inary experiments when using a ML method or
applying an heuristic on the above factors. For
this paper we devised a simple algorithm to rank
queries according to the three factors, but we plan
to apply other techniques in the acquired training
data in the future.

Thus, we build a disambiguation algorithm that
can be explained in the following four steps:

1. Obtain pool of relatives: for each sense
of the target word we gather its synonyms, hy-
ponyms, and hypernyms. We also take polyse-
mous nouns, as we expect that in similar local con-
texts the relative will keep its related meaning.

2. Construct queries: first we tokenise each tar-
get sentence, then we apply sliding windows of
different sizes (up to 6 tokens) that include the tar-
get word. For each window and each relative in the
pool, we substitute the target word for the relative
and query the Internet. Then we store the number
of hits for each query. The algorithm stops aug-
menting the window for the relative when one of
its substrings returns zero hits.

3. Ranking of queries: we devised a simple
heuristic to rank the queries according to our in-
tuition on the relevant parameters. We chose these
three factors (in decreasing order of relevance):

• Number of tokens of the query.

• Type of relative: preference order: (1) syn-
onyms, (2) immediate hyponyms, (3) imme-
diate hypernyms, and (4) distant relatives.

• Number of hits: we choose the query with
most hits. For normalisation we divide by the
number of hits of the relative alone, which
penalises frequent and polysemous relatives.

We plan to improve this ranking approach in the
future, by learning the best parameter set on a de-
velopment corpus. We also would like to gather a
training corpus from the returned documents and
apply a ML classifier.

4. Assign the sense of the highest ranked query:
another alternative that we will explore in the fu-
ture is to vote among the k highest ranked queries.

We will show how the algorithm works with
the example for the target wordchurchpresented
above. Using the relatives (synonyms, hypernyms,
and hyponyms) of each sense and the local con-
text we query the Internet. The list of the longest
matches that have at least 2 hits is given in Table 1.
In this case the second sense would be chosen be-
cause the wordsnave, abbey, andcathedral indi-
cate this sense. In cases where the longest match
corresponds to more than one sense the closest rel-
ative is chosen; if there is still a tie the number of
hits (divided by the number of hits of the relative
for normalisation) is used.

5 Experimental setting

For our experiments we relied on the lexical-
sample datasets of both Senseval-2 (Kilgarriff,
2001) and Senseval-3 (Mihalcea et al., 2004). We
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Query Sense
Thenavewas rebuilt in the 13th century 2
Theabbeywas rebuilt in the 13th century 2
Thecathedralwas rebuilt in the 13th century 2
TheCatholic Churchwas rebuilt in 1
TheChristian churchwas rebuilt 1
Thechurch servicewas 3
Thereligious servicewas 3

Table 1: Longest matches for relative words of
church in the Senseval-2 example “The church
was rebuilt in the 13th century and further mod-
ifications and restoration were carried out in the
15th century.”.

will refer to these sets as S2LS and S3LS re-
spectively. This approach will give us the chance
to measure the performance on different sets of
words, and compare our results to the state of the
art. We will focus on nouns in this work, in order
to better study the specific problems to be anal-
ysed in the error analysis. The test sets consist
on 29 nouns in S2LS, and 20 nouns in S3LS. The
sense inventory in S2LS corresponds to WordNet
1.7 (pre-release), while for S3LS the senses belong
to WordNet 1.7.1.

Our main goal is to build all-words WSD sys-
tems, and this preliminary test on lexical-sample
datasets will give us a better idea of the perfor-
mance we can expect. The same algorithms can be
used for extending the evaluation to all the words
in context by considering each target word sepa-
rately. We plan to carry out this evaluation in the
near future.

Regarding evaluation, we used the scoring soft-
ware provided by the Senseval organisation to
measure the precision and recall of the systems.
Precision refers to the ratio of correct answers to
the total number of answers given by the system,
and recall indicates the ratio of correct answers to
the total number of instances. All our algorithms
have full coverage (that is, they always provide an
answer), and therefore precision equals recall. In
some cases we may present the results per sense,
and then the precision will refer to the ratio of cor-
rect answers to the number of answers given to the
sense; recall will be the ratio of correct answers to
the number of test instances linked to the sense.

6 Results

The results of applying the “monosemous rela-
tives” (MR) and the “relatives in context” (RC) al-
gorithm are shown in Table 2. The micro-averaged

S2LS S3LS
Word MR RC Word MR RC
art 61.1 40.3 argument 24.7 38.7
authority 22.0 45.1 arm 10.2 27.1
bar 52.1 16.9 atmosphere 31.3 24.7
bum 18.8 72.5 audience 51.8 34.0
chair 62.9 54.8 bank 32.3 60.6
channel 28.7 27.9 degree 39.3 43.8
child 1.6 46.8 difference 26.4 23.7
church 62.1 58.1 difficulty 13.0 43.5
circuit 52.8 47.2 disc 52.2 45.0
day 2.2 36.7 image 4.1 23.0
detention 16.7 62.5 interest 26.8 23.1
dyke 89.3 85.7 judgment 20.6 25.0
facility 26.8 50.0 organization 71.4 69.6
fatigue 73.8 67.5 paper 25.6 42.7
feeling 51.0 49.0 party 67.5 67.2
grip 8.0 26.0 performance 20.5 33.3
hearth 37.5 40.6 plan 78.0 76.2
holiday 7.4 74.1 shelter 36.2 44.9
lady 79.3 8.7 sort 13.5 65.6
material 50.8 50.8 source 22.4 53.1
mouth 41.2 43.9
nation 80.6 36.1
nature 44.4 26.7
post 47.4 36.2
restraint 9.1 22.7
sense 18.6 48.8
spade 66.1 32.3
stress 52.6 21.1
yew 85.2 55.6
Avg S2 39.9 41.5 Avg S3 34.2 43.2
Avg S2-S3 36.8 42.4

Table 2: Recall of the “Monosemous Relatives”
method (MR) and the “Relatives in Context” (RC)
technique in the two Senseval datasets. Best re-
sults per word in bold.

results show that the new method clearly outper-
forms the monosemous relatives in this dataset.
However, we can also notice that this improve-
ment does not happen for all the words in the
set. One of the problems of unsupervised sys-
tems is that they are not able to perform robustly
for all words, as supervised can do because of the
valuable information contained in the hand-tagged
corpora. Thus, we normally see different perfor-
mances depending on the type of words in the tar-
get set, which suggest that the best way to raise
unsupervised performance is the combination of
algorithms, as we will see in Section 7.

Even if an all-words approach gives a better
idea of the performance of different techniques,
the Senseval lexical-sample dataset tries to include
words with different degrees of polysemy and fre-
quency in order to provide a balanced evalua-
tion. We also show in Section 7 the performance
of other techniques previously described in Sec-
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S. Definition
1 beginning, origin, root, rootage - the place where

something begins
2 informant - a person who supplies information
3 reference - a publication (or a passage from

a publication) that is referred to
4 document (or organization) from which information

is obtained
5 facility where something is available
6 seed, germ - anything that provides inspiration for

later work
7 generator, author - someone who originates

or causes or initiates something

Table 3: Sense inventory forsourcein WordNet
1.7.1.

tion 2.

Sometimes it is worth to “eyeball” the real ex-
amples in order to get insight on the algorithms.
For that, we chose the wordsourcein the S3LS
dataset, which clearly improves its performance
with the new method. This word has 7 senses
in WordNet 1.7.1, shown in Table 3. The Sen-
seval grouping provided by the organisation joins
senses 3 and 4, leaving each of the others as sep-
arate groups. The coarse inventory of senses has
been seen as an alternative to fine-grained WSD
(Ciaramita and Altun, 2006).

For this word, we see that the “monosemous rel-
atives” approach achieves a low recall of 22.4%.
Analysing the results per sense, we observed that
the precision is good for sense 1 (90%), but the re-
call is as low as 4.7%, which indicates that the al-
gorithm misses many of the instances. The drop in
performance seems due to the following reasons:
(i) close monosemous relatives found for sense 1
are rare (direct hyponyms such as “headspring”
or “provenance” are used), and (ii) far and highly
productive relatives are used for senses 2 and 7,
which introduce noise (e.g. the related multiword
“new edition” for sense 7). In the case of the “rela-
tives in context” algorithm, even if we have a sim-
ilar set of relatives per each sense, the local con-
text seems to help disambiguate better, achieving a
higher recall of 53.1%. In this case the first sense,
which is the most frequent in the test set (with 65%
of the instances), is better represented and this al-
lows for improved recall.

Following with the target wordsource, we
picked a real example from the test set to see the
behaviour of the algorithms. This sentence was
hand-tagged with sense 1, and we show here a
fragment containing the target word:

...tax will have been deducted atsource,
and this will enable you to sign a Cer-
tificate of Deduction...

The monosemous relatives method is not able to
find good collocations in the noisy training data,
and it has to rely in bag-of-word features to make
its decision. These are not usually as precise as
local collocations, and in the example they point to
senses 1, 2, and 4. The scorer gives only 1/3 credit
to the algorithm in this case. Notice that one of the
advantages of using Decision Lists is that it allows
us to have a closer look to the features that are
applied in each decision. Regarding the “relatives
in context” method, in this example it is able to
find the correct sense relying in collocations such
asdeducted at originanddeducted at beginning.

7 Comparison with other systems

In this section we compared our results with some
of the state-of-the-art systems described in Sec-
tion 2 for this dataset. We chose the Automatic
Ranking of Senses by (McCarthy et al., 2004),
and the Machine Translation approach by (Wang
and Martinez, 2006). These unsupervised sys-
tems were selected for a number of reasons: they
have been tested in Senseval data with good per-
formance, the techniques are based on different
knowledge sources, and the results on Senseval
data were available to us. We also devised a simple
unsupervised heuristic that would always choose
the sense that had a higher number of close rel-
atives in WordNet, picking randomly when there
was a tie. We tested this approach in previous
work (Wang and Martinez, 2006) and it showed
to work well for discarding rare senses. We ap-
plied it here as a standalone system. We do not
include the results of supervised systems because
they can benefit strongly from ready-made hand-
tagged data, which is not normally available in a
real setting.

The performance of the three systems, together
with the previous two, is given in Table 4. We
can see that overall the Automatic ranking ap-
proach (RK) gives the best performance, with al-
most the same score as our Relatives in Context
(RC) approach. The Machine Translation (MT)
method performs 2 points lower overall, but its re-
call is balanced in the two different datasets. Sur-
prisingly, the simple Number of Relatives (NR)
heuristic does better than the Monosemous Rela-
tives (MR), performing specially well in the S3LS
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Algorithm Avg S2LS Avg S3LS Avg S2LS-S3LS
RK 39.0 45.5 42.5
MT 40.8 40.7 40.7
NR 33.6 43.0 38.7
RC 41.5 43.2 42.4
MR 39.9 34.2 36.8

Table 4: Recall of different algorithms on Sense-
val datasets. Best results per column in bold. RK:
Automatic Ranking of Senses, MT: Translation-
based, NR: Number of Relatives heuristic, RC:
Relatives in Context, MR: Monosemous Relatives.

dataset.

We can now analyse the performance of the five
systems per word. The results are given in Ta-
ble 5. We can see that the choice of the target
word heavily affects the results of the algorithms,
with most of them having very low results for a
handful of words, with recall below 20% and even
10%. These very low results make a difference
when compared to supervised systems, which do
degrade gracefully. None of the algorithms is ro-
bust enough to achieve an acceptable performance
for all words.

Measuring the agreement of the different al-
gorithms is a way to know if a combined sys-
tem would improve the results. We calculated
the kappa statistic, which has been widely used in
NLP tasks (Carletta, 1996), to measure the agree-
ment on the answers of the algorithms in S2LS
and S3LS (cf. Table 6). The table shows the
averaged results per word of the S2LS dataset in
the upper-right side, and the S3LS values in the
bottom-left side. We can see that all the results are
closer to 0 than 1, indicating that they tend to dis-
agree, and suggesting that the systems offer good
prospects for combination. The highest agreement
is attained between methods RK and NR in both
datasets, and the lowest between RC and MT.

In order to study the potential for combination,
we tried the simplest method, that of one system
one vote, where each system returns a single vote
for the winning sense, and the sense getting most
votes wins. In case of ties, all the senses get-
ting the same number of votes are returned. Note
that the Senseval scorer penalises systems return-
ing multiple senses (unless all of them are correct).

The results of the ensemble and also of leaving
one system out in turn are given in Table 7. The
table shows that the best combination (in bold) for
each of the datasets varies, which is natural given

Algorithms
Words

MR RC MT RK NR
art 61.1 40.3 47.2 61.1 61.1
authority 22.0 45.1 17.6 37.4 37.4
bar 52.1 16.9 44.1 14.4 14.4
bum 18.8 72.5 80.0 85.0 7.5
chair 62.9 54.8 85.5 88.7 88.7
channel 28.7 27.9 47.1 10.3 2.9
child 1.6 46.8 35.5 43.5 56.5
church 62.1 58.1 32.3 40.3 40.3
circuit 52.8 47.2 54.7 43.4 43.4
day 2.2 36.7 32.4 1.4 4.3
detention 16.7 62.5 79.2 87.5 12.5
dyke 89.3 85.7 67.9 89.3 89.3
facility 26.8 50.0 17.9 26.8 26.8
fatigue 73.8 67.5 67.5 82.5 82.5
feeling 51.0 49.0 16.3 59.2 59.2
grip 8.0 26.0 14.0 16.0 8.0
hearth 37.5 40.6 56.2 75.0 75.0
holiday 7.4 74.1 11.1 7.4 96.3
lady 79.3 8.7 45.7 10.9 10.9
material 50.8 50.8 19.5 15.3 15.3
mouth 41.2 43.9 41.2 56.1 56.1
nation 80.6 36.1 37.5 80.6 19.4
nature 44.4 26.7 22.2 17.8 21.1
post 47.4 36.2 37.9 43.1 43.1
restraint 9.1 22.7 13.6 18.2 9.1
sense 18.6 48.8 37.2 11.6 11.6
spade 66.1 32.3 67.7 67.7 3.2
stress 52.6 21.1 55.3 50.0 2.6
yew 85.2 55.6 85.2 81.5 81.5
argument 24.7 38.7 45.9 51.4 21.6
arm 10.2 27.1 71.4 82.0 44.0
atmosphere 31.3 24.7 45.7 66.7 66.7
audience 51.8 34.0 57.0 67.0 67.0
bank 32.3 60.6 37.1 67.4 67.4
degree 39.3 43.8 41.4 22.7 16.4
difference 26.4 23.7 32.5 40.4 16.7
difficulty 13.0 43.5 26.1 34.8 34.8
disc 52.2 45.0 58.0 27.0 27.0
image 4.1 23.0 21.6 36.5 36.5
interest 26.8 23.1 31.2 41.9 11.8
judgment 20.6 25.0 40.6 28.1 28.1
organization 71.4 69.6 19.6 73.2 73.2
paper 25.6 42.7 30.8 23.1 25.6
party 67.5 67.2 52.6 6.9 62.1
performance 20.5 33.3 46.0 24.1 26.4
plan 78.0 76.2 29.8 82.1 82.1
shelter 36.2 44.9 39.8 33.7 44.9
sort 13.5 65.6 20.8 65.6 65.6
source 22.4 53.1 9.4 0.0 65.6
Wins 11 12 8 22 18
Average 36.8 42.4 40.7 42.5 38.7

Table 5: Recall of the 5 algorithms per word and
in average, the best results per word are given in
bold. The top rows show the S2LS words, and the
bottom rows the S3LS words.

the variance of each of the single systems, and that
the combination of all 5 systems attains very good
performance on both datasets.

In the lower lines, Table 7 shows a number of
reference systems: the best unsupervised system
that took part in each of the S2LS and S3LS com-
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Algorithm MR RC MT RK NR
MR - 0.23 0.28 0.41 0.43
RC 0.13 - 0.13 0.31 0.30
MT 0.11 0.09 - 0.23 0.35
RK 0.33 0.25 0.26 - 0.45
NR 0.23 0.15 0.28 0.36 -

Table 6: Averaged kappa agreement between pairs
of algorithms. Results on the S2LS dataset are
given in the upper-right side, and the S3LS values
in the bottom-left side.

System S2LS S3LS
All 42.3 51.0
Leave MR out 41.7 52.1
Leave RC out 40.3 48.3
Leave MT out 40.0 47.5
Leave RK out 44.5 46.7
Leave NR out 45.9 49.9
Best Senseval unsup 35.8 47.5
Best single system 41.5 45.5
Oracle 80.4 84.3

Table 7: Voting systems, best unsupervised sys-
tems, best single systems, and oracle on S2LS and
S3LS.

petitions, and the best single system in each of the
datasets2. The combination of the 5 systems is
able to beat all of them in both datasets, showing
that the simple voting system was effective to im-
prove the single systems and attain the best totally
unsupervised system in this dataset. We can also
see that the novel technique described in this paper
(RC) contributes to improve the ensemble in both
datasets. This does not happen for the monose-
mous relatives approach, which degrades perfor-
mance in S3LS.

As an upperbound, we also include the oracle
combination in Table 7, which determines that an
instance has been correctly tagged if any of the al-
gorithms has got it right. This oracle shows that
the union of the 5 systems cover 80.4% and 84.3%
of the correct solutions for each of the datasets,
and that there is ample room for more sophisti-
cated combination strategies.

8 Conclusions and Future work

The current situation for WSD is somewhat stuck
due to lack of training data. We present in this
paper a novel disambiguation algorithm that im-
proves previous systems based on the acquisition

2For nouns the best scores of the competing sys-
tems were obtained by dictionary-based systems in both
S2LS (Litkowski, 2001), and S3LS (Pedersen, 2004).

of examples by incorporating local context infor-
mation. With a basic configuration, our method is
able to obtain state-of-the-art performance.

We complemented this work by evaluating other
well-known methods in the same dataset, and
analysing the comparative results per word. We
observed that each algorithm performed better for
different types of words, and each of them failed
for some particular words. We then proposed a
simple unsupervised voting scheme that improved
significantly over single systems, achieving the
best performance on both the Senseval 2 and Sen-
seval 3 lexical sample datasets.

We have also shown that there is ample room
for improvement, as the oracle combination sets
an upperbound of around 80% for a perfect com-
bination. This work naturally leads to explore
more sophisticated combination strategies, using
meta-learning to try to understand which features
of each word make a certain WSD system suc-
ceed (or fail). We would also like to widen the
range of systems, either using existing unsuper-
vised off-the-shelf WSD systems and/or reimple-
menting them.

Regarding the “Relatives in Context” method,
there are different avenues to explore. We plan
to use this approach to acquire automatic sense
tagged data for training, instead of relying on
rules. We also would like to study the use of richer
features than the local strings to acquire examples
that have similar linguistic structures.

Finally, we want to test the new technique on an
all-words corpus. A simple approach would be to
process each instance of each word separately as
in the lexical sample. However, we could also try
to disambiguate all words in the context together,
by substituting the target words with their relatives
jointly. We are comparing our unsupervised sys-
tems in the testbeds where supervised systems are
comfortable (lexical-sample tasks). We think that
unsupervised systems can have the winning hand
in more realistic settings like those posed by Sen-
seval all-words tasks.
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B. Magnini and G. Cavagliá. 2000. Integrating sub-
ject field codes into WordNet. InProceedings of
the Second International LREC Conference, Athens,
Greece.

D. McCarthy, R. Koeling, J. Weeds, and J. Carroll.
2004. Finding Predominant Word Senses in Un-
tagged Text. InProceedings of the 42nd Annual
Meeting of the Association for Computational Lin-
guistics (ACL), Barcelona, Spain.

R. Mihalcea, T. Chklovski, and Adam Killgariff. 2004.
The Senseval-3 English lexical sample task. InPro-
ceedings of the 3rd ACL workshop on the Evaluation
of Systems for the Semantic Analysis of Text (SEN-
SEVAL), Barcelona, Spain.

R. Mihalcea. 2002. Bootstrapping large sense tagged
corpora. InProceedings of the 3rd International
Conference on Languages Resources and Evalua-
tions (LREC 2002), Las Palmas, Spain.

C. Niu, W. Li, R.K. Srihari, and H. Li. 2005. Word
independent context pair classification model for
word sense disambiguation. InProceedings of the
Ninth Conference on Computational Natural Lan-
guage Learning (CoNLL-2005).

T. Pedersen. 2004. The duluth lexical sample systems
in senseval-3. InProceedings of the 3rd ACL work-
shop on the Evaluation of Systems for the Semantic
Analysis of Text (SENSEVAL), Barcelona, Spain.

P. Resnik and A. Elkiss. 2005. The linguist’s search
engine: An overview. InProceedings of ACL 2005
(Demonstration Section).

X. Wang and J. Carroll. 2005. Word sense disam-
biguation using sense examples automatically ac-
quired from a second language. InProceedings of
HLT/EMNLP, Vancouver, Canada.

X. Wang and D. Martinez. 2006. Word sense disam-
biguation using automatically translated sense ex-
amples. InProceedings of EACL 2006 Workshop on
Cross Language Knowledge Induction, Trento, Italy.

D. Yarowsky. 1994. Decision Lists for Lexical Am-
biguity Resolution: Application to Accent Restora-
tion in Spanish and French. InProceedings of the
32nd Annual Meeting of the Association for Compu-
tational Linguistics, Las Cruces, NM.

50



Proceedings of the 2006 Australasian Language Technology Workshop (ALTW2006), pages 51–58.

Named Entity Recognition for Question Answering
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Abstract

Current text-based question answering
(QA) systems usually contain a named en-
tity recogniser (NER) as a core compo-
nent. Named entity recognition has tra-
ditionally been developed as a component
for information extraction systems, and
current techniques are focused on this end
use. However, no formal assessment has
been done on the characteristics of a NER
within the task of question answering. In
this paper we present a NER that aims at
higher recall by allowing multiple entity
labels to strings. The NER is embedded in
a question answering system and the over-
all QA system performance is compared to
that of one with a traditional variation of
the NER that only allows single entity la-
bels. It is shown that the added noise pro-
duced introduced by the additional labels
is offset by the higher recall gained, there-
fore enabling the QA system to have a bet-
ter chance to find the answer.

1 Introduction

Many natural language processing applications re-
quire finding named entities (NEs) in textual doc-
uments. NEs can be, for example, person or com-
pany names, dates and times, and distances. The
task of identifying these in a text is called named
entity recognition and is performed by a named
entity recogniser (NER).

Named entity recognition is a task generally
associated with the area of information extrac-
tion (IE). Firstly defined as a separate task in
the Message Understanding Conferences (Sund-
heim, 1995), it is currently being used in a varied

range of applications beyond the generic task of
information extraction, such as in bioinformatics,
the identification of entities in molecular biology
(Humphreys et al., 2000), and text classification
(Armour et al., 2005).

In this paper we will focus on the use of named
entity recognition for question answering. For the
purposes of this paper, question answering (QA)
is the task of automatically finding the answer to a
question phrased in English by searching through
a collection of text documents. There has been an
increase of research in QA since the creation of
the question answering track of TREC (Voorhees,
1999), and nowadays we are starting to see the
introduction of question-answering techniques in
mainstream web search engines such as Google1,
Yahoo!2 and MSN3.

An important component of a QA system is the
named entity recogniser and virtually every QA
system incorporates one. The rationale of incor-
porating a NER as a module in a QA system is
that many fact-based answers to questions are en-
tities that can be detected by a NER. Therefore, by
incorporating in the QA system a NER, the task of
finding some of the answers is simplified consid-
erably.

The positive impact of NE recognition in QA
is widely acknowledged and there are studies that
confirm it (Noguera et al., 2005). In fact, vir-
tually every working QA system incorporates a
NER. However, there is no formal study of the
optimal characteristics of the NER within the con-
text of QA. The NER used in a QA system is
typically developed as a stand-alone system de-
signed independently of the QA task. Sometimes

1http://www.google.com
2http://search.yahoo.com
3http://search.msn.com
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it is even used as a black box that is not fine-tuned
to the task. In this paper we perform a step to-
wards such a formal study of the ideal character-
istics of a NER for the task of QA. In particular,
section 2 comments on the desiderata of a NER for
QA. Next, section 3 describes the QA system used
in the paper, while section 4 describes the NER
and its modifications for its use for QA. Section 5
presents the results of various experiments evalu-
ating variations of the NER, and finally Section 6
presents the concluding remarks and lines of fur-
ther research.

2 Named Entity Recognition for
Question Answering

Most QA systems gradually reduce the amount of
data they need to consider in several phases. For
example, when the system receives a user ques-
tion, it first selects a set of relevant documents,
and then filters out irrelevant pieces of text of these
documents gradually until the answer is found.

The NER is typically used as an aid to filter out
strings that do not contain the answer. Thus, after
a question analysis stage the type of the expected
answer is determined and mapped to a list of entity
types. The NER is therefore used to single out
the entity types appearing in a text fragment. If a
piece of text does not have any entity with a type
compatible with the type of the expected answer,
the text is discarded or heavily penalised. With
this in mind, the desiderata of a NER are related
with the range of entities to detect and with the
recall of the system.

2.1 Range of Entities

Different domains require different types of an-
swers. Typically, the question classification com-
ponent determines the type of question and the
type of the expected answer. For example, the
questions used in the QA track of past TREC con-
ferences can be classified following the taxonomy
shown in Table 1 (Li and Roth, 2002).

The set of entity types recognised by a stand-
alone NER is typically very different and much
more coarse-grained. For example, a typical set
of entity types recognised by a NER is the one
defined in past MUC tasks and presented in Ta-
ble 2. The table shows a two-level hierarchy and
the types are much more coarse-grained than that
of Table 1. Within each of the entity types of Ta-
ble 2 there are several types of questions of Ta-

ABBREVIATION
abb, exp
ENTITY
animal, body, color, creative, currency, dis.med., event,
food, instrument, lang, letter, other, plant, product, re-
ligion, sport, substance, symbol, technique, term, vehi-
cle, word
DESCRIPTION
definition, description, manner, reason
HUMAN
group, ind, title, description
LOCATION
city, country, mountain, other, state
NUMERIC
code, count, date, distance, money, order, other, period,
percent, speed, temp, size, weight

Table 1: Complete taxonomy of Li & Roth

Class Type
ENAMEX Organization

Person
Location

TIMEX Date
Time

NUMEX Money
Percent

Table 2: Entities used in the MUC tasks

ble 1.
A QA system typically uses both a taxonomy

of expected answers and the taxonomy of named
entities produced by its NER to identify which
named entities are relevant to a question. The
question is assigned a type from a taxonomy such
as defined in Table 1. This type is then used to fil-
ter out irrelevant named entities that have types as
defined in Table 2.

A problem that arises here is that the granular-
ity of the NEs provided by a NER is much coarser
than the ideal granularity for QA, as the named en-
tity types are matched against the types the ques-
tion requires. Consequently, even though a ques-
tion classifier could determine a very specific type
of answer, this type needs to be mapped to the
types provided by the NER.

2.2 Recall

Given that the NER is used to filter out candidate
answers, it is important that only wrong answers
are removed, while all correct answers stay in the
set of possible answers. Therefore, recall in a NER
in question answering is to be preferred above pre-
cision. Generally, a NER developed for a generic
NE recognition task (or for information extrac-
tion) is fine-tuned for a good balance between re-
call and precision, and this is not necessarily what
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we need in this context.

2.2.1 Multi-labelling
Recognising named entities is not a trivial task.

Most notably, there can be ambiguities in the de-
tection of entities. For example, it can well happen
that a text has two or more interpretations. No-
table examples are names of people whose sur-
name takes the form of a geographical location
(Europe, Africa) or a profession (Smith, Porter).
Also, names of companies are often chosen after
the name of some of their founders. The problem
is that a NER typically only assigns one label to a
specific piece of text. In order to increase recall,
and given that NE recognition is not an end task, it
is therefore theoretically advisable to allow to re-
turn multiple labels and then let further modules
of the QA system do the final filtering to detect
the exact answer. This is the hypothesis that we
want to test in the present study. The evaluations
presented in this paper include a NER that assigns
single labels and a variation of the same NER that
produces multiple, overlapping labels.

3 Question Answering

QA systems typically take a question presented by
the user posed in natural language. This is then
analysed and processed. The final result of the sys-
tem is an answer, again in natural language, to the
question of the user. This is different from, what is
normally considered, information retrieval in that
the user presents a complete question instead of
a query consisting of search keywords. Also, in-
stead of a list of relevant documents, a QA system
typically tries to find an exact answer to the ques-
tion.

3.1 AnswerFinder
The experiments discussed in this paper have
been conducted within the AnswerFinder project
(Mollá and van Zaanen, 2005). In this project,
we develop the AnswerFinder question answer-
ing system, concentrating on shallow representa-
tions of meaning to reduce the impact of para-
phrases (different wordings of the same informa-
tion). Here, we report on a sub-problem we tack-
led within this project, the actual finding of correct
answers in the text.

The AnswerFinder question answering system
consists of several phases that essentially work
in a sequential manner. Each phase reduces the
amount of data the system has to handle from then

on. The advantage of this approach is that progres-
sive phases can perform more “expensive” opera-
tions on the data.

The first phase is a document retrieval phase
that finds documents relevant to the question. This
greatly reduces the amount of texts that need to be
handled in subsequent steps. Only the best n doc-
uments are used from this point on.

Next is the sentence selection phase. From the
relevant documents found by the first phase, all
sentences are scored against the question. The
most relevant sentences according to this score are
kept for further processing.

At the moment, we have implemented several
sentence selection methods. The most simple one
is based on word overlap and looks at the number
of words that can be found in both the question and
the sentence. This is the method that will be used
in the experiments reported in this paper. Other
methods implemented, but not used in the ex-
periments, use richer linguistic information. The
method based on grammatical relation (Carroll et
al., 1998) overlap requires syntactic analysis of
the question and the sentence. This is done using
the Connexor dependency parser (Tapanainen and
Järvinen, 1997). The score is computed by count-
ing the grammatical relations found in both sen-
tence and question. Logical form overlap (Mollá
and Gardiner, 2004) relies on logical forms that
can be extracted from the grammatical relations.
They describe shallow semantics of the question
and sentence. Based on the logical form overlap,
we have also implemented logical graph overlap
(Mollá, 2006). This provides a more fine-grained
scoring method to compute the shallow semantic
distance between the question and sentence. All
of these methods have been used in a full-fledged
question answering system (Mollá and van Zaa-
nen, 2006). However, to reduce variables in our
experiments, we have decided to use the simplest
method only (word overlap) in the experiments re-
ported in this paper.

After the sentence selection phase, the system
searches for the exact answers. Some of the sen-
tence selection methods, while computing the dis-
tance, already find some possible answers. For ex-
ample, the logical graphs use rules to find parts
of the sentence that may be exact answers to the
question. This information is stored together with
the sentence. Note that in this article, we are
are only interested in the impact of named entity
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recognition in QA, so we will not use any sentence
selection method that finds possible answers.

The sentences remaining after the sentence se-
lection phase are then analysed for named entities.
All named entities found in the sentences are con-
sidered to be possible answers to the user question.

Once all possible answers to the questions are
found, the actual answer selection phase takes
place. For this, the question is analysed, which
provides information on what kind of answer is
expected. This can be, for example, country, river,
distance, person, etc. as described in Table 1. The
set of possible answers is now considered prefer-
ring answers that match the question type.

The best answer (i.e. with the highest score and
matching the question type) is returned to the user,
which finishes a typical question answering inter-
action.

4 Named Entity Recognition

The ability of finding exact answers by the An-
swerFinder system relies heavily on the quality
of the named entity recognition performed on
the sentences that are relevant to the user ques-
tion. Finding all named entities in the sentences
is therefore of utmost importance. Missing named
entities may mean that the answer to the question
cannot be recovered anymore.

We have tried different NERs in the context
of question answering. In addition to a general
purpose NER, we have developed our own NER.
Even though several high quality NERs are avail-
able, we thought it important to have full control
over the NER to make it better suited for the task
at hand.

4.1 ANNIE

ANNIE is part of the Sheffield GATE (Gen-
eral Architecture for Text Engineering) system
(Gaizauskas et al., 1996) and stands for “A Nearly-
New IE system”. This architecture does much
more than we need, but it is possible to only ex-
tract the NER part of it. Unfortunately, there is
not much documentation on the NER in ANNIE.
The named entity types found by ANNIE match
up with the MUC types as described in Table 2.

ANNIE was chosen as an example of a typical
NER because it is freely available to the research
community and the named entity types are a subset
of the MUC types.

4.2 AFNER
In addition to ANNIE’s NER, we also look at the
results from the NER that is developed within the
AnswerFinder project, called AFNER.

4.2.1 General Approach
The NER process used in AFNER consists of

two phases. The first phase uses hand-written reg-
ular expressions and gazetteers (lists of named en-
tities that are searched for in the sentences). These
information sources are combined with machine
learning techniques in the second phase.

AFNER first tokenises the given text, applies
the regular expressions to each token, and searches
for occurrences of the token in the gazetteers. Reg-
ular expression matches and list occurrences are
used as features in the machine learning classifier.
These features are used in combination with token
specific features, as well as features derived from
the text as a whole. Using a model generated from
the annotated corpus, each token is classified as ei-
ther the beginning of (‘B’) or in (‘I’) a particular
type of named entity, or out (‘OUT’) of any named
entity. The classified tokens are then appropriately
combined into named entities.

4.2.2 First Phase — Regular Expressions and
Gazetteers

Regular expressions are useful for finding
named entities following identifiable patterns,
such as dates, times, monetary expressions, etc.
As a result, the entities that can be discovered
using regular expressions are limited. However,
matching a particular regular expression is a key
feature used in identifying entities of these partic-
ular types. Gazetteers are useful for finding com-
monly referenced names of people, places or or-
ganisations, but are by no means exhaustive. The
purpose of combining lists with other features is
to supplement the lists used.

4.2.3 Second Phase — Machine Learning
The second phase involves the machine learn-

ing component of AFNER. The technique used is
maximum entropy, and the implementation of the
classifier is adapted from Franz Josef Och’s YAS-
MET.4 The system is trained on the Remedia Cor-
pus (Hirschman et al., 1999), which contains an-
notations of named entities.

The regular expression and gazetteer matches
are used as features, in combination with others

4http://www.fjoch.com/YASMET.html
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pertaining to both individual tokens and tokens
in context. Features of individual tokens include
those such as capitalisation, alpha/numeric infor-
mation, etc. Contextual features are those that
identify a token amongst surrounding text, or re-
late to tokens in surrounding text. For example,
whether a token is next to a punctuation mark or
a capitalised word, or whether a token is always
capitalised in a passage of text. Contextual fea-
tures relating to global information have been used
as described by Chieu and Ng (2002). In addition,
features of previous tokens are included.

The features are then passed to a maximum en-
tropy classifier which, for every token, returns a
list of probabilities of the token to pertain to each
category. The categories correspond with each
type of entity type prepended with ‘B’ and ‘I’, and
a general ‘OUT’ category for tokens not in any en-
tity. The list of entity types used is the same as in
the MUC tasks (see Table 2).

Preliminary experiments revealed that often the
top two or three entity type probabilities have sim-
ilar values. For this reason the final named entity
labels are computed on the basis of the top n prob-
abilities (provided that they meet a defined thresh-
old), where n is a customisable limit. Currently,
a maximum of 3 candidate types are allowed per
token.

Classified tokens are then combined according
to their classification to produce the final list of
named entities. We have experimented with two
methods named single and multiple. For single
type combination only one entity can be associ-
ated with a string, whereas for multiple type com-
bination several entities can be associated. Also,
the multiple type combination allows overlaps of
entities. The multiple type combination aims at
increasing recall at the expense of ambiguous la-
belling and decrease of precision.

In the case of multiple type combination (see
Figure 1 for an example), each label prepended
with ‘B’ signals the beginning of a named entity
of the relevant type, and each ‘I’ label continues a
named entity if it is preceded by a ‘B’ or ‘I’ label
of the same type. If an ‘I’ label does not appear
after a ‘B’ classification, it is treated as a ‘B’ la-
bel. In addition, if a ‘B’ label is preceded by an
‘I’ label, it will be both added as a separate entity
(with the previous entity ending) and appended to
the previous entity.

The single type combination (Figure 2) is im-

plemented by filtering out all the overlapping enti-
ties of the output of the multiple type combination.
This is done by selecting the longest-spanning en-
tity and discarding all substring or overlapping
strings. If there are two entities associated with
exactly the same string, the one with higher prob-
ability is chosen.

The probability of a multi-token entity is com-
puted by combining the individual token probabil-
ities. Currently we use the geometric mean but we
are exploring other possibilities. If Pi is the proba-
bility of token i and P1...n is the probability of the
entire sentence, the geometric mean of the proba-
bilities is computed as:

P1...n = e

∑n

i=1
log Pi

n

5 Results

To evaluate the impact of the quality of NER
within the context of question answering, we
ran the AnswerFinder system using each of the
named entity recognisers, ANNIE, AFNERs and
AFNERm. This section first explains the experi-
mental setup we used, then shows and discusses
the results.

5.1 Experimental setup

To evaluate AnswerFinder we used the data avail-
able for participants of the QA track of the 2005
TREC competition-based conference5. This com-
petition provides us with a nice setting to measure
the impact of the NERs. We simply use the doc-
uments and questions provided during the TREC
2005 competition. To determine whether a docu-
ment or text fragment contains the answer we use
Ken Litkowsky’s answer patterns, also available at
the TREC website.

The questions in TREC 2005 are grouped by
topic. The competition consisted of 75 topics, with
a total of 530 questions. These questions are di-
vided into three different types: factoid, list, and
other. In this paper, we only consider the fac-
toid questions, that is, questions that require a sin-
gle fact as answer. List asks for a list of answers
and other is answered by giving any additional in-
formation about the topic. There are 362 factoid
questions in the question set.

In the experiments, AnswerFinder uses the
TREC data as follows. First, we apply docu-

5http://trec.nist.gov
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BPER ILOC
IPER BLOC BLOC BDATE
BLOC IPER OUT OUT IPER OUT IDATE OUT
Jack London lived in Oakland in 1885 .

PERSON LOCATION LOCATION DATE
PERSON PERSON

LOCATION

Figure 1: Named entities as multiple labels. The token-based labels appear above the words. The final
NE labels appear below the words.

BPER ILOC
IPER BLOC BLOC BDATE
BLOC IPER OUT OUT IPER OUT IDATE OUT
Jack London lived in Oakland in 1885 .

PERSON LOCATION DATE

Figure 2: Named entities as single labels. The token-based labels appear above the words. The resulting
NE labels appear below the words.

ment selection (using the list of relevant docu-
ments for each question provided by TREC). From
these documents, we select the n best sentences
based on word overlap between the sentence and
the question.

We can now compute an upper-bound baseline.
By taking the selected sentences as answers, we
can compute the maximum score possible from a
question answering perspective. By not requiring
exactly matching answers, we can count the num-
ber of questions that could be answered if the an-
swer selection phase would be perfect. In other
words, we measure the percentage of questions
that can still be answered if the answer selection
part of the system would be perfect.

Next, we run experiments with the same set-
tings, but applying each of the NERs to the rele-
vant sentences. All named entities that are found
in these sentences are then considered possible an-
swers to the question and again the percentage of
questions that can be answered is computed.

Finally, we embed the NERs in a simplified ver-
sion of AnswerFinder to test their impact in a base-
line QA system.

5.2 Empirical results

In Table 3 we see the percentage of questions that
can still be answered after document selection.
The table reflects the intuition that, the smaller the
number of preselected documents, the more likely
it is that the document that contains the answer is
left out. The documents are selected using a list of

# of documents % of questions
10 75.5%
20 81.6%
30 86.9%
40 89.5%
50 92.1%

Table 3: Percentage of factoid questions that can
still be answered after document selection

# of sentences % of questions
5 42.4%

10 49.9%
20 62.0%
30 65.4%
40 68.8%
50 70.8%
60 73.0%
70 73.7%

Table 4: Percentage of factoid questions that can
still be answered after sentence selection from the
top 50 documents

relevant documents provided for the competition.
If we continue with 50 documents after docu-

ment selection, we can select relevant sentences
from the text in these documents using the word
overlap metric. We end up with the percentages as
given in Table 4.

There is quite a dramatic drop from 92.1% in
all the documents to 73.7% with 70 sentences se-
lected. This can be explained from the fact that the
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# of % of questions
sentences ANNIE AFNERs AFNERm

5 27.9% 11.6% 27.7%
10 33.0% 13.6% 33.3%
20 41.4% 17.7% 41.9%
30 44.3% 19.0% 45.6%
40 46.2% 19.9% 47.4%
50 47.8% 20.5% 48.8%
60 49.3% 21.3% 51.0%
70 50.5% 21.3% 51.5%

Table 5: Percentage of factoid questions that can
still be answered after NE recognition from the top
50 documents

word overlap sentence selection is not extremely
sophisticated. It only looks at words that can be
found in both the question and sentence. In prac-
tice, the measure is very coarse-grained. However,
we are not particularly interested in perfect an-
swers here, these figures are upper-bounds in the
experiment.

From the selected sentences now we extract all
named entities. The results are summarised in Ta-
ble 5.

The figures of Table 5 approximate recall in that
they indicate the questions where the NER has
identified a correct answer (among possibly many
wrong answers).

The best results are those provided by AFNERm

and they are closely followed by ANNIE. This
is an interesting result in that AFNER has been
trained with the Remedia Corpus, which is a very
small corpus on a domain that is different from the
AQUAINT corpus. In contrast, ANNIE is fine-
tuned for the domain. Given a larger training cor-
pus of the same domain, AFNERm’s results would
presumably be much better than ANNIE’s.

The results of AFNERs are much worse than the
other two NERs. This clearly indicates that some
of the additional entities found by AFNERm are
indeed correct.

It is expected that precision would be differ-
ent in each NER and, in principle, the noise in-
troduced by the erroneous labels may impact the
results returned by a QA system integrating the
NER. We have tested the NERs extrinsically
by applying them to a baseline setting of An-
swerFinder. In particular, the baseline setting of
AnswerFinder applies the sentence preselection
methods described above and then simply returns

the most frequent entity found in the sentences
preselected. If there are several entities sharing the
top position then one is chosen randomly. In other
words, the baseline ignores the question type and
the actual context of the entity. We decided to use
this baseline setting because it is more closely re-
lated to the precision of the NERs than other more
sophisticated settings. The results are shown in
Table 6.

# of % of questions
sentences ANNIE AFNERs AFNERm

10 6.2% 2.4% 5.0%
20 6.2% 1.9% 7.0%
30 4.9% 1.4% 6.8%
40 3.7% 1.4% 6.0%
50 4.0% 1.2% 5.1%
60 3.5% 0.8% 5.4%
70 3.5% 0.8% 4.9%

Table 6: Percentage of factoid questions that found
an answer in a baseline QA system given the top
50 documents

The figures show a drastic drop in the results.
This is understandable given that the baseline QA
system used is very basic. A higher-performance
QA system would of course give better results.

The best results are those using AFNERm. This
confirms our hypothesis that a NER that allows
multiple labels produces data that are more suit-
able for a QA system than a “traditional” single-
label NER. The results suggest that, as long as re-
call is high, precision does not need to be too high.
Thus there is no need to develop a high-precision
NER.

The table also indicates a degradation of the per-
formance of the QA system as the number of pres-
elected sentences increases. This indicates that the
baseline system is sensitive to noise. The bottom-
scoring sentences are less relevant to the question
and therefore are more likely not to contain the
answer. If these sentences contain highly frequent
NEs, those NEs might displace the correct answer
from the top position. A high-performance QA
system that is less sensitive to noise would proba-
bly produce better results as the number of prese-
lected sentences increases (possibly at the expense
of speed). The fact that AFNERm, which produces
higher recall than AFNERs according to Table 5,
still obtains the best results in the baseline QA sys-
tem according to Table 6, suggests that the amount
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of noise introduced by the additional entities does
not affect negatively the process of extracting the
answer.

6 Summary and Conclusion

In this paper we have focused on the impact of in-
troducing multiple labels with the aim to increase
recall in a NER for the task of question answering.
In our experiments we have tested the impact of
the ANNIE system, and two variations of AFNER,
our custom-built system that can be tuned to pro-
duce either single labels or multiple labels. The
experiments confirm the hypothesis that allowing
multiple labelling in order to increase recall of
named entities benefits the task of QA. In other
words, if the NER has several candidate labels for
a string (or a substring of it), it pays off to out-
put the most plausible alternatives. This way the
QA system has a better chance to find the answer.
The noise introduced by returning more (possibly
wrong) entities is offset by the increase of recall.

Further work includes the evaluation of the
impact of multi-label NE recognition on higher-
performance QA systems. In particular we plan
to test various versions of the complete An-
swerFinder system (not just the baseline setting)
with each of the NERs. In addition, we plan to re-
train AFNER using more data and more relevant
data and explore the impact of the single and mul-
tiple methods on the resulting higher-performance
NER.
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graph-based question answering rules. In Proc.
HLT/NAACL 2006 Workshop on Graph Algorithms
for Natural Language Processing, pages 37–44.

[Noguera et al.2005] Elisa Noguera, Antonio Toral,
Fernando Llopis, and Rafael Muñoz. 2005. Re-
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Abstract

We present a system for named entity
recognition (ner) in astronomy jour-
nal articles. We have developed this
system on a ne corpus comprising ap-
proximately 200,000 words of text from
astronomy articles. These have been
manually annotated with ∼40 entity
types of interest to astronomers.

We report on the challenges involved
in extracting the corpus, defining en-
tity classes and annotating scientific
text. We investigate which features of
an existing state-of-the-art Maximum
Entropy approach perform well on as-
tronomy text. Our system achieves an
F-score of 87.8%.

1 Introduction

Named entity recognition (ner) involves as-
signing broad semantic categories to entity ref-
erences in text. While many of these cate-
gories do in fact refer to named entities, e.g.
person and location, others are not proper
nouns, e.g. date and money. However, they
are all syntactically and/or semantically dis-
tinct and play a key role in Information Ex-
traction (ie). ner is also a key component of
Question Answering (qa) systems (Hirschman
and Gaizauskas, 2001). State-of-the-art qa
systems often have custom-built ner compo-
nents with finer-grained categories than exist-
ing corpora (Harabagiu et al., 2000). For ie
and qa systems, generalising entity references
to broad semantic categories allows shallow ex-
traction techniques to identify entities of inter-
est and the relationships between them.

Another recent trend is to move beyond the
traditional domain of newspaper text to other

corpora. In particular, there is increasing in-
terest in extracting information from scientific
documents, such as journal articles, especially
in biomedicine (Hirschman et al., 2002).

A key step in this process is understanding
the entities of interest to scientists and build-
ing models to identify them in text. Unfor-
tunately, existing models of language perform
very badly on scientific text even for the cate-
gories which map directly between science and
newswire, e.g. person. Scientific entities of-
ten have more distinctive orthographic struc-
ture which is not exploited by existing models.

In this work we identify entities within as-
tronomical journal articles. The astronomy
domain has several advantages: firstly, it is
representative of the physical sciences; sec-
ondly, the majority of papers are freely avail-
able in a format that is relatively easy to ma-
nipulate (LATEX); thirdly, there are many in-
teresting entity types to consider annotating;
finally, there are many databases of astronom-
ical objects that we will eventually exploit as
gazetteer information.

After reviewing comparable named entity
corpora, we discuss aspects of astronomy that
make it challenging for nlp. We then describe
the corpus collection and extraction process,
define the named entity categories and present
some examples of interesting cases of ambigu-
ity that come up in astronomical text.

Finally, we describe experiments with re-
training an existing Maximum Entropy tag-
ger for astronomical named entities. Interest-
ingly, some feature types that work well for
newswire significantly degrade accuracy here.
We also use the tagger to detect errors and
inconsistencies in the annotated corpus. We
plan to develop a much larger freely available
astronomy ne corpus based on our experience
described here.
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2 Existing annotated corpora

Much of the development in ner has been
driven by the corpora available for training
and evaluating such systems. This is because
the state-of-the-art systems rely on statistical
machine learning approaches.

2.1 Message Understanding Conference

The muc named entity recognition task (in
muc 6/7) covered three types of entities:

names person, location, organisation;

temporal expressions date, time;

numeric expressions money, percent.

The distribution of these types in muc 6 was:
names 82%, temporal 10% and numeric 8%,
and in muc 7 was: names 67%, temporal 25%
and numeric 6%.

The raw text for the muc 6 ner corpus
consisted of 30 Wall Street Journal articles,
provided by the Linguistic Data Consortium
(ldc). The text used for the English ner task
in muc 7 was from the New York Times News
Service, also from the ldc. There are detailed
annotation guidelines available.1

2.2 GENIA corpus

The genia corpus (Kim et al., 2003) is a col-
lection of 2000 abstracts from the National Li-
brary of Medicine’s medline database. The
abstracts have been selected from search re-
sults for the keywords human, blood cells and
transcription factors. genia is annotated with
a combination of part of speech (pos) tags
based on the Penn Treebank set (Marcus et
al., 1994) and a set of biomedical named en-
tities described in the genia ontology. One
interesting aspect of the genia corpus is that
some named entities are syntactically nested.
However, most statistical ner systems are se-
quence taggers which cannot easily represent
hierarchical tagging.

2.3 Astronomy Bootstrapping Corpus

The Astronomy Bootstrapping Corpus
(Becker et al., 2005; Hachey et al., 2005) is
a small corpus consisting of 209 abstracts
from the nasa Astronomical Data System
Archive. The corpus was developed as part

1www.cs.nyu.edu/cs/faculty/grishman/muc6.html

of experiments into efficient methods for
developing new statistical models for ner.
The abstracts were selected using the query
quasar + line from articles published between
1997 and 2003. The corpus was annotated
with the following named entity types:

1. instrument name (136 instances)

2. source name (111 instances)

3. source type (499 instances)

4. spectral feature (321 instances)

The seed and test sets (50 and 159 abstracts)
were annotated by two astronomy PhD stu-
dents. The abstracts contained on average
10 sentences with an average length of 30 to-
kens, implying an tag density (the percentage
of words tagged as a named entity) of ∼ 2%.

3 NLP for astronomy

Astronomy is a broad scientific domain com-
bining theoretical, observational and compu-
tational research, which all differ in conven-
tions and jargon. We are interested in ner for
astronomy within a larger project to improve
information access for scientists.

There are several comprehensive text and
scientific databases for astronomy. For exam-
ple, nasa Astrophysics Data System (ADS,
2005) is a bibliographic database containing
over 4 million records (journal articles, books,
etc) covering the areas of astronomy and as-
trophysics, instrumentation, physics and geo-
physics. ads links to various external re-
sources such as electronic articles, data cat-
alogues and archives.

3.1 iau naming conventions

The naming of astronomical objects is speci-
fied by the International Astronomical Union’s
(iau) Commission 5, so as to minimise con-
fusing or overlapping designations in the as-
tronomical literature. The most common for-
mat for object names is a catalogue code fol-
lowed by an abbreviated position (Lortet et
al., 1994). Many objects still have common
or historical names (e.g. the Crab Nebula). An
object that occurs in multiple catalogues will
have a separate name in each catalogue (e.g.
PKS 0531+21 and NGC 1952 for the Crab Nebula).
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1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
2 90 218 421 1909 3221 4320 5097 5869 6361 6556 7367 7732 3495

Table 1: Number of LATEX astro-ph articles extracted for each year.

3.2 The Virtual Observatory

There is a major effort in astronomy to move
towards integrated databases, software and
telescopes. The umbrella organisation for this
is the International Virtual Observatory Al-
liance (Hanisch and Quinn, 2005). One of the
aims is to develop a complete ontology for as-
tronomical data which will be used for Unified
Content Descriptors (Martinez et al., 2005).

4 Collecting the raw corpus

The process of collecting the raw text for
named entity annotation involved first obtain-
ing astronomy text, extracting the raw text
from the document formatting and splitting it
into sentences and tokens.

4.1 arXiv

arXiv (arXiv, 2005) is an automated distri-
bution system for research articles, started in
1991 at the Los Alamos National Laboratory
to provide physicists with access to prepublica-
tion materials. It rapidly expanded to incorpo-
rate many domains of physics and thousands
of users internationally (Ginsparg, 2001).

The astrophysics section (astro-ph) is used
by most astronomers to distribute papers be-
fore or after publication in a recognised jour-
nal. It contains most of astrophysics publica-
tions from the last five to ten years. Table 1
shows that the number of articles submitted
to astro-ph has increased rapidly since 1995.

The articles are mostly typeset in LATEX.
We have downloaded 52 658 articles from
astro-ph, totalling approximately 180 million
words. In creating the ne corpus we limited
ourselves to articles published since 2000, as
earlier years had irregular LATEX usage.

4.2 LATEX conversion

After collecting of LATEX documents, the next
step was to extract the text so that it could be
processed using standard nlp tools. This nor-
mally involves ignoring most formatting and
special characters in the documents.

However formatting and special characters
play a major role in scientific documents, in
the form of mathematical expressions, which
are interspersed through the text. It is impos-
sible to ignore every non-alphanumeric char-
acter or or map them back to some standard
token because too much information is lost.
Existing tools such as DeTeX (Trinkle, 2002)
remove LATEX markup including the mathe-
matics, rendering scientific text nonsensical.
Keeping the LATEX markup is also problem-
atic since the tagger’s morphological features
are confused by the markup.

4.3 LATEX to Unicode

Our solution was to render as much of the
LATEX as possible in text, using Unicode (Uni-
code Consortium, 2005) to represent the math-
ematics as faithfully as possible. Unicode has
excellent support for mathematical symbols
and characters, including the Greek letters,
operators and various accents.

Mapping LATEX back to the corresponding
Unicode character is difficult. For example,
\acirc, \^{a} and \hat{a} are all used to
produce â, which in Unicode is 0x0174.

Several systems attempt to convert LATEX
to other formats e.g. xml (Grimm, 2003).
No existing system rendered the mathemat-
ics faithfully enough or with high enough cov-
erage for our purposes. Currently our cover-
age of mathematics is very good but there are
still some expressions that cannot be trans-
lated, e.g. complex nested expressions, rare
symbols and non-Latin/Greek/Hebrew alpha-
betic characters.

4.4 Sentences and Tokenisation

We used MXTerminator (Reynar and Ratna-
parkhi, 1997) as the sentence boundary de-
tector with an additional Python script to fix
common errors, e.g. mistaken boundaries on
Sect. and et al. We used the Penn Treebank
(Marcus et al., 1994) sed script to tokenize the
text, again with a Python script to fix common
errors, e.g. splitting numbers like 1,000 on the
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Our FUSE|tel spectrum of HD|sta 73882|sta is derived from time-tagged observations over the
course of 8 orbits on 1999|dat Oct|dat 30|dat . Several “ burst ” events occurred during the
observation ( Sahnow|per et al. 2000|dat ) . We excluded all photon|part events that occurred
during the bursts , reducing effective on-target integration time from 16.8|dur ksec|dur to 16.1|dur
ksec|dur . Strong interstellar extinction and lack of co-alignment of the SiC channels with the LiF
channels prevented the collection of useful data shortward of 1010|wav Å|wav .

Figure 1: An extract from our final corpus, originally from astro-ph/0005090.

comma, and reattaching the LATEX which the
tokenizer split off incorrectly.

4.5 The Corpus

The articles for the corpus were selected ran-
domly from the downloaded LATEX documents
and annotated by the second author. The an-
notation was performed using a custom Emacs
mode which provided syntax highlighting for
named entity types and mapped the keys to
specific named entities to make the annotation
as fast as possible. The average annotation
speed was 165 tokens per minute. An extract
from our corpus is shown in Figure 1. There
are a total of 7840 sentences in our corpus,
with an average of 26.1 tokens per sentence.

5 Named Entity Categories

Examples of the categories we used are listed
in Table 2. We restricted ourselves to high
level categories such as star and galaxy
rather than detailed ones typically used by as-
tronomers to classify objects such as red giant

and elliptical galaxy.

5.1 Areas of Ambiguity

There were some entities that did not clearly
fit into one specific category or are used in a
way that is ambiguous. This section outlines
some of these cases.

Temperature and Energy Due to the
high temperatures in X-ray astronomy, tem-
peratures are conventionally referred to in
units of energy (eV), for example:

its 1 MeV temperature, the emission from...

Our annotation stays consistent to the units,
so these cases are tagged as energies (egy).

Angular distance Astronomers commonly
refer to angular distances on the sky (in units
of arc) because it is not possible to know

the true distance between two objects with-
out knowing their redshift. We annotate these
according to the units, i.e. angles, although
they are often used in place of distances.

Spectral lines and ions Absorption or
emission of radiation by ions results in spec-
tral line features in measured spectra. Com-
mon transitions have specific names (e.g. Hα)
whereas others are referred to by the ion name
(e.g. Si IV), introducing ambiguity.

5.2 Comparison with genia and muc

The corpus has a named entity density of 5.4%
of tokens. This is significantly higher than
the density of the Astronomy Bootstrapping
Corpus. The most frequency named entities
types are: per (1477 tags), dat (1053 tags),
tel (867 tags), gal (551 tags), and wav (451
tags). The token 10 has the highest degree of
ambiguity since it was tagged with every unit
related tag: egy, mass, etc. and also as obj.

By comparison the genia corpus has a much
higher density of 33.8% tokens on a sample
the same size as our corpus. The highest fre-
quency named entity types are: other (16171
tags), protein (13197 tags), dna domain
(6848 tags) and protein family (6711 tags).

The density of tags in muc is 11.8%, higher
than our corpus but much lower than genia.
The highest frequency named entities are or-
ganisation (6373 tags), followed by loca-
tion (3828 tags) and date (3672 tags). Ta-
ble 3 gives a statistical comparison of the three
corpora. This data suggests that the astron-
omy data will be harder to automatically tag
than muc 7 because the density is lower and
there are many more classes. However, if there
were more classes or finer grained distinctions
in muc this would not necessarily be true. It
also demonstrates how different biological text
is to other scientific domains.
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Class Definition Examples Comments

gxy galaxy NGC 4625; Milky Way; Galaxy inc. black holes
neb nebula Crab Nebula; Trapezium
sta star Mira A; PSR 0329+54; Sun inc. pulsars
stac star cluster M22; Palomar 13
supa supernova SN1987A; SN1998bw
pnt planet Earth; Mars ; HD 11768 b; tau Boo inc. extra-solar planets
frq frequency 10 Hz; 1.4 GHz
dur duration 13 seconds; a few years inc. ages
lum luminosity 1046 ergs−1; 1010L� inc. flux
pos position 17:45.6; -18:35:31; 17h12m13s

tel telescope ATCA; Chandra X-ray observatory inc. satellites
ion ion Si IV; HCO+ inc. molecular ions
sur survey SUMSS; 2 Micron All-Sky Survey
dat date 2003; June 17; 31st of August inc. epochs (e.g. 2002.7)

Table 2: Example entity categories.

Corpus astro genia muc

# cats 43 36 8
# entities 10 744 40 548 11 568
# tagged 16,016 69 057 19 056
# avg len 1.49 1.70 1.64
tag density 5.4% 33.8% 11.8%

Table 3: Comparison with genia and muc.
Condition Contextual predicate

f(wi) < 5 X is prefix of wi, |X| ≤ 4
X is suffix of wi, |X| ≤ 4
wi contains a digit
wi contains uppercase character
wi contains a hyphen

∀wi wi = X
wi−1 = X, wi−2 = X
wi+1 = X, wi+2 = X

∀wi posi = X
posi−1 = X, posi−2 = X
posi+1 = X, posi+2 = X

∀wi nei−1 = X
nei−2nei−1 = XY

Table 4: Baseline contextual predicates

6 Maximum Entropy Tagger

The purpose of creating this annotated cor-
pus is to develop a named entity tagger for
astronomy literature. In these experiments we
adapt the C&C ne tagger (Curran and Clark,
2003) to astronomy literature by investigat-
ing which feature types improve the perfor-
mance of the tagger. However, as we shall
see below, the tagger can also be used to test
and improve the quality of the annotation. It
can also be used to speed up the annotation
process by pre-annotating sentences with their
most likely tag. We were also interested to see
whether > 40 named-entity categories could
be distinguished successfully with this quan-
tity of data.

Condition Contextual predicate

f(wi) < 5 wi contains period/punctuation
wi is only digits
wi is a number
wi is {upper,lower,title,mixed} case
wi is alphanumeric
length of wi

wi has only Roman numerals
wi is an initial (x.)
wi is an acronym (abc, a.b.c.)

∀wi memory ne tag for wi

unigram tag of wi+1, wi+2

∀wi wi, wi−1 or wi+1 in a gazetteer
∀wi wi not lowercase and flc > fuc
∀wi uni-, bi- and tri-grams of word type

Table 5: Contextual predicates in final system

The C&C ne tagger feature types are shown
in Tables 4 and 5. The feature types in Ta-
ble 4 are the same as used in MXPost (Rat-
naparkhi, 1996) with the addition of the ne
tag history features. We call this the baseline
system. Note, this is not the baseline of the
ne tagging task, only the baseline performance
for a Maximum Entropy approach.

Table 5 includes extra feature types that
were tested by Curran and Clark (2003). The
wi is only digits predicates apply to words
consisting of all digits. Title-case applies to
words with an initial uppercase letter followed
by lowercase (e.g. Mr). Mixed-case applies to
words with mixed lower- and uppercase (e.g.
CitiBank). The length features encode the
length of the word from 1 to 15 characters,
with a single bin for lengths greater than 15.

The next set of contextual predicates encode
extra information about ne tags in the current
context. The memory ne tag predicate records
the ne tag that was most recently assigned
to the current word. This memory is reset at
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N Word Correct Tagged

23 OH mol none
14 rays part none
8 GC gxyp none
6 cosmic part none
6 HII ion none
5 telescope tel none
5 cluster stac none
5 and lum none
4 gamma none part

Table 6: Detected Errors and Ambiguities

the beginning of each document. The unigram
predicates encode the most probable tag for
the next words in the window. The unigram
probabilities are relative frequencies obtained
from the training data. This feature enables
us to know something about the likely ne tag
of the next word before reaching it.

Another feature type encodes whether the
current word is more frequently seen in low-
ercase than title-case in a large external cor-
pus. This is useful for disambiguating begin-
ning of sentence capitalisation. Eventually the
frequency information will come from the raw
astronomy corpus itself.

Collins (2002) describes a mapping from
words to word types which groups words with
similar orthographic forms into classes. This
involves mapping characters to classes and
merging adjacent characters of the same type.
For example, Moody becomes Aa, A.B.C. be-
comes A.A.A. and 1,345.05 becomes 0,0.0.
The classes are used to define unigram, bi-
gram and trigram contextual predicates over
the window. This is expected to be a very
useful feature for scientific entities.

7 Detecting Errors and Ambiguities

We first trained the C&C tagger on the anno-
tated corpus and then used this model to retag
the corpus. We then compared this retagged
corpus with the original annotations. The dif-
ferences were manually checked and correc-
tions made where necessary.

Table 6 shows the most frequent errors and
ambiguities detected by this approach. Most
of the differences found were either the result
of genuine ambiguity or erroneous annotation.

GC, cosmic and HII are examples of genuine
ambiguity that is difficult for the tagger to
model correctly. GC means globular cluster which

Experiment P R F-score
baseline 93.0 82.5 87.5
extended 91.2 82.4 86.6
-memory 92.1 84.3 88.0
-memory/pos 92.3 83.9 87.9
coarse base 92.6 86.7 89.5
coarse extended 93.0 88.9 90.9

Table 7: Feature experiment results

is not tagged, but less often refers to the Galac-
tic Centre which is tagged (gxyp). cosmic oc-
curs in two contexts: as part of cosmic ray(s)
which is tagged as a particle; and in expres-
sions such as cosmic microwave background radiation

which is not tagged. HII is used most frequently
in reference to HII ions and hence is tagged as
an (ion). However, occasionally HII is used to
refer to HII galaxies and not tagged.

OH and gamma rays are examples where there
was some inconsistency or error in some of
the annotated data. In both of these cases
instances in the corpus were not tagged.

We also implemented the approach of Dick-
inson and Meurers (2003) for identifying anno-
tation errors in part of speech (pos) tagging.
Their approach finds the longest sequence of
words that surround a tagging ambiguity. The
longer the context, the more likely the am-
biguity is in fact an annotation error. This
approach identified a number of additional er-
rors, particularly annotation errors within en-
tities. However, many of the errors we may
have found using this technique were already
identified using the tagging described above.

8 Inter-annotator Agreement

To test the reliability of the annotations we
performed two tests. Firstly, we asked an as-
tronomy PhD student to take our annotation
guidelines and annotate around 30,000 words
(15% of the corpus). Secondly, the second au-
thor also reannotated a different 30,000 words
about 2-months after the original annotation
process to check for self consistency.

We used the kappa statistic (Cohen, 1960)
to evaluate inter-annotator reliability. The
kappa value for agreement with the PhD stu-
dent annotation was 0.91 on all tags and 0.82
not including the none tags. Given that the
annotation guidelines were not as complete as
we would have liked, this agreement is very
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good. The kappa value for agreement with
the reannotated corpus was 0.96 on all tags
and 0.92 not including the none tags.

When the differences between the 30,000
word sections and the original corpus were
check manually (by the second author and
the PhD student) practically all of them were
found to be annotation errors rather than gen-
uine ambiguity that they could not agree on.

9 Results

We split the corpus into 90% training and 10%
testing sets. For our final results we performed
10-fold cross validation. For the experiments
analysing the contribution of named entity fea-
ture types from the C&C tagger we used one of
the 10 folds. The evaluation was performed us-
ing the CoNLL shared task evaluation script1.

9.1 Feature Experiments

The results of the feature experiments are
shown in Table 7. The Maximum Entropy
baseline performance of 87.5% F-score is very
high given the large number of categories.
Clearly there is enough contextual information
surrounding the entities that they can be fairly
reliably tagged.

A surprising result is that using all of the ad-
ditional features which helped significantly im-
prove performance on newswire actually dam-
ages performance by ∼ 1%. Further experi-
mental analysis with removing specific feature
types found that the offending feature was the
last tagged with tag x feature (the memory
feature). Removing this feature improves per-
formance a little bit more giving our best re-
sult of 88.0% F-score. We believe this fea-
ture performs particularly badly on numeric
expressions which are part of many different
named entity classes which may appear with
the same word in a single article.

We experimented with removing the pos tag
features since the pos tagger performed very
badly on astronomy text, but this made little
difference. We have experimented with remov-
ing the other feature types listed in Table 5
but this resulted in a small decrease in perfor-
mance each time.

This demonstrates that with new training
data it is fairly straightforward to achieve rea-

1http://www.cnts.ua.ac.be/conll2003/ner/bin/

Category Constituent categories

galaxy gxy, gxyp, gxyc, nebp, neb
star sta, stap, stac, supa
object obj, objp, evt
sso pnt, pntp, moo, moop
units frq, wav, dist, temp, dur, mass,

ang, lum, vel, pct, egy, unit, pos
inst. tel, inst
particle part, elem, mol, ion, ln
person per, org, url
location loc
obs. sur, cat, db
date dat, time
software code

Table 8: Coarse-grained mapping

sonable performance in identifying astronomy
named entities.

9.2 Coarse-grained categories

One interesting property of our named entity
corpus is the very large number of categories
relative to existing ne corpora such as muc.
To test what impact the number of classes has
on performance we repeated the experiment
described above, using coarser-grained named
entity categories based on the mapping shown
in Table 8.

The course grained classifier achieves an F-
score of 89.5% using the baseline feature set
and an F-score of 90.9% using the extended
feature set without the memory feature. The
key difference between the fine and coarse
grained results is the significantly better recall
on coarse grained classes.

10 Conclusion

This is a pilot annotation of astronomy texts
with named entity information. Now that we
have created the initial corpus we intend to
reevaluate the categories, aiming for greater
consistency and coverage of the entities of in-
terest in the corpus.

We have performed preliminary experiments
in training taggers using our corpus. These
experiments have produced very promising re-
sults so far (87.8% F-score on 10-fold cross
validation). We intend to extend our evalu-
ation of individual features for scientific text
and add features that exploit online astronomy
resources.

This paper has described in detail the pro-
cess of creating a named entity annotated cor-
pus of astronomical journal articles and con-
ference papers. This includes translating the
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LATEX typesetting information into a useable
format. Unlike existing work we have rendered
the mathematics in Unicode text rather than
just removing it, which is important for fur-
ther analysis of the data. The resulting corpus
is larger than existing resources, such as muc,
but has been annotated with a much more de-
tailed set of over 40 named entity classes.

Finally, we have demonstrated that high ac-
curacy named entity recognisers can be trained
using the initial release of this corpus, and
shown how the tagger can be used to itera-
tively identify potential tagging errors. The
quality of the results should only improve as
the corpus size and quality is increased.
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Abstract

We examine standard deep lexical acqui-
sition features in automatically predict-
ing the gender of noun types and to-
kens by bootstrapping from a small an-
notated corpus. Using a knowledge-poor
approach to simulate prediction in unseen
languages, we observe results comparable
to morphological analysers trained specif-
ically on our target languages of German
and French. These results describe fur-
ther scope in analysing other properties in
languages displaying a more challenging
morphosyntax, in order to create language
resources in a language-independent man-
ner.

1 Introduction

As a result of incremental annotation efforts and
advances in algorithm design and statistical mod-
elling, deep language resources (DLRs, i.e. lan-
guage resources with a high level of linguistic
sophistication) are increasingly being applied to
mainstream NLP applications. Examples include
analysis of semantic similarity through ontologies
such as WordNet (Fellbaum, 1998) or VerbOcean
(Chklovski and Pantel, 2004), parsing with preci-
sion grammars such as the DELPH-IN (Oepen et
al., 2002) or PARGRAM (Butt et al., 2002) gram-
mars, and modelling with richly annotated tree-
banks such as PropBank (Palmer et al., 2005) or
CCGbank (Hockenmaier and Steedman, 2002).

Unfortunately, the increasing complexity of
these language resources and the desire for broad
coverage has meant that their traditionally man-
ual mode of creation, development and mainte-
nance has become infeasibly labour-intensive. As

a consequence, deep lexical acquisition (DLA) has
been proposed as a means of automatically learn-
ing deep linguistic representations to expand the
coverage of DLRs (Baldwin, 2005). DLA research
can be divided into two main categories: targeted
DLA, in which lexemes are classified according
to a given lexical property (e.g. noun countability,
or subcategorisation properties); and generalised
DLA, in which lexemes are classified according to
the full range of lexical properties captured in a
given DLR (e.g. the full range of lexical relations
in a lexical ontology, or the system of lexical types
in an HPSG).

As we attest in Section 2, most work in deep
lexical acquisition has focussed on the English
language. This can be explained in part by the
ready availability of targeted language resources
like the ones mentioned above, as well as sec-
ondary resources — such as corpora, part-of-
speech taggers, chunkers, and so on — with which
to aid prediction of the lexical property in ques-
tion. One obvious question, therefore, is whether
the techniques used to perform lexical acquisition
in English generalise readily to other languages,
where subtle but important differences in mor-
phosyntax might obfuscate the surface cues used
for prediction.

In this work, we will examine the targeted pre-
diction of the gender of noun types and tokens in
context, for both German and French. As an exam-
ple, the following phrases display adjectival gen-
der inflection in two of the three languages below.

the open window
das offene Fenster
la fenêtre ouverte

window has no gender in English, Fenster is neuter
in German and fenêtre is feminine in French. So
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in English, neither the determiner the or the adjec-
tive open inflect, whereas das and la are the neuter
and feminine forms respectively of the determiner,
and offen and ouvert take the neuter and feminine
respective suffixes of -e.

On the face of it, the task is remarkably sim-
ple: native speakers can achieve near-perfection,
and even the accuracy of simplistic morphological
analysers is taken for granted. However, both of
these rely on significant knowledge of the inflec-
tional morphosyntax of the language, whereas we
will take a knowledge-poor approach, and boot-
strap from an annotated corpus. An additional mo-
tivation for automating gender learning is that we
are interested in semi-automated precision gram-
mar development over the full spectrum of lan-
guages, from the highest to the lowest density.
Given that there is no guarantee we will be able
to access a native speaker for a low–density lan-
guage, automation is the natural course to take.
Even if we do have access to a native speaker, we
would like to maximise use of their time, and free
them up from annotation tasks which we can hope
to perform reliably through automatic means.

The knowledge-poor approach is an interest-
ing one — although the features used for predic-
tion are linguistically motivated, we remain ag-
nostic toward a specific target language. Since
no language-specific features are being used, the
knowledge-poor approach is presumed to gener-
alise over unseen languages, as long as there is
consistent, well-defined morphosyntax within it.

Despite its seeming ease, and our examination
of gender as a “black-box” learning feature, hav-
ing gender information is extrinsically valuable in
many contexts. For example, natural language
generation and machine translation both rely heav-
ily on knowing the gender of a word for accurate
inflectional agreement.

The structure of the remainder of this paper is as
follows. Section 2 provides a background for deep
lexical acquisition and gender prediction. Section
3 describes the language resources of which we
made use, and Section 4 details the feature set. Fi-
nally, we evaluate our method in Section 5, and
supply a discussion and brief conclusion in Sec-
tions 6 and 7.

2 Background

2.1 Deep Lexical Acquisition
As mentioned above, DLA traditionally takes two
forms: targeted toward a specific lexical property,
or generalised to map a term to an amalgam of
properties defined for a given resource.

The latter technique is often construed as a clas-
sification task where the classes are the lexical
categories from the target resource. One exam-
ple is extending an ontology such as WordNet
(e.g. Pantel (2005), Daudé et al. (2000)). An-
other is learning the categories for the lexicon of a
precision grammar, such as the English Resource
Grammar (ERG; Flickinger (2002);Copestake and
Flickinger (2000)), as seen in Baldwin (2005). A
common tool for this is supertagging, where the
classes are predicted in a task analogous to part-
of-speech (POS) tagging (Clark, 2002; Blunsom
and Baldwin, 2006).

The former technique is exemplified by expert
systems, where the target language is occasion-
ally not English. These learn properties such
as verb subcategorisation frames (e.g. Korhonen
(2002) for English or Schulte im Walde (2003) for
German) or countability (e.g. Baldwin and Bond
(2003) for English, or van der Beek and Baldwin
(2004) for Dutch, with a crosslingual component).

Common methodologies vary from mining lex-
ical items from a lexical resource directly (e.g.
Sanfilippo and Poznanski (1992) for a machine–
readable dictionary), learning a particular property
from a resource to apply it to a lexical type sys-
tem (e.g. Carroll and Fang (2004) for verb sub-
categorisation frames), restricting possible target
types according to evidence, and unifying to a con-
solidated entry (e.g. Fouvry (2003) for precision
grammar lexical types), or applying the lexical cat-
egory of similar instances, based on some notion
of similarity (e.g. Baldwin (2005), also for lexical
types). It is this last approach that we use in this
work.

Implicit in all of these methods is a notion of
the secondary language resource (LR). While the
primary LR is the (actual or presumed) resource
whose types are targeted by the DLA, a secondary
LR is an available resource that can be used to
aid acquisition. Common examples, as mentioned
above, are corpora, POS taggers, and chunkers.
Secondary LRs of varying degrees of complex-
ity are available for some languages; however we
examine primarily simple LRs in order to remain
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faithful to lower–density languages.

2.2 Gender Prediction

Gender is a morphosemantic phenomenon ob-
served in many Indo-European languages. It is
observed generally in three classes: masculine,
feminine, or neuter (French has masculine and
feminine only). Whereas the only English words
that inflect for gender are pronouns, in most Indo-
European languages at least nouns, adjectives, and
determiners also inflect. This normally occurs by
way of suffixation, but some languages, such as
Swahili, use prefixation.

Gender appears to be a purely semantic prop-
erty which is determined based on the underlying
shape, manner, or sex of the referent. However,
morphology can play a strong role, by way of gen-
der selection according to the morphemes of the
wordform. A classic example is Mädchen “girl”
in German, which is neuter because words with the
-chen suffix are neuter, despite the obvious femi-
nine semantic connotations of this instance.

The contextual and morphological effects
shown in the “open window” example above have
been theorised as priming the gender predictions
of language users when confronted with unseen
words.1 When contextual or lexicographic infor-
mation is available for a language, this is usually a
reliable method for the prediction of gender. Con-
sequently, automatic prediction of gender in lan-
guages which have inflectional morphology is usu-
ally seen as the domain of the POS tagger (such as
Hajic̆ and Hladká (1998)), or morphological anal-
yser (e.g. GERTWOL (Haapalainen and Majorin,
1995) for German and FLEMM (Namer, 2000) for
French).

One work in automatic gender prediction that is
similar to this one is the bootstrapping approach
of Cucerzan and Yarowsky (2003). Starting with
a seed set of nouns whose gender is presumably
language–invariant, they mine contextual features
to hypothesise the gender of novel instances. They
then extract simple morphological features of their
larger predicted set, and use these to predict the
gender of all nouns in their corpora.

The major differences between this work and
our own are in the approach Cucerzan and
Yarowsky use, and the classes that they can han-
dle. First, their semi-automatic approach relies on

1See Tucker et al. (1977), among others, for detailed stud-
ies of L1 and L2 gender acquisition.

a bilingual dictionary from which to extract the
seeds — if a machine readable one does not ex-
ist, they annotate the seeds by hand. Our approach
is fully automatic and can act with an arbitrary set
of seeds (although an arbitrarily pathological set
of seeds would perform arbitrarily poorly). Sec-
ond, their method is only well-defined for predict-
ing gender in languages with only masculine and
feminine, as they do not propose canonical neuter
noun candidates. Our approach makes no claims
on the number or underlying semantics of genders
in a language, and can equally be extended to pre-
dict other morphosyntactic properties such as case
and number, where canonical forms are poorly de-
fined.

3 Secondary Language Resources

We used a number of secondary language re-
sources: most notably annotated and unannotated
corpora, as well as inflectional lexicons and a POS
tagger.

3.1 Corpora

Our primary data sources were two corpora: the
TIGER treebank2 (Brants et al., 2002) for German
and the BAF corpus3 (Simard, 1998) for French.

TIGER is a corpus of about 900K tokens of
German newspaper text from the Frankfurt Rund-
schau, semi-automatically annotated for lemma,
morphology, POS and syntactic structure.

The BAF corpus is a bilingual French–English
collection of eleven documents comprising Cana-
dian government proceedings, machine translation
technical documents, and a Jules Verne novella.
There are about 450K sentence-aligned French to-
kens, with no annotation of morphology or syntax.
This corpus is heavily domain–specific, and the
lack of annotation provides particular problems,
which we explain below. Note that we make no
use of the English component of BAF in this pa-
per.

3.2 Inflectional Lexicons

Whereas our German corpus has gold-standard
judgements of gender for each token, the French
corpus has no such information. Consequently,
we use a semi-automatic method to match gen-
ders to nouns. Using the Lefff syntactic lexi-

2http://www.ims.uni-stuttgart.de/projekte/TIGER
3http://rali.iro.umontreal.ca/Ressources/BAF
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con4 (Sagot et al., 2006) and Morphalou5 (Ro-
mary et al., 2004), a lexicon of inflected forms,
we automatically annotate tokens for which the
sources predict an unambiguous gender, and hand-
annotate ambiguous tokens using contextual infor-
mation. These ambiguous tokens are generally an-
imate nouns like collègue, which are masculine
or feminine according to their referent, or poly-
semous nouns like aide, whose gender depends on
the applicable sense.

3.3 POS Taggers

Again, TIGER comes annotated with hand-
corrected part-of-speech tags, while the BAF does
not. For consistency, we tag both corpora with
TreeTagger6 (Schmid, 1994), a decision tree–
based probabilistic tagger trained on both German
and French text. We were interested in the im-
pact of the accuracy of the tagger compared to the
corrected judgements in the corpus as an extrin-
sic evaluation of tagger performance. The tagger
token accuracy with respect to the TIGER judge-
ments was about 96%, with many of the confu-
sion pairs being common nouns for proper nouns
(as the uniform capitalisation makes it less pre-
dictable).

4 Deep Lexical Acquisition

We use a deep lexical acquisitional approach sim-
ilar to Baldwin (2005) to predict a lexical prop-
erty. In our case, we predict gender and restrict
ourselves to languages other than English.

Baldwin examines the relative performance on
predicting the lexical types in the ERG, over
various linguistically-motivated features based on
morphology, syntax, and an ontology: the so-
called “bang for the buck” of language resources.

To take a similar approach, we extract all of the
common nouns (labelled NN), from each of the
corpora to form both a token and a type data set.
We generate our feature set independently over
the token data set and the type data set for both
morphological and syntactic features (explained
below) without feature selection, then perform
10-fold stratified cross-validation using a nearest-
neighbour classifier (TiMBL 5.0: Daelemans et al.
(2003)) with the default k = 1 for evaluation.

A summary of the corpora appears in Table 1.

4http://www.lefff.net
5http://www.cnrtl.fr/morphalou
6http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger

Corpus Tokens NN Tokens NN Types
TIGER 900K 180K 46K

BAF 450K 110K 8K

Table 1: A summary of the two corpora: TIGER
for German and BAF for French. The compara-
tively low number of noun types in BAF is caused
by domain specificity.

4.1 Morphological DLA

Morphology-based deep lexical acquisition is
based on the hypothesis that words with a similar
morphology (affixes) have similar lexical proper-
ties. Using character n-grams is a simple approach
that does not require any language resources other
than a set of pre-classified words from which to
bootstrap.

For each (token or type) instance, we generate
all of the uni-, bi-, and tri-grams from the word-
form, taken from the left (prefixes and infixes)
and the right (suffixes and infixes), padded to the
length of the longest word in the data. For exam-
ple, the 1-grams for fenêtre above would be f, e, n,
ê, t, r, e, #, #, ... from the left (L) and e, r, t, ê, n, e,
f, #, #, ... from the right (R).

We evaluate using each of 1-, 2-, and 3-grams,
as well as the combination of 1- and 2-grams, and
1-, 2-, and 3-grams from L and R and both (LR)
— to make 5 × 3 = 15 experiments.

Other resources for morphological analysis ex-
ist, such as derivational morphological analysers,
lemmatisers, and stemmers. We do not include
them, or their information where it is available in
our corpora, taking the stance that such tools will
not be readily available for most languages.

4.2 Syntactic DLA

Syntax-based deep lexical acquisition purports
that a lexical property can be predicted from the
words which surround it. Most languages have
at least local morphosyntax, meaning that mor-
phosyntactic and syntactico-semantic properties
are attested in the surrounding words.

For each token, we examine the four word forms
to the left and right, the POS tags of these word-
forms, and corresponding bi-word and bi-tag fea-
tures according to (Baldwin, 2005). For each type,
we take the best N of each feature across all of the
relevant tokens.

We examine both left (preceding, in languages
written left–to–right) and right (following) context
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to maintain a language agnostic approach. While
in general, contextual gender information is en-
coded in the noun modifiers, it is unclear whether
these modifiers precede the noun (as in head–
final languages like English or German), follow
the noun, or occur in some combination (as in
French).

While context in freer–word–order languages
such as German is circumspect, limiting our fea-
ture set to four words on each side takes into ac-
count at least local agreement (which is a fixture
in most languages). Other unrelated information
can presumably be treated as noise.

A summary of the feature set appears in Table
2.

4.3 Ontological DLA

We do not make use of an ontology in the way that
Baldwin does; although a candidate ontology does
exist for these particular languages (EuroWord-
Net; Vossen (1998)), the likelihood of such as re-
source existing for an arbitrary language is low.

5 Evaluation

We evaluate each of the feature sets across the
four data sets collected from the two corpora: the
German NN-tagged tokens in TIGER, the Ger-
man NN-tagged types in TIGER, the French NN-
tagged tokens in BAF and the French NN-tagged
types in BAF. There were four lexical types for
German: MASC, FEM, NEUT, and * and three lex-
ical types for French: MASC, FEM, *. The in-
stances labelled * were those to which a gender
could not be sensibly ascribed (e.g. abbreviations
such as PGs), or uniquely defined (e.g. gender-
underspecified nouns such as relâche).

Baseline accuracy for each set corresponds to
the majority–class: for German tokens and types,
this was FEM (41.4 and 38.4% respectively); for
French tokens and types, this was MASC (51.8 and
52.7%).

5.1 Morphology

The results for the morphological features are
shown in Table 3, for 1, 2, and 3-grams taken from
the left and right.

The performance over tokens is excellent, com-
parable to that of language-specific morphological
analysers. Taking characters from the right un-
surprisingly performs best, as both German and
French inflect for gender using suffixes.

German French

token type token type
L1 93.8 77.0 99.4 85.5
L2 93.6 77.0 99.4 88.0
L3 93.4 73.5 99.4 86.0

L1+2 93.8 77.3 99.5 87.5
L1+2+3 93.6 75.1 99.4 87.3

R1 97.1 85.3 99.5 87.9
R2 97.4 86.6 99.5 88.4
R3 96.9 84.2 99.4 85.3

R1+2 97.4 86.5 99.5 88.4
R1+2+3 97.3 85.9 99.5 87.5

LR1 95.6 78.5 99.4 85.5
LR2 96.2 82.0 99.4 86.1
LR3 95.7 78.9 99.4 85.7

LR1+2 96.1 81.6 99.4 86.1
LR1+2+3 96.0 80.9 99.4 85.5

Table 3: Morphological results using TiMBL

German French

token type token type
All 82.2 52.5 — —
TT POS 81.7 52.1 95.5 66.6
WF only 84.9 53.9 96.6 67.6

Table 4: Syntactic results using TiMBL

The best results invariably occurred when using
bigrams, or unigrams and bigrams together, sug-
gesting that gender is encoded using more than
just the final character in a word. This is intuitive,
in that a 1-letter suffix is usually insufficient ev-
idence; for example, -n in French could imply a
feminine gender for words like maison, informa-
tion and a masculine gender for words like bâton,
écrivain.

5.2 Syntax

The syntax results shown in Table 4 show the gold-
standard POS tags (ALL) against those estimated
by TreeTagger (TT POS), when combined with
wordform context. We also contrast these with us-
ing the wordforms without the part-of-speech fea-
tures (WF only). For type results, we took the
best N features across corresponding tokens — for
consistency, we let N = 1, i.e. we considered the
best contextual feature from all of the tokens.7

7Experimentally, a value of 2 gave the best results, with a
constant decrease for larger N representing the addition of ir-
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Feature type Positions/description

MORPHOLOGY
Left 1-, 2-, 3-, 1+2-, 1+2+3-grams
Right 1-, 2-, 3-, 1+2-, 1+2+3-grams
Left/Right 1-, 2-, 3-, 1+2-, 1+2+3-grams

SYNTAX
Wordform −4,−3,−2,−1, +1, +2, +3, +4
POS tag −4,−3,−2,−1, +1, +2, +3, +4
Bi-Word (−3,−2), (−3,−1), (−2,−1), (+1, +2), (+1, +3), (+2, +3)
Bi-Tag (−4,−1), (−3,−2), (−3,−1), (−2,−1), (+1, +2), (+1, +3), (+1, +4), (+2, +3)

Table 2: Morphological (n-gram) and syntactic (contextual) features.

Both token-wise and type-wise results are much
poorer than the ones observed using morphologi-
cal features. This is unsurprising, firstly because
gender is primarily a morphological feature, and
is encoded in syntax only through inflection of
contextual wordforms. Also, often contextual ev-
idence for gender is weak — for example, nouns
beginning with a vowel in French do not take the
canonical le, la, only l’ (e.g. l’ami (m)); similarly,
plural words in German do not inflect for gender:
i.e. instead of taking der, die, das, plural nouns
only take die (e.g. die Freunde (m)).

In fact, gender is so much a morphological fea-
ture that removing the part-of-speech features uni-
formly improves results. Again, this is unsurpris-
ing, seeing as the contextual parts of speech im-
pact only weakly on gender preferences.8 We re-
turn to discuss POS features below.

6 Discussion

The application of language–inspecific features to
the task of gender prediction was quite success-
ful, with both morphological and syntactic fea-
tures comfortably outperforming both the type and
token baselines in both German and French. This,
however, is not a stunning achievement, as a rule–
based system built by hand in a few minutes by
a native speaker of the target language could also
boast such claims.

The morphological features, based on character
n-grams, performed much better than the syntactic
features, based on contextual wordform and part-

relevant features. A more generous match over any of the cor-
responding features might alleviate this problem somewhat.

8Contextual parts-of-speech generally are uninformative
for gender: consider whether masculine, feminine, or neuter
nouns are more likely to be followed by a finite verb.
This is not exclusively the case, however, as subcategorisa-
tion frames are occasionally influenced by gender (e.g. the
propensity of deverbal nouns ending in -tion (f) to take a de-
complement); we saw no evidence of this in our data, how-
ever.

of-speech features. This is validated by the nat-
ural claim that the morphemes and semantic gen-
der of a word are somehow linked more strongly
than gender to its syntactic properties. Capturing
the clues in adjectival and determiner inflection,
shown in various examples above, is more chal-
lenging for an automatic system.9

We attest that the observed improvement in per-
formance between gender prediction in German
and French, especially at the token level, is not
an indication of a simpler task in French, only a
domain–specific corpus. While TIGER is a tree-
bank of newspaper data, the BAF is a small num-
ber of topical texts, with little variability.

This specificity perhaps is best evinced through
the ratio of tokens to types: for German there
are approximately 4 tokens/type, for French, this
number balloons to almost 14, despite the two
corpora being of the same relative size. Having
a large number of exemplars in the training split
will almost certainly bias prediction, as the gold-
standard tag is usually known. There is minimal
false evidence: the proportion of multi-gendered
types is only about 3%.

Consequently, the results over noun types are
more interesting than those over noun tokens, as
they smooth to some extent the multiple corpus in-
stances and domain effects. For types, morpholog-
ical features taken from the left are still much bet-
ter in French than German, but those taken from
the right give similar results. Syntactic features are
consistently better as well. It would be interesting
to contrast these with results taken from a French
treebank, to parallelise the results for German.

As mentioned above, using bigrams or a com-
bination of unigrams and bigrams generally gives

9Approaches like pertinence (Turney, 2006) using a very
large corpus could help to mine contextual features for an un-
known language. Of course, the probability of having a very
large corpus for an unknown language is low, so the problem
is somewhat circular.
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the best performance for morphological fea-
tures. This contrasts with the approach taken by
Cucerzan and Yarowsky (2003), who extract uni-
gram suffix morphological features. We hypothe-
sise that having longer features may give this tech-
nique better discrimination, although this remains
to be seen for other languages.

It is not surprising that suffix morphological
features perform better than those based on pre-
fixes for these languages, what is surprising is
that the morphological features taken from the left
work at all. On a token level, this can be par-
tially explained by instances of exact matches oc-
curring in the training data. On the type level,
we surmise that there is enough training data for
the classifier to accurately predict gender accord-
ing to instances of uniform length. This hypothe-
sis is supported by reducing the cross-validation
split to 10%-90% (effictively simulating a low-
density language); for German, unigrams from the
left drop to 56% accuracy, while unigrams from
the right only fall to 75%.

While the poor performance of the syntactic
features leads us to conclude that they are unre-
liable for this particular task, they may still be
fruitful in extending this approach to other lexical
properties. A similar morphosyntactic property to
gender is case, but this is more heavily syntactic
and a method based on morphology only is likely
to struggle.

In retaining our syntactic features, we analyse
the performance particularity of the POS tagger.
While it has a 4% error rate over tokens, a drop
of only a few tenths of a percentage is observed in
place of gold-standard tags. With wordform con-
text by itself performing better, having an accu-
rate POS tagger seems an inefficient use of our re-
sources, as it is only moderately available across
target languages. However, there are syntactico-
semantic properties such as countability and sub-
categorisation frames which rely on syntactic dis-
tinctions that are almost irrelevant for morphosyn-
tactic phenomena (e.g. particle vs. preposition
confusion). The downstream application of sim-
plistic POS taggers remains to be seen for these
tasks.

Obvious extensions to this work, as mentioned
above, are making use of a French treebank, and
examining other morphosyntactic lexical prop-
erties such as number and case, or syntactico-
semantic properties such as countability and sub-

categorisation frames. Taking several simple mor-
phosyntactic properties into account could lead to
a language–independent morphological analyser.

Just as important, however, is an analysis of
these types of properties (where they exist) for lan-
guages with a markedly different morphosyntax.
Examples are complex case systems seen in East-
ern European languages, agglutinative morphol-
ogy such as in Turkish, or infixing as in several
Austronesian languages.

Finally, the preponderance of data available in
English (among other languages) makes cross–
lingual deep lexical acquisition tempting. Simi-
larly to Cucerzan and Yarowsky (2003), where a
small bilingual dictionary exists, it seems possible
to bootstrap from a high–volume data set to that
of a smaller language, presumably by learning the
underlying lexical semantics (e.g. the countabil-
ity learning in van der Beek and Baldwin (2004)).
One telling question, however, is the necessary
“closeness” of the source and target language for
this to be feasible.

7 Conclusion

We presented an analysis of standard deep lexi-
cal acquisition features in naively predicting gen-
der automatically for German and French noun to-
kens and types. The morphological features per-
formed comparably to analysers trained on the tar-
get languages, while the syntactic features provide
scope for other morphosyntactic lexical features.
This methodology could aid in construction of lan-
guage resources in a language–independent man-
ner.
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Abstract 

Automatic mapping of key concepts from 

clinical notes to a terminology is an im-

portant task to achieve for extraction of 

the clinical information locked in clinical 

notes and patient reports. The present pa-

per describes a system that automatically 

maps free text into a medical reference 

terminology. The algorithm utilises Natu-

ral Language Processing (NLP) tech-

niques to enhance a lexical token 

matcher. In addition, this algorithm is 

able to identify negative concepts as well 

as performing term qualification. The al-

gorithm has been implemented as a web 

based service running at a hospital to 

process real-time data and demonstrated 

that it worked within acceptable time 

limits and accuracy limits for them. How-

ever broader acceptability of the algo-

rithm will require comprehensive evalua-

tions. 

1 Introduction 

Medical notes and patient reports provide a 

wealth of medical information about disease and 

medication effects. However a substantial 

amount of clinical data is locked away in non-

standardised forms of clinical language which 

could be usefully mined to gain greater under-

standing of patient care and the progression of 

diseases if standardised. Unlike well written texts, 

such as scientific papers and formal medical re-

ports, which generally conform to conventions of 

structure and readability, the clinical notes about 

patients written by a general practitioners, are in 

a less structured and often minimal grammatical 

form. As these notes often have little if any for-

mal organisation, it is difficult to extract infor-

mation systematically. Nowadays there is an in-

creased interest in the automated processing of 

clinical notes by Natural Language Processing 

(NLP) methods which can exploit the underlying 

structure inherent in language itself to derive 

meaningful information (Friedman et al., 1994).      

In principle, clinical notes could be recorded 

in a coded form such as SNOMED CT 

(SNOMED International, 2006) or UMLS 

(Lindberg et al., 1993), however, in practice 

notes are written and stored in a free text repre-

sentation. It is believed that the encoding of 

notes will provide better information for docu-

ment retrieval and research into clinical practice 

(Brown and Sönksen, 2000). The use of standard 

terminologies for clinical data representation is 

critical. Many clinical information systems en-

force standard semantics by mandating struc-

tured data entry. Transforming findings, diseases, 

medication procedures in clinical notes into 

structured, coded form is essential for clinician 

research and decision support system. Using 

concepts in domain specific terminology can en-

hance retrieval. Therefore, converting free text in 

clinical notes to terminology is a fundamental 

problem in many advanced medical information 

systems. 

SNOMED CT is the most comprehensive 

medical terminology in the world and it has been 

adopted by the Australia government to encode 

clinical disease and patient reports. The doctors 

want a system to develop a standard terminology 

on SNOMED CT for reporting medical com-

plaints so that their information is exchangeable 

and semantically consistent for other practitio-

ners, and permit automatic extraction of the con-

tents of clinical notes to compile statistics about 

diseases and their treatment. Translate medical 

concepts in free text into standard medical termi-

nology in coded form is a hard problem, and cur-
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rently mostly solved by employing human coders 

trained both in medicine and in the details of the 

classification system. To increase the efficiency 

and reduce human cost, we are interested to de-

velop a system that can automate this process. 

There are many researchers who have been 

working on mapping text to UMLS (The Unified 

Medical Language System), however, there is 

only a little work done on this topic for the 

SNOMED CT terminology. The present work 

proposes a system that automatically recognises 

medical terms in free text clinical notes and maps 

them into SNOMED CT terminology. The algo-

rithm is able to identify core medical terms in 

clinical notes in real-time as well as negation 

terms and qualifiers. In some circles SNOMED 

CT is termed an ontology, however this paper 

only covers its role as a terminology so we will 

use that descriptor only. 

2 Related Work 

2.1 Concept Mapping in Medical Reports 

There has been a large effort spent on automatic 

recognition of medical and biomedical concepts 

and mapping them to medical terminology.  The 

Unified Medical Language System Meta-

thesaurus (UMLS) is the world's largest medical 

knowledge source and it has been the focus of 

much research. Some prominent systems to map 

free text to UMLS include SAPHIRE (Hersh et 

al., 1995), MetaMap (Aronson, 2001), Index-

Finder (Zou et al., 2003), and NIP (Huang et al., 

2005). The SAPHIRE system automatically 

maps text to UMLS terms using a simple lexical 

approach. IndexFinder added syntactic and se-

mantic filtering to improve performance on top 

of lexical mapping. These two systems are com-

putationally fast and suitable for real-time proc-

essing. Most of the other researchers used ad-

vanced Natural Language Processing Techniques 

combined with lexical techniques. For example, 

NIP used sentence boundary detection, noun 

phrase identification and parsing. However, such 

sophisticated systems are computationally ex-

pensive and not suitable for mapping concepts in 

real time.  

MetaMap has the capacity to code free text to 

a controlled terminology of UMLS. The 

MetaMap program uses a three step process 

started by parsing free-text into simple noun 

phrases using the Specialist minimal commit-

ment parser. Then the phrase variants are gener-

ated and mapping candidates are generated by 

looking at the UMLS source vocabulary. Then a 

scoring mechanism is used to evaluate the fit of 

each term from the source vocabulary, to reduce 

the potential matches. The MetaMap program is 

used to detect UMLS concepts in e-mails to im-

prove consumer health information retrieval 

(Brennan and Aronson, 2003). 

The work done by (Hazelhurst et al., 2005) is 

on taking free text and mapping it into the classi-

fication system UMLS (Unified Medical Lan-

guage System). The basic structure of the algo-

rithm is to take each word in the input, generate 

all synonyms for those words and find the best 

combination of those words which matches a 

concept from the classification system. This re-

search is not directly applicable to our work as it 

does not run in real time, averaging 1 concept 

matched every 20 seconds or longer. 

2.2 Negation and Term Composition 

Negation in medical domains is important, how-

ever, in most information retrieval systems nega-

tion terms are treated as stop words and are re-

moved before any processing. UMLS is able to 

identify propositions or concepts but it does not 

incorporate explicit distinctions between positive 

and negative terms. Only a few works have re-

ported negation identification (Mutalik et al., 

2001; Chapman et al., 2001; Elkin et al., 2005).  

Negation identification in natural languages is 

complex and has a long history. However, the 

language used in medical domains is more re-

stricted and so negation is believed to be much 

more direct and straightforward. Mutalik et al  

(2001) demonstrated that negations in medical 

reports are simple in structure and syntactic 

methods are able to identify most occurrences. In 

their work, they used a lexical scanner with regu-

lar expressions and a parser that uses a restricted 

context-free grammar to identify pertinent nega-

tives in discharge summaries. They identify the 

negation phrase first then identify the term being 

negated. 

In the work of (Chapman et al., 2001), they 

used a list of negation phrases derived from 

1,000 sentences of discharge summaries. The 

text is first indexed by UMLS concepts and a 

rule base is then applied on the negation phrases 

to identify the scope of the negation. They con-

cluded that medical text negation of clinical con-

cepts is more restricted than in non-medical text 

and medical narrative is a sublanguage limited in 

its purpose, so therefore may not require full 

natural language understanding. 
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3 SNOMED CT Terminology 

The Systematized Nomenclature of Medicine 

Clinical Terminology (SNOMED CT) is devel-

oped and maintained by College of American 

Pathologists. It is a comprehensive clinical refer-

ence terminology which contains more than 

360,000 concepts and over 1 million relation-

ships. The concepts in SNOMED CT are organ-

ised into a hierarchy and classified into 18 top 

categories, such as Clinical Finding, Procedure, 

Body Part, Qualifier etc. Each concept in 

SNOMED CT has at least three descriptions in-

cluding 1 preferred term, 1 fully specified name 

and 1 or more synonyms. The synonyms provide 

rich information about the spelling variations of 

a term, and naming variants used in different 

countries. The concepts are connected by com-

plex relationship networks that provide generali-

sation, specialisation and attribute relationships, 

for example, “focal pneumonia” is a specialisa-

tion of “pneumonia”. It has been proposed for 

coding patient information in many countries. 

4 Methods 

4.1 Pre-processing 

Term Normalisation 

The clinical notes were processed at sentence 

level, because it is believed that the medical 

terms and negations do not often cross sentence 

boundaries. A maximum entropy model based 

sentence boundary detection algorithm (Reynar, 

and Ratnaparkhi, 1996) was implemented and 

trained on medical case report sentences. The 

sentence boundary detector reports an accuracy 

of 99.1% on test data. Since there is a large 

variation in vocabulary written in clinical notes 

compared to the vocabulary in terminology, 

normalisation of each term is necessary. The 

normalisation process includes stemming, con-

verting the term to lower case, tokenising the text 

into tokens and spelling variation generation 

(haemocyte vs. hemocyte). After normalisation, 

the sentence then is tagged with POS tag and 

chunked into chunks using the GENIA tagger 

(Tsuruoka et al., 2005). We did not remove stop 

words because some stop words are important 

for negation identification.  

 

Administration Entity Identification  
Entities such as Date, Dosage and Duration are 

useful in clinical notes, which are called admini-

stration entities. A regular expression based 

named entity recognizer was built to identify 

administration units in the text, as well as quanti-

ties such as 5 kilogram. SNOMED CT defined a 

set of standard units used in clinical terminology 

in the subcategory of unit (258666001). We ex-

tracted all such units and integrated them into the 

recognizer. The identified quantities are then as-

signed the SNOMED CT codes according to 

their units. Table 1 shows the administration en-

tity classes and examples. 

 

Entity Class Examples 

Dosage 40 to 45 mg/kg/day 

Blood Pressure 105mm of Hg 

Demography 69 year-old man 

Duration 3 weeks 

Quantity 55x20 mm 

 

Table 1: Administration Entities and Examples. 

4.2 SNOMED CT Concept Matcher 

Augmented SNOMED CT Lexicon 

The Augmented Lexicon is a data structure de-

veloped by the researchers to keep track of the 

words that appear and which concepts contain 

them in the SNOMED CT terminology. The 

Augmented Lexicon is built from the Description 

table of SNOMED CT. In SNOMED CT each 

concept has at least three descriptions, preferred 

term, synonym term and fully specified name.  

The fully specified name has the top level hierar-

chy element appended which is removed. The 

description is then broken up into its atomic 

terms, i.e. the words that make up the descrip-

tion. For example, myocardial infarction 

(37436014) has the atomic word myocardial and 

infarction. The UMLS Specialist Lexicon was 

used to normalise the term. The normalisation 

process includes removal of stop words, stem-

ming, and spelling variation generation. For each 

atomic word, a list of the Description IDs that 

contain that word is stored as a linked list in the 

Augmented Lexicon. An additional field is 

stored alongside the augmented lexicon, called 

the "Atomic term count" to record the number of 

atomic terms that comprise each description. The 

table is used in determining the accuracy of a 

match by informing the number of tokens needed 

for a match. For example, the atomic term count 

for myocardial infarction (37436014) is 2, and 

the accuracy ratio is 1.0. Figure 1 contains a 

graphical representation of the Augmented 

SNOMED CT Lexicon. 
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Figure 1: Augmented SCT Lexicon 

 

Token Matching Algorithm 

The token matching algorithm takes unstructured 

text and pre-processes it using the same tech-

niques as are applied to the concepts when gen-

erating the augmented lexicon. It then attempts to 

find each SNOMED CT Description which is 

contained in the input sentence. For each word, 

the algorithm looks up the Augmented Lexicon, 

retrieving a list of the descriptions which contain 

the word. Figure 2 gives a graphical representa-

tion of the data structure used in the algorithm. 

The elements of the matrix are n-grams from the 

input sentence with the diagonal line sequence 

runs of two words. The remainder of the matrix 

is the cell to the left of it with the next word ap-

pended onto it. In this way the algorithm covers 

every possible sequence of sequential tokens 

 
Figure 2: Matching Matrix example 

 

The data stored in each cell is a list of De-

scription IDs (DID) that are in all the tokens that 

comprise the cell, i.e. the intersection of each set 

of DID of each word. The score is then calcu-

lated using the "atomic term count", which stores 

the number of tokens that make up that descrip-

tion. The score is the number of tokens in the 

current cell that have the DID in common di-

vided by the number of tokens in the full descrip-

tion, i.e.: 

 

nDescriptio Fullin  Tokens of#

Sequencein  Tokens of#
Score =  

 

The algorithm itself is shown here in Figure 3 

as pseudo-code. Step 1 is building the Matching 

Matrix. Step 2 is using the Matching Matrix to 

find the best combination of sequences that gives 

the highest score. This final score is dependant 

on the number of tokens used to make the match 

divided by the total number of tokens in the input 

stream, i.e.: 

 

streaminput  in total Tokens of#

matches allin  used Tokens of#
Score =  

 

STEP 1 

for each word in list: 

 add entry to the Matching Matrix 

 for new column: 

   Intersect new word with  

   cell from matching table 

 

Sort the matching array in descending order based off 

the scores 

for each row in the matrix: 

 start at the right most cell 

 

STEP 2 

if the top score for the cell is 1.0 

 add cell details to current best match list, 

update current match score. 

  recursively call STEP 2 on cell 

(row=column+2, column=right) 

else: 

  move one column left to the next cell 

  or  

  the right-most cell of the next row if left cell 

empty 

 

repeat STEP 2 until visited all cells 

  

 

Figure 3: Matching Algorithm Pseudo-code 
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Adding Abbreviations 
Different sub-domains have different definitions 

of abbreviations. In medical domain, the abbre-

viations are highly ambiguous, as (Liu et al., 

2002) show that 33% of abbreviations in UMLS 

are ambiguous. In different hospitals, they have 

their own convention of abbreviations, and the 

abbreviations used are not the same cross the 

sections in the same sub-domain. This creates 

difficulties for resolving the abbreviation prob-

lem. As we are processing clinical data in the 

RPAH (Royal Prince Alfred Hospital) ICU (In-

tensive Care Unit), we believe that the abbrevia-

tions used in their reports are restricted to a sub-

domain and not that ambiguous. We use a list of 

abbreviations provided by the ICU department, 

and integrated them into the Augmented Lexi-

con. The abbreviations are manually mapped to 

SNOMED CT concepts by two experts in RPAH. 

The list consists of 1,254 abbreviations, 57 of 

them are ambiguous (4.5%). We decided not to 

disambiguate the abbreviations in the token 

matching, but return a list of all possible candi-

dates and leave it for later stage to resolve the 

ambiguity.  

4.3 Negation Identification 

In our system, we aim to identify the negation 

phrases and the scope of the negation. Two kinds 

of negations are identified, the pre-coordianted 

SNOMED CT concepts and concepts that are 

explicitly asserted as negative by negation 

phrases. A pre-coordinated phrase is a term that 

exists in SNOMED CT terminology that repre-

sents a negative term, for example no headache. 

SNOMED CT contains a set of per-

coordinated negative terms under the Clinical 

Finding Absent (373572006) category that indi-

cate the absence of findings and diseases. How-

ever, SNOMED CT is not an exhaustive termi-

nology, it is not able to capture all negated terms. 

Moreover clinical notes have many negation 

forms other than “absence”, such as “denial of 

procedures”. For a negative term that has a pre-

coordinated mapping in SNOMED CT, we mark 

up this term using the SNOMED CT concept id 

(CID), for other negations, we identify the nega-

tion phrases and the SNOMED CT concepts that 

the negation applies on. The following examples 

show the two different negations: 

 

no headache  (Pre-coordinated negation term) 

"absent of"  

CID: 162298006   

         no headache (context-dependent category) 

 

no evidence of neoplasm malignant  

(Explicitly asserted negation) 

negation phrase: "no evidence of"  

CID: 363346000  

         malignant neoplastic disease (disorder)  

     

 

Figure 4: Examples of Negations 

 

To identify explicitly asserted negation, we 

implemented a simple-rule based negation identi-

fier similar to (Chapman et al, 2001; Elkin et al, 

2005). At first the SNOMED CT concept id is 

assigned to each medical term, the negation 

phrases then are identified using a list of nega-

tion phrases in (Chapman et al, 2001). Then a 

rule base is applied on the negation phrase to 

check at its left and right contexts to see if any 

surrounding concepts have been negated. The 

algorithm is able to identify the negation of the 

form: 

 

   negation phrase … (SNOMED CT phrase)* 

   (SNOMED CT phrase)* … negation phrase 

 

The contexts can up to 5 non-stopwords long, 

which allow identification of negation of coordi-

nation structure, for example in the following 

sentence segment: 

 

… and pelvis did not reveal retroperitoneal 

lymphadenopathy or mediastinal lymphade-

nopathy … 

 

In this sentence segment, the terms, retroperi-

toneal lymphadenopathy and mediastinal lym-

phadenopathy are negated. 

Whenever there is a overlapping between Pre-

coordinated negation and explicitly asserted ne-

gation, we identify the term as pre-coordinated 

negation. For example, the term no headache 

(162298006) will not be identified as the nega-

tion of headache (25064002). 

4.4 Qualification and Term Composition  

In medical terminology a term may contain an 

atomic concept or composition of multiple con-

cepts, for example the term pain is an atomic 

concept and back pain represents composition 

two atomic concepts back and pain. Some com-

posite concepts appear as single concepts in 

medical terminology, for example back pain is a 

single concept in SNOMED CT. Such concept is 

called pre-coordinated concept. However, the 
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medical terms can be composed by adding adjec-

tive modifiers to form new terms, for example, 

the add qualifiers to the concept pain can have 

back pain, chronic back pain,  chronic low back 

pain etc. It is impossible to pre-coordinate com-

binations of all qualifiers into a terminology, be-

cause it will lead to term explosion. Term com-

position allows user to create new composite 

concepts using two or more single or composite 

concept. It is a solution to so called content com-

pleteness problem.  

The SNOMED CT terminology has a subclass 

of terms called qualifier values. The qualifier 

values are used to qualify core concepts. The 

SNOMED CT defined qualifying relationship 

adds additional information about a concept 

without changing its meaning. In most cases, the 

qualifier is an adjective. There are also some 

nouns classified as qualifiers, such as fractions 

(278277004).   

The purpose of the qualifier matching is to 

perform term composition. We separate the 

qualifiers apart from the Augmented Lexicon 

when performing concept matching, and build 

another lexicon that contains only qualifiers. An-

other reason for treating the qualifier differently 

is that the qualifier values always conflict with 

commonly used English words, for example, the 

unit qualifier day (258703001), side qualifier left 

(7771000), technique qualifier test (272394005). 

Such qualifiers cause noise when mapping text to 

concepts, and they should be refined by looking 

at their context. 

The Concept Matchers runs at first to identify 

any SNOMED CT concepts and qualifiers. A 

search then is run to look at the qualifiers’ sur-

roundings using the following rules to identify 

the scope of qualification. A concept can have 

multiple qualifiers to modify it. 

 

(Qualifier / JJ|NN)* … (Concept / NN)*  

(Concept / NN)* … (Qualifier / JJ|NN)*  

The first rule aims identify left hand side 

qualifications, for example in the following sen-

tence segment: 

 

… She had severe lethargy and intermittent 

right upper abdominal discomfort … 

 

The second rule aims to identify right hand 

side qualification, for example:  

 

... autoimmune screening were normal … 

 

If no concepts are found with in a context 

window, the qualifier then is not considered as a 

modifier to any medical concepts, thus removed 

to reduce noise. 

5 Results and Discussion 

The token matching algorithm has been imple-

mented as a web-based service named TTSCT 

(Text to SNOMED CT) that provides web inter-

faces for users to submit clinical notes and re-

spond with SNOMED CT codes in real-time. 

The system is able to encode SNOMED CT con-

cepts, qualifiers, negations, abbreviations as well 

as administration entities. It has been developed 

as the first step to the analysis and deep under-

standing of clinical notes and patient data. The 

system has been installed in RPAH (Royal 

Prince Alfred Hospital) ICU (Intensive Care Unit) 

aiming to collect bedside patient data. The web 

interface has been implemented in several clini-

cal form templates the RPAH, allowing data to 

be captured as the doctors fill in these forms. A 

feedback form has been implemented allowing 

clinicians to submit comments, identify terms 

that are missed by the system and submit correc-

tions to incorrectly labelled terms. Figure 5 

shows the concepts that have been identified by 

the TTSCT system and Figure 6 shows the re-

sponding SNOMED CT codes. 

 

 

No neoplasm malignant negation seen. 

 

Sections confirm CRANIOPHARYNGIOMA concept with small qualifier fragments qualifier of adjacent 

qualifier brain tissue concept. 

 

The slides concept show degenerate atypical qualifier urothelial cells concept occurring in sheets qualifier and 

singly with hyperchromatic qualifier enlarged qualifier irregular qualifier nuclei concept. 

 

 

Figure 5: A Sample Clinical Note 
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SNOMED CT Concept SCT Concept ID SCT Fully Specified Name 

CRANIOPHARYNGIOMA 40009002 Craniopharyngioma (morphologic abnormality) 

 189179009 Craniopharyngioma (disorder) 

Brain tissue 256865009 Brain tissue (substance) 

Cells 4421005 Cell structure (cell structure) 

 362837007 Entire cell (cell) 

hyperchromatic 9767008 Hyperchromatism (morphologic abnormality) 

 

Qualifiers SCT Concept ID SCT Fully Specified Name Scope of Qualification 

Small 255507004 Small (qualifier value)  

 263796003 Lesser (qualifier value)  

Fragments 29140007 Fragment of (qualifier value)  

Adjacent 18769003 Juxta-posed (qualifier value) brain tissue 

Atypical 112231000 Atypical (qualifier value) Cells 

Sheets 255292000 Sheets (qualifier value)  

Enlarged 260376009 Enlarged (qualifier value)  

Irregular 49608001 Irregular (qualifier value)  

Fragments 29140007 Fragment of (qualifier value) Tissue 

 
Negation Negation Phrase Negative Term 
no neoplasm malignant No neoplasm malignant (86049000) 

 

Figure 6: Concepts, Qualifiers and Negations Identified From the Sample Note 

 

We are currently collecting test data and 

evaluating the accuracy of our method. We plan 

to collect patient reports and cooperate with the 

clinicians in the RPAH to identify correct map-

pings, missing mappings and incorrect mappings. 

Although the algorithm hasn’t been comprehen-

sively evaluated on real data, we have collected 

some sample patient reports and a few feedback 

from some clinicians. Preliminary results demon-

strate that the algorithm is able to capture most 

of the terms within acceptable accuracy and re-

sponse time.  

By observation, missing terms and partially 

identified terms are mainly due to the incom-

pleteness in SNOMED CT. In the above exam-

ple, the atypical urothelial cells is only partially 

matched, because neither atypical urothelial cell 

is present in SNOMED CT as a single term nor 

urothelial can be found as a qualifier in 

SNOMED CT. However the qualified term mod-

erate urothelial cell atypia can be found in 

SNOMED CT. This raises the question of term 

composition and decomposition because the 

terms in the terminology have different levels of 

composition and the qualification can be written 

in a different order with morphological transfor-

mation (urothelia cell atypia vs. atypical urothe-

lial cell). The qualifier ontology and term rela-

tionships must be addressed to make sure term 

composition is done in a reliable manner.  

Restricting the concept mapping to noun 

phrase chunkers can rule out many false posi-

tives and also increase the speed of processing, 

however many pre-coordinated terms and quali-

fications cross noun phrase boundaries, for ex-

ample the term “Third degree burn of elbow 

(87559001)” will be broken into two terms 

“Third degree burn (403192003)” and “elbow 

(76248009)” and their relationship not preserved.  

6 Conclusions 

In conclusion, we propose an algorithm to code 

free text clinical notes to medical terminology 

and implemented it as a web-service system. The 

algorithm utilised NLP techniques to enhance 

lexical concept mappings. A qualifier identifier 

and negation identifier have been implemented 

for recognising composite terms and negative 

concepts, which can then create more effective 

information retrieval and information extraction. 

The system is yet to be fully evaluated, neverthe-

less the test on sample data shows it is already 

meeting expectations. In the future, we will per-

form comprehensive evaluation for the algorithm 

on real clinical data, and compare the system 

with some well known term indexing algorithms. 
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Abstract

Relevance feedback has already proven its
usefulness in probabilistic information re-
trieval (IR). In this research we explore
whether a pseudo relevance feedback tech-
nique on IR can improve the Question An-
swering task (QA). The basis of our explo-
ration is the use of relevant named entities
from the top retrieved documents as clues
of relevance. We discuss two interesting
findings from these experiments: the rea-
sons the results were not improved, and
the fact that today’s metrics of IR evalu-
ation on QA do not reflect the results ob-
tained by a QA system.

1 Introduction

Probabilistic Information Retrieval estimates the
documents’ probability of relevance using a small
set of keywords provided by a user. The esti-
mation of these probabilities is often assisted by
the information contained in documents that are
known to be relevant for every specific query. The
technique of informing the IR system which doc-
uments or information are relevant to a specific
query is known as relevance feedback. As reported
by Ruthven and Lalmas (2003), relevance feed-
back techniques have been used for many years,
and they have been shown to improve most proba-
bilistic models of Information Retrieval (IR).

Relevance feedback is considered as pseudo (or
blind) relevance feedback when there is an as-
sumption that the top documents retrieved have a
higher precision and that their terms represent the
subject expected to be retrieved. In other words,
it is assumed that the documents on the top of the
retrieval list are relevant to the query, and informa-

tion from these documents is extracted to generate
a new retrieval set.

In this paper we explore the use of a pseudo rel-
evance feedback technique for the IR stage of a
Question Answering (QA) system. It is our under-
standing that most questions can be answered us-
ing an arbitrary number of documents when query-
ing an IR system using the words from the topic
and the question. Because QA is normally a com-
putationally demanding task, mostly due to the on-
line natural language processing tools used, we be-
lieve that IR can help QA by providing a small list
of high-quality documents, i.e. documents from
where the QA system would be able to find the an-
swer. In this sense, documents containing answers
for a question in a sentence structure that can be
easily processed by a QA system will be highly
relevant.

In this work, we describe an experiment using a
pseudo relevance feedback technique applied over
a probabilistic IR system to try to improve the per-
formance of QA systems. Since most types of
factoid questions are answered by named entities,
we assume that documents addressing the correct
topic but not containing any named entity of the
expected answer class would have a low probabil-
ity of relevance regarding QA. Therefore, we hy-
pothesise that documents containing named enti-
ties of the correct class have higher probability of
relevance than those not containing them.

The relevance feedback applied to QA differs
from the one applied to general IR in the sense
that QA deals more with the presence of a passage
that can answer a certain question than with the
presence of its topic. In this sense, our technique
focuses on feeding terms into the IR engine that
could represent an answer for the questions.

Despite the fact that it is possible to apply the
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technique to most question types, in this work we
only report the results of questions regarding peo-
ple’s names. We understand that the other types of
questions are as important as this and may gener-
ate different results due to the different frequency
of their appearance in the documents; however
people’s names can provide us with concrete re-
sults since it is a type of named entity that has been
widely experimented on recognisers and is likely
to be present in most types of newswire texts, as
those in Aquaint corpus (Graff, 2002). We per-
formed our experiments using the Aquaint cor-
pus and the set of question from the QA track of
TREC’2004 (Voorhees, 2005).

The next section provides some background in-
formation on IR techniques applied to QA. Sec-
tion 3 explains the principles behind the named-
entity relevancy feedback technique and how we
implemented it. Section 4 focuses on the evalu-
ation of the technique regarding its use as an IR
tool and as a module of a QA system. Section 5
presents the concluding remarks and future work.

2 Document Retrieval for Question
Answering

Question Answering is the field of research that
focuses on finding answers for natural language
questions. Today, QA focuses on finding an-
swers using textual documents, as in the TREC
QA Tracks (Voorhees and Tice, 2000). Although
finding answers by first populating a database with
likely answers to common questions and then con-
sulting the database at question time is still an in-
teresting task from an information extraction point
of view, most research in this area is focusing
on online open domain question answering using
large collections of documents.

Research on offline/database and online/textual
QA styles has shown that using offline/database
information is possible to achieve a higher pre-
cision with the cost of a lower recall comparing
with online/textual information (Mur, 2004). Even
though methods using textual corpora have not yet
obtained a precision high enough for practical ap-
plications, a large amount of question types can
hypothetically be answered.

Most QA systems follow a framework that
involves processing the question, finding rele-
vant documents and extracting the required an-
swer. The majority of QA systems tend to apply
their complex methodologies on both ends of this

framework (on question analysis and on answer
extraction), but in order to extract the correct an-
swer for a question, a QA system needs to find a
document that contains the answer and some sup-
porting evidence for it. Therefore, one of the fun-
damental stages of a QA system is the document
retrieval phase. It does not matter how advanced
the techniques used by the QA are if the retrieved
set of documents does not include the answer it
requires.

In Section 4 we show that, using just the ques-
tion topic as the IR query, it is possible to obtain
reasonable results on a QA system. However, de-
pending on the complexity of the techniques used
by the QA system, it is necessary to reduce the
retrieval set to a minimal and optimal number of
documents in order to allow the completion of the
task in a reasonable time.

Some work has been done on specific IR models
for aiding the QA task. The work of Monz (2004)
defines a weighting scheme that takes into consid-
eration the distance of the query terms. Murdock
and Croft (2004) propose a translation language
model that defines the likelihood of the question
being the translation of a certain document. Tiede-
mann (2005) uses a multi-layer index containing
more linguistic oriented information and a genetic
learning algorithm to determine the best parame-
ters for querying those indexes when applied for
the QA task. In other words, Tiedemann argues
that since question answering is an all-natural lan-
guage task, linguistic oriented IR will help finding
better documents for QA. However, just the use
of extra information may not necessarily improve
QA when it is important to know the right config-
uration of your modules for the task.

Another way of limiting the amount of infor-
mation sent to the QA system is by selecting the
best passages or sentences that a QA system will
analyse. Some IR work focuses on improving QA
by passage retrieval re-ranking using word over-
lap measures. For instance, Tellex et al. (2003)
compared a group of passage retrieval techniques
and concluded that those that apply density-based
metrics are the most suitable to be used on QA.

Since most IR is treated as a blackbox by the
QA community, manipulation of the IR results is
normally performed by query modification. The
most common query modifications are lexical sub-
stitution and query expansion. These techniques
seem to be obligatory for most QA systems when
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the original retrieval set has a small recall. How-
ever, it tends to reduce the precision in a way
that harms QA by introducing documents of unre-
lated subjects. On the other hand, White and Sut-
cliffe (2004) have shown that since only a small
amount of terms from questions match the sup-
porting answer sentence, it is important for QA
systems that rely on word overlap to apply some
semantic or morphological expansion.

Another way of modifying the IR phrase is by
performing passive to active voice transformation
of the question, as in Dumais et al. (2002). This
has been shown to work well since some IR sys-
tems give preference to the distance and order of
terms in the query by making the affirmative voice
of the answers preferable over the passive one of
the questions.

Most IR research applied to QA use similar
metrics to Roberts and Gaizauskas (2004) to eval-
uate their systems. These metrics, defined by the
authors as coverage and redundancy, evaluate re-
spectively the percentage of a set of questions that
could be answered using the top-N documents of
a retrieval set, and how many answers on average
it finds.

It is understandable that this metrics are closely
related to the needs of QA systems, and we will
show that even though they provide us with the in-
formation of how likely we are of finding the an-
swer in the retrieval set, they do not guarantee a
better QA performance. This and other issues are
addressed in the following sections.

3 Relevance Feedback Using Named
Entities

Because named entities are required as answers
for most fact-based questions, we are hypothesis-
ing that a relevance feedback mechanism that fo-
cuses on this kind of information will be useful.
Therefore, we are focusing on the QA concept of
relevance by trying to reduce the number of doc-
uments that would not be able to answer a factoid
question. By doing this, not only the process will
guide the document retrieval towards documents
relevant to the question topic (general IR rele-
vancy) but also towards those containing entities
that could answer the question (QA relevancy).

Let us say that we have a questionQ of a
topic T1 and a probabilistic IR engine using the

1The distinction between topic (or target) and question is
made clear on recent TREC QA Tracks (Voorhees, 2005).

combinationQ+T to obtainR1 as a set of docu-
ments. Our process applies a named entity recog-
niser over the top-N ranked documents ofR1, thus
obtaining a set of named entitiesE. The feedback
process consists of enriching the previous query as
Q+T+E in order to obtain a new set of documents
R2.

Our expectation on this technique is that not
only documents containing the correct answer in
R1will be boosted in ranking onR2, but also that
documents that have a high ranking inR1and do
not contain any name entity of the expected an-
swer type will then be demoted inR2. Therefore,
documents that theoretically would not contribute
to the QA performance will not take part on the an-
swer extraction phase, allowing their slots of pro-
cessing to be occupied by other more relevant doc-
uments.

In order to exemplify this process, consider the
TREC 2005 QA Track question 95.3 regarding
the return of Hong Kong to Chinese sovereignty:
“Who was the Chinese President at the time of the
return?”

The first phase of the process is the question
analysis that defines what the expected answer
type is and what the question main words are.
Then the question and its topic define an IR query
that generates the retrieval set R1.

The next process extracts the named entities of
the expected answer type of the firstN documents
in the R1 set of documents. For the example, fif-
teen names of people were extracted, mostly Chi-
nese and all of them related with politics. A new
IR query is built using these fifteen names and the
final setR2of documents is retrieved.

The list of names found for this query is listed
on Table 1. We can observe that, among those
names there is the correct answer for the question
(President Jiang Zemin), which helped generating
a better retrieval for this question with the pseudo
relevance feedback mechanism.

Table 1: Extracted Named Entities
President Mario Alberto N. L. Soares President Jiang Zemin
General Secretary Aleksandr Zharikov Minister Qian Qichen
Minister Sabah Al- Ahmad Al-Jaber Minister Zhou Nan
Prime Minister Mahmoud Zouebi Mr. Deng Xiaoping
President Maumoon Abdul Gayoom Premier Li Peng
President Ugo Mifsud Bonnici Liu Huaqiu
President Meets Chinese laws Will
President Leonid Kuchma

However, most cases of question answering systems would
have the topic extracted from the question itself.
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Figure 1: System overview for the the relevance
feedback process.

Our hypothesis is that the named-entity feed-
back technique improves the overall document re-
trieval for QA by providing a retrieval set of doc-
uments that facilitates the extraction of the correct
answer by a QA system. The technique should
theoretically improve good questions (where a
correct feedback is obtained) and not deteriorate
bad ones2. Next section describes the experiments
we performed and the results.

3.1 Implementation

The technique consists of posting the original
question to a probabilistic IR engine, extracting
the named entities of the expected answer type
from the top-N results, and re-feeding the IR en-
gine with an expanded query. By doing this, we
are telling the IR system that documents contain-
ing those named entities are relevant to the ques-
tion. Several implementations and set-ups can be
tested using this approach, but the basic frame-
work we implemented is shown on Figure 1.

We developed our IR system using C++ and
the XAPIAN3 Toolkit for Probabilistic IR. The
Aquaint Corpus (Graff, 2002) was indexed using
full text but stopwords, and it was searched using
Xapian Probabilistic Methods (it uses Robertson’s
BM25 (Robertson et al., 1992) for ranking).

As can be seen in Figure 1, the user poses a
question to the system. It is simultaneously pro-
cessed by the question analyser and the searcher.
The question analyser returns the expected answer
type (a named-entity class for factoid questions),
while the searcher returns a list of documents or
snippets of text from the Aquaint corpus ranked by

2A question is bad when used as a query on an IR system,
it is unable to retrieve any document containing an answer.

3http://www.xapian.org/

Xapian BM25 implementation. The named-entity
recogniser receives the output of these two pro-
cesses and extracts the corresponding named enti-
ties from the received files. Once this is done, it
re-feeds the query to the searcher with the addi-
tional named entities. The searcher then feeds the
results into the QA system.

4 Experiments and Evaluation

We use in our experiments the data collec-
tion made available by NIST on the TREC QA
Tracks4. All the questions and judgement files of
TREC 2003 QA Track were used on a prelimi-
nary evaluation of this process. Because this ex-
periment required that all components shown on
Figure 1 be fully functional, several setups were
implemented, including a manual question classi-
fication (to ensure 100% correctness) and the im-
plementation of a simple passage retrieval algo-
rithm.

In our evaluation, we labelled documents as rel-
evant or not relevant by assuming that relevant
documents are those containing the required an-
swer string. These early tests showed us that us-
ing the set of 500 TREC 2003 questions with our
pseudo-relevance feedback technique improved
the results over the initial retrieval. The improve-
ment, however, was small and not statistically rel-
evant.

On our system architecture, the question classi-
fication was performed using the Trie-based tech-
nique (Zaanen et al., 2005) which has a perfor-
mance of around 85% accuracy when trained with
the set of questions made available by Li and Roth
(2002). This means that in 15% of the cases, we
might have an immediate degradation of the re-
sults (by adding the wrong named-entities to the
query). Because of this, we trained the classifica-
tion with the same questions as the verification set.
This was done to ensure complete correctness on
this part of the module. However, because of the
large amount of expected answer types present in
the classification we used, named entity recogni-
tion proved to be a particularly complex task.

Since many questions required numbers as their
answers and most documents contain some kind
of number, defining a document relevant and us-
ing numbers as indication of relevancy does not
work well. This demonstrated that even though we
obtained better overall results using all categories

4http://trec.nist.gov/data/qa.html
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available, some of them were a real challenge for
the evaluation.

We also observed that some named-entity
classes could not be properly identified by our
named-entity recogniser. Therefore we shifted our
attention to only people’s names, as we understood
them to be less likely to suffer from the issues
above reported. We also started to use two well
known named entity recognisers: Lingpipe5 and
ANNIE6 on Gate.

The evaluation was performed intrinsically and
extrinsically in the same sense as Spärck Jones
and Galliers (1996). Intrinsic and extrinsic eval-
uations differ because the former evaluates a sys-
tem according to its primary function, while the
latter evaluates a system according to its func-
tion or its setup purpose. In our study, the eval-
uation was performed using the combined set of
questions and topics of the TREC 2004 and 2005
along with their respective judgement sets. Dif-
ferent setups were experimented, but mainly vari-
ations of passage window, the number of top doc-
uments used and the weights assigned to the dif-
ferent components (T, Q andE) of the query. We
extrinsically evaluated the effectiveness of the re-
trieval sets by the percentage of correct answers
the AnswerFinder(Molla and van Zaanen, 2006)
system generated, and intrinsically evaluated the
same sets of documents using the standard pre-
cision metric for IR and other metrics defined by
Roberts and Gaizauskas (2004) for IR on QA:

• Precision: percentage of related documents
over all questions;

• Coverage: percentage of questions that po-
tentially could be answered using the top-N
documents; this means that at least one of
the top-N documents potentially answers the
question; and

• Redundancy: average of how many answers
can be found using the top-N documents;

We applied the retrieved document set on An-
swerFinder and measured the exact results using
the patterns made available by Litkowski on the
TREC QA Data Webpage.

5http://www.alias-i.com/lingpipe/
6http://gate.ac.uk/ie/annie.html

4.1 Results

Our evaluation focused on using pseudo relevance
feedback to enrich the IR query used by QA sys-
tems to find some documents that could answer
natural language questions. We performed an in-
trinsic evaluation using some standard metrics for
IR on QA, and, at the same time, we also per-
formed an extrinsic evaluation by using the re-
trieval set on the QA system.

Sets of documents were retrieved using a com-
bination of Topics (T), Questions (Q), Entities
(E) and Answers (A). The following combinations
were tested:

• T: Only the topic is sent as a query. This set of
queries evaluates the potentiality of improv-
ing the retrieval set that NIST provides for
every topic.

• TQ: The queries are made of Topic and Ques-
tion. This is the current retrieval set used by
the AnswerFinder system.

• TQE: This is the feedback technique, where
Topic, Question and the Named Entities ex-
tracted from top-N documents are combined;

• TQA: This is the optimal feedback technique,
where Topic, Question and Answers are com-
bined. This set evaluated how far from the
optimal retrieval we are;

• TQEA: These queries combine the feed-
back technique with the answers, so we can
measure the amount of noise introduced by
adding bad named entities. We made sure
that a named entity that was also the answer
was not introduced twice so its score would
not be erroneously duplicated on the query.

Different combinations could also be tested, for
instanceTA, TE or just A, E and Q. We under-
stand that those and other combinations could pro-
vide some insight on certain matters, but we be-
lieve that they would not represent a realistic re-
trieval set. It is a fact that the terms fromT must
be present in the retrieval set, since all documents
must address the correct topic. For instance, in-
cluding Q without havingT will not generate a
relevant retrieval because the subject of the ques-
tion is not present. Also, includingA or E without
Q andT may represent a totally different retrieval
that is not desired in this study.
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Figure 2: Precision

Figure 3: Coverage

The precision, coverage and redundancy ob-
tained for the TREC 2004 and 2005 questions re-
garding people’s name are respectively shown in
Figures 2, 3 and 4. We note that the results for the
feedback technique do not improve the results on
neitherT nor TQ on any of the measures we ob-
tained. As expected, the addition of the answer on
TQA represents the optimal retrieval set, obtain-
ing the coverage of 86% on the first document per
question and over 90% on the second.

The noise introduced on TQEA is not a ma-
jor concern when the answers are involved in the

Figure 4: Redundancy

query. This is an indication that most entities
found by the feedback mechanism do not represent
an answer. This raises two issues: how to improve
the technique so that the answers are included in
the feedback; and how to minimise the noise so
that a potential good feedback is not worsened.

To address the first problem we can foresee
two solutions: one is improving the accuracy of
the named-entity recogniser, something we can-
not address in this study. The other is increas-
ing the search space without adding more noise
in the query. This is a difficult task and it could
be achieved by finding the smallest possible win-
dows of text containing the answer on several doc-
uments. We performed some experiments using
different numbers of documents and variable pas-
sage size, at the moment fewer documents and
smaller passages provide our best results.

We understand that documents in the first re-
trieval setR1 will contain named-entities of the
same type, but not necessarily the correct one (the
answer), thus creating some noise in the query. We
believed that a certain degree of noise would not
hurt the retrieval performance. However, our ex-
periments, as shown, demonstrate otherwise. The
noise created by erroneous entities affects the per-
formance once the elements inE become more im-
portant than the elements inQ. Because we can-
not guarantee the correctness of any of the named-
entities included inE, the resulting retrieval set
R2 might represent a worse retrieval set thanR1.
However, these cases may not influence the results
in a QA system sinceR1would also not lead to the
correct result.

This shows that our feedback technique suf-
fers from the same flaws most pseudo-feedback
techniques have. For instance Ruthven and Lal-
mas (2003) show that when the initial retrieval
set is not good, the pseudo-feedback techniques
is likely to worsen the results because, instead of
bringing the query closer to the topic at hand, it
will take it further away (a phenomenon called
query drift). We hypothesise that since our tech-
nique is meant to be applicable over a QA system,
if the initial set of results is bad (i.e. it does not
contain the answer), there is not much that can be
worsened. To confirm this hypothesis, it is neces-
sary to perform an evaluation over a QA system.
Table 2 shows the runs of QA performed using the
same set of questions of the intrinsic evaluation
and the documents retrieved by the retrieval sets
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Table 2: Correct Answers on AnswerFinder
Run Exact
T 19.6%
TQ 28.6%
TQE 23.2%
TQA 28.6%
TQEA 32.1%

shown before.
What can be observed here is that the feedback

technique (TQE) offers a better set of documents
than the one using only the topics (T). However,
they are still worse than the topic and question
ones (TQ). An interesting result is thatTQEA is
the best run, which may show that the inclusion
of entities can help improve QA. We have not yet
performed a deep analysis of this case to verify
its cause. Even though our process did not show
improvements over the baseline techniques, it was
very important to find that the results of the (intrin-
sic) evaluations of the IR component do not paral-
lel the results of the (extrinsic) evaluation of the
QA system. In spite of the fact that high precision,
coverage and redundancy represent a better chance
of finding answers, we show that they do not guar-
antee a better performance over a QA system.

Comparing the results ofT andTQ it is possible
to observe that they are very similar on the intrin-
sic evaluation and quite different on the QA sys-
tem. Therefore, what appears to help question an-
swering is the presence of more context words so
that the answers not only appear in the document
but are also present in the context of the questions.
This is mostly due to the fact that most QA sys-
tems tend to work with full discourse units, such
as sentences and paragraphs, and the selection of
those are normally based on words from the topic
and the question.

In summary our experiments did not confirm
the hypothesis that named-entities feedback would
help improving QA. But, in the ideal situations
where the answers are identified and included in
the queries, the improvements are clear under an
intrinsic evaluation. The differences between the
intrinsic evaluation and extrinsic one point out that
there are many issues that IR metrics are not cur-
rently covering.

5 Concluding Remarks and Future Work

In this paper, we have looked at whether a pseudo
relevance feedback mechanism could help the QA

process, on the assumption that a good indication
of a document relevancy for its usage on a QA sys-
tem is the presence of named entities of the same
class required as the answer for a certain question.
Our assumption was based on the fact that docu-
ments not containing those entities are less likely
to help provide the correct answer and every en-
tity of the right type has a probability of being the
answer.

We have described our evaluation of the hypoth-
esis using known IR metrics and a QA system.
Our main conclusions are:

• Because we have not yet reported satisfac-
tory results, we believe that even though the
method is conceptually sound, it will not pro-
duce good results unless a more sophisticated
control over the introduced noise is achieved;
and

• The evaluation of the technique brought to
our attention the fact that it is not possible to
state that a retrieval technique is better just by
relying on conventional IR evaluation met-
rics. The differences on the intrinsic and ex-
trinsic evaluations demonstrate that there are
many hidden variables that are not taken into
account in metrics such as precision, cover-
age and redundancy.

As further work, we plan to repeat our evalua-
tion using different QA systems, since other QA
systems may give preference to different text fea-
tures offering a better insight on how the IR eval-
uation metrics correlate with the QA results. We
are also planning to use the named-entity recog-
niser that is being developed by our research group
and to extend the system to use a more advanced
passage retrieval algorithm.
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Abstract
The necessity of a gradient approach to
salience ranking of referents introduced
in a discourse is evaluated by looking at
(unbound) pronoun resolution preferences
when there are competing non-salient
referents. The study uses a sentence-
completion technique in which partici-
pants had to resolve pronouns (“John
sprayed the paint on the wall and then
it ...”). Results suggest that a gradient
salience model is necessary. Syntactic and
semantic prominence effects on pronoun
resolution were also compared with results
showing that semantic prominence (i.e.,
agent > patient) determined the salience
ranking of competing referents.

1 Introduction

A pervasive theme in theories of discourse coher-
ence is the concept of salience. It has proven to be
a useful means of explaining how particular enti-
ties seem to receive some preferential treatment in
both the production and perception of a discourse.
For instance, it has long been observed that entities
realized in certain structural positions (e.g., gram-
matical subject or first-mention) are preferred en-
tities for topic continuation (Givón, 1983)—that
is, they are preferentially referred to in the sub-
sequent utterance. Similarly, pronominal refer-
ence to entities realized in certain structural po-
sitions (again, subject position, for example) is
preferred to reference by repeated name (Gordon
et al., 1993). In order to account for these ob-
servations, it has often been theorized that in the
speaker’s and hearer’s mental representation of the
discourse, these entities are salient (similar terms
include focused or given).

To illustrate this line of thinking, consider
(1). The pronoun in the second clause is pref-
erentially interpreted as referring to LUKE rather
than MAX. This has been observed in numer-
ous psycholinguistic investigations (cf., Hudson-
D’Zmura and Tanenhaus (1997); Mathews and
Chodorow (1988); inter alia). In a simple salience-
based account, it is hypothesized that LUKE is a
salient entity after the first clause and that refer-
ence to salient entities should be pronominal.

(1) Lukei hit Maxj and then hei/#j ran home.

While many studies have investigated differ-
ences between pronominal reference to salient and
non-salient entities, I have found no studies that
have looked explicitly at what happens when a
salient entity is not compatible with the pronoun,
but more than one non-salient entity is. This is one
of the main themes of the present study. Putting it
as a question, what happens when there is compe-
tition among non-salient entities for pronoun inter-
pretation? The answer to this question has some
wider implications for how salience is to be un-
derstood. In particular, the answer to this ques-
tion leads to conclusions about whether theoretical
models require a gradient model of salience rank-
ing or whether a categorical model is sufficient.
In the following background section I will discuss
this primary question further and introduce two
related questions which must also be addressed.
This will be followed by description of the experi-
ment performed in this study. Briefly, results of the
experiment are consistent with a gradient model
of salience ranking. Implications of these findings
are discussed in the final section.
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2 Background

2.1 Pronoun Reference Resolution
In this paper I will be focusing on the interpreta-
tion of unbound pronouns. Much has been writ-
ten on this area of anaphora resolution and only
a cursory overview is possible in this paper (see
Hirst (1981) for a comprehensive overview of ear-
lier work and Mitkov (2002) for an overview of
more recent work). In this section, I will describe a
generalized model of pronoun resolution and how
salience plays a role in this process as well as dis-
cuss in some detail how salience is determined.

When interpreting pronouns in discourse, read-
ers search a list of previously evoked entities in
memory. Following Karttunen (1976) and Heim
(1982), I will call these discourse referents (or just
referents, for short). The list of discourse referents
is ranked according to salience.

Two basic approaches may be taken to salience
ranking: a categorical approach in which at most
one referent is salient and all others are then, by
definition, not salient; or a gradient approach in
which referents are ranked along a salience con-
tinuum. In computational implementations of pro-
noun resolution algorithms, a gradient approach is
often used, perhaps by necessity (cf., Lappin and
Leass (1994)). However, psycholinguistic stud-
ies are often not so explicit about the approach
taken and the results of most studies can be ex-
plained in terms of a categorical salience rank-
ing. For instance, Gernsbacher and Hargreaves
(1988) present a model of comprehension in which
order-of-mention determines salience ranking, but
their experimental evidence only compares first
and second mentioned entities. In another case,
Hudson-D’Zmura and Tanenhaus (1997) seek to
verify the basic predictions of Centering Theory
(Grosz and Sidner, 1986; Grosz et al., 1995),
one aspect of which is a syntactic hierarchy:
subjects > objects > others. However, their
experimental evidence really only demonstrates a
categorical ranking: subjects > others.

The difference between the categorical and gra-
dient approaches is important in the present study
because if salience is categorical, then pronomi-
nal reference should show no preference among
non-salient entities. On the other hand, if salience
is gradient, then it should be possible to observe
preferences even among non-salient (or perhaps
more accurately here, less salient) entities.

I should note however, that while it is clear that

those who take a gradient point of view must rule
out a categorical point of view, I do not intend to
imply that those studies that have a categorical ap-
proach (implied or otherwise) necessarily rule out
a gradient approach. Many of those investigators
may in fact be amenable to it. However, actual ev-
idence of the necessity of a gradient approach in
theory remains somewhat scarce. It is hoped that
the present study will add to this evidence.

2.2 Computing Salience
Returning then to the model of pronoun resolu-
tion, the list of referents is first pruned to remove
incompatible referents based on morphosyntactic
features (Arnold et al., 2000; Boland et al., 1998).
Then search for a referent should proceed with re-
spect to the ranking (either categorical or gradient)
of the referents in the list. But what determines
this ranking? One of the most dominant factors
has been shown to be syntactic prominence. How-
ever, in Rose (2005), I have argued that (in En-
glish, at least) syntactic and semantic information
are often conflated. I will therefore discuss both
of these factors below. In addition, another signif-
icant factor is coherence relations, also discussed
this further below.

2.2.1 Syntactic Prominence
Several ways of determining the syntactic

prominence of evoked entities have been discussed
in the literature. These include left-to right order-
ing in which discourse referents introduced ear-
lier are more prominent than those introduced later
(Gernsbacher and Hargreaves, 1988), depth-first
hierarchical search in which referents introduced
higher and leftward in the syntactic tree are more
prominent (Hobbs, 1978), and grammatical role in
which referents introduced as subjects are more
prominent than those introduced in other roles
(Grosz et al., 1995). These different approaches
typically make the same predictions when dealing
with syntactically simpler constructions (i.e, no
subordinate clauses or complex noun phrases), but
may make different predictions with more com-
plex constructions. The stimuli used in the exper-
iment described below are all relatively syntacti-
cally simple and so in this paper I will not evaluate
the differences among these various approaches.1

1See Rose (2005) for detailed discussion of these differ-
ent approaches and a psycholinguistic and corpus linguistic
comparison of hierarchical and grammatical role approaches.
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However, for expository purposes, I will use gram-
matical role labels in discussion below.

When ranking referents according to the gram-
matical role in which they have been introduced, a
categorical ranking predicts that the referent intro-
duced as subject is salient and that any other refer-
ent is non-salient. This is the point of view implic-
itly taken in Stevenson et al. (2000), for example,
in which they argue that a pronoun should refer to
the referent introduced as subject of the preceding
utterance.2 A gradient salience approach, how-
ever, requires a more detailed prominence hierar-
chy such as that in (2). This is the point of view
taken in most studies using the Centering frame-
work (Grosz and Sidner, 1986; Grosz et al., 1995).
An even more detailed gradient salience approach
may be taken in which the points on the promi-
nence hierarchy carry different (relative) weights.
This is the approach taken in many practical appli-
cations such as the pronoun resolution algorithm
of Lappin and Leass (1994).

(2) subject > object > oblique > others

2.2.2 Semantic Prominence
In English, syntactic role and semantic role

are often conflated. That is, syntactic subjects
are often semantic agents while syntactic objects
are often semantic patients, and so on. Thus,
it could be that the kind of pronoun resolution
preferences previously observed and usually at-
tributed to syntactic prominence effects might ac-
tually be attributed to semantic prominence ef-
fects. In other words, perhaps subject-preference
is actually agent-preference.

In order to investigate this question, in Rose
(2005), I used argument-reordering constructions:
constructions which allow the order of arguments
to vary—hence effecting a different relative syn-
tactic prominence of discourse referents—with no
(or minimal) change in their semantic role. For in-
stance, so-called psychological-verbs have the al-
ternate forms shown in (3)-(4).

(3) The audience admired the acrobats.
(4) The acrobats amazed the audience.

2More precisely, Stevenson et al. (2000), using the Cen-
tering framework (Grosz and Sidner, 1986; Grosz et al.,
1995), argue that the backward-looking center, Cb, should
refer to the subject of the preceding utterance. This is a sim-
plification of the original Centering proposal in which it was
suggested that the Cb refer to the highest-ranking member of
the set of forward-looking centers in the previous utterance
which is realized in the current utterance.

In (3), AUDIENCE is realized in a more syn-
tactically prominent position than is ACROBATS:
that is, in subject position. The reverse is true
in (4). On the other hand, the semantic roles re-
main the same in both: ACROBATS is the stimu-
lus while AUDIENCE is the experiencer. If syn-
tactic prominence is most important, then a sub-
sequent pronoun they should pick out AUDIENCE

in (3) and ACROBATS in (4). On the other hand,
if semantic prominence is most important, then a
subsequent pronoun should pick out the same dis-
course referent in both alternatives. Assuming ex-
periencer is higher on a semantic prominence hi-
erarchy than stimulus (cf., thematic hierarchies in
Jackendoff (1972); Speas (1990); inter alia), then
this would be AUDIENCE.

In Rose (2005), I compared the effects of syn-
tactic and semantic prominence on the salience
of discourse referents in psycholinguistic ex-
periments using two argument-reordering con-
structions: tough-constructions and spray/load-
constructions. Results show that both syntac-
tic and semantic prominence contribute to the
salience of discourse referents. This suggests that
experiments of this sort should carefully control
for both syntactic and semantic prominence. In the
present experiment, I do so by using an argument-
reordering construction for the test stimuli.

2.2.3 Coherence Relations
Several investigators have theorized and ob-

served that pronoun interpretation preferences dif-
fer when there is a causal connection between ut-
terances compared to when there is a narrative
connection (Hobbs, 1978; Kehler, 2002; Steven-
son et al., 2000). For instance, in the narrative re-
lation shown above in (1) (repeated below as (5)),
the preference is for the pronoun to refer to LUKE.
However, in (6) in which the utterances are related
by a causal connection, the preference is for the
pronoun to refer to MAX.

(5) Lukei hit Maxj and then hei/#j ran home.
(6) Lukei hit Maxj because he#i/j ran home.

Therefore, when investigating pronoun resolu-
tion, it is also necessary to take into account the
influence of coherence relations by either control-
ling for these relations or making them another
point of investigation. In the present study, I will
take the latter course of action in order to see how
coherence relations might influence pronoun res-
olution to competing non-salient entities. Previ-
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ous accounts of the effects of coherence relations
on pronoun resolution have taken the view that
the kind of relation shifts attention to different as-
pects of the event being described (Stevenson et
al., 1994; Stevenson et al., 2000). If an event has,
for example, a start-state and an end-state, then
a narrative relation will shift attention toward the
start-state while a causal relation will shift atten-
tion toward the end-state. Subsequent pronominal
reference will therefore prefer referents associated
with these respective states, as illustrated in (5)-
(6). Based on this argumentation, the prediction
would be that pronominal reference might favor
one non-salient referent over another if it is asso-
ciated with that part of the event to which attention
has been shifted by the coherence relation.

3 Experiment

Before describing the experiment, I’ll review the
primary and secondary questions which this ex-
periment is designed to test. First, there is the
question of what happens during pronoun reso-
lution processes when there are competing non-
salient referents. Answers to this question should
provide evidence toward either a categorical or a
gradient model of salience ranking. Furthermore,
because investigating this question requires con-
trolling for syntactic versus semantic prominence
as well as coherence relation effects, two other
secondary questions are also investigated. First,
which is a more important factor in pronoun res-
olution: syntactic or semantic prominence? Sec-
ond, what effect do coherence relations have on
pronominal reference to non-salient entities?

3.1 Design
The research questions described above were in-
vestigated in this study using the well-known
spray/load-constructions which exhibit the loca-
tive alternation (Levin, 1993) as shown in (7) and
have synonymous alternative forms.3

(7) a. John sprayed some paint on a wall.
b. John sprayed a wall with some paint.

3There is some difference of opinion on whether the two
forms of spray/load-constructions are actually synonymous.
One central point of contention is whether the totality effects
on the direct object (i.e., the judgment that the entity in direct
object position is totally used up in the event) are consistent
across both forms. In the judgment of Rappaport and Levin
(1988), the totality effect applies only with the with-variant.
In contrast, it is my judgment (Rose, 2005) and also that of
Tenny (1994, see her data items (100) and (102)) that the ef-
fect applies across both forms.

According to prominence hierarchies in which
the syntactic subject or the semantic agent is most
prominent, then JOHN should consistently be re-
garded as the (most) salient referent while PAINT

and WALL should be regarded as less or non-
salient referents in these sentences. Thus, subse-
quent pronominal reference with the third-person
singular pronoun, it, allows a test of the three dif-
ferent questions outlined above.

First, if a categorical approach to salience is suf-
ficient, then there should be no overall preference
for either PAINT or WALL. But if gradient salience
is necessary for ranking, then it might be possible
to observe a difference between the two.

The nature of this difference, however, might
be more complex depending on the way salience
ranking is determined. If syntactic prominence is
the only relevant factor, then preferences should
consistently favor the object (i.e, PAINT in (7a),
WALL in (7b)) according to the well-established
syntactic prominence hierarchy in (2) above. But
if semantic prominence is the only factor, then
preferences should favor either the theme (PAINT)
or the location (WALL) depending on how the se-
mantic prominence hierarchy is ordered. One pre-
diction might be based on proposed thematic hier-
archies (cf., Larson (1988), Speas (1990)) which
place theme above location. According to such a
hierarchy, PAINT should be consistently preferred.
This is what I observed in Rose (2005).

Other differences may result from the kind of
coherence relation used. However, for spray/load-
constructions, this is a little difficult to predict.
The two non-salient entities are both arguably a
part of the end-state of the event—that is, together,
they are the product of the agent’s work. Thus, any
motivation to distinguish between the two with re-
spect to the coherence relation must come from
some other feature of the event or its participants.
I will address the possibility in the discussion sec-
tion below.

3.2 Method
3.2.1 Participants

The participants in this experiment included 36
undergraduate students at Morehead State Univer-
sity in Kentucky. Students were recruited through
fliers and classroom announcements and received
five dollars for their participation.
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3.2.2 Materials
Twenty-four stimulus items were prepared us-

ing spray/load verbs as the matrix verb. The
agent/subject was a commonplace proper name
(12 male and 12 female) and the themes and lo-
cations were all inanimate nouns presented in in-
definite form. The spray/load sentence was then
followed by one of two connectives: and then to
force a narrative relation or because to force a
causal relation. These connectives were then fol-
lowed immediately by it. Each stimulus was then
followed by a blank line for participants to fill in a
completion for the sentence. The experiment was
therefore a 2× 2 design pitting ORDER of entities
(theme-location or location-theme) against coher-
ence RELATION (narrative or causal). (8) shows an
example of the four variants of one stimulus item.

(8) a. John sprayed some paint on a wall
and then it
(theme-location, narrative)

b. John sprayed a wall with some paint
and then it
(location-theme, narrative)

c. John sprayed some paint on a wall
because it
(theme-location, causal)

d. John sprayed a wall with some paint
because it
(location-theme, causal)

Stimulus items were placed into twelve differ-
ent tests such that each test contained only one
variant of each item but conditions were balanced
across all tests. The order of the items was pseudo-
randomized such that consecutive items were not
from the same experimental condition. The 24
items were combined with 101 items from an un-
related experiment to make a total of 125 items.
Tests were printed in landscape orientation allow-
ing every stimulus item to be followed by a blank
line of at least three inches—ample space for par-
ticipants to write their continuations.

3.2.3 Procedures
Participants were given the test forms and were

asked to complete each sentence in the way that
seemed most natural to them. Participants’ re-
sponses were then analyzed and marked with one
of four designators: If their completion showed
that they interpreted the pronoun unambiguously
as the theme of the spray/load verb then the re-

sponse was marked THEME. Similarly, if they in-
terpreted the pronoun as the location, then the re-
sponse was marked LOCATION. If the response
was ambiguous as to the participant’s interpreta-
tion, then it was marked INDETERMINATE. Fi-
nally, if the response indicated pronominal ref-
erence to some other entity, or the pronoun was
taken as an empty pronoun, then the response was
marked OTHER.

3.3 Results
In total, there were 836 usable responses (23 re-
sponses were left blank and 5 were ungrammati-
cal). 130 responses were judged INDETERMINATE

and 65 responses were judged OTHER. Only the
remaining 641 responses are therefore used in the
analysis below.

In order to evaluate the results, it is useful to
look at the participants’ pronoun resolution pref-
erences. However, there are two ways of look-
ing at these preferences: syntactically or seman-
tically. Thus, while it is somewhat more labori-
ous for the reader, I will present the results from
these two perspectives for the sake of complete-
ness. The results are therefore presented in terms
of object-preference as well as theme-preference.
Object preference is calculated as the total number
of choices for the object minus the total number
of choices for the oblique. Theme-preference, on
the other hand is calculated as the total number of
choices for the theme minus the total number of
choices for the location. These results by subjects
and by items are shown in Table 1 and Table 2,
respectively.

The results show that there was an overall pref-
erence for the location (i.e., wall) in both variants.
This can be most readily seen by noting the consis-
tently negative theme-preference values in Table 2.
This is underscored by the significant main effect
for ORDER in the object-preference results in con-
trast with the nonsignificant main effect for OR-
DER in the theme-preference results. This contrast
also indicates that in this experiment, participants’
pronoun resolution processes were guided by a
salience ranking determined by semantic promi-
nence and not syntactic prominence.

As for the main question of categorical ver-
sus gradient salience, the results point toward a
gradient model of salience ranking. Participants
showed a clear, consistent preference for one non-
salient entity (location) over another (theme).
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Table 1: Overall Results for Object-preference
by subjects

ORDER

theme-location location-theme
RELATION

narrative -1.75 2.50
causal -0.89 1.14
Variant F (1, 35) = 58.2 p < 0.001
Relation F (1, 35) < 1.0 n.s.
Variant*Relation F (1, 35) = 8.4 p < 0.01

by items
ORDER

theme-location location-theme
RELATION

narrative -2.62 3.75
causal -1.33 1.71
Variant F (1, 23) = 18.3 p < 0.001
Relation F (1, 23) < 1.0 n.s.
Variant*Relation F (1, 23) = 3.2 p = 0.085

Table 2: Overall Results for Theme-preference
by subjects

ORDER

theme-location location-theme
RELATION

narrative -1.75 -2.50
causal -0.89 -1.14
Variant F (1, 35) = 2.8 p = 0.10
Relation F (1, 35) = 8.4 p < 0.01
Variant*Relation F (1, 35) < 1.0 n.s.

by items
ORDER

theme-location location-theme
RELATION

narrative -2.62 -3.75
causal -1.33 -1.71
Variant F (1, 23) = 2.2 p = 0.15
Relation F (1, 23) = 3.2 p = 0.085
Variant*Relation F (1, 23) < 1.0 n.s.

Finally, the results pertaining to coherence re-
lations are somewhat inconclusive. In order to
discuss this, it is better to refer to the theme-
preference results because semantic prominence
has proven to be the dominating factor here. While
there is a significant main effect of RELATION by
subjects, the effect is, at best, marginal by items.
It is possible that a more thorough investigation
with more items could yield a clear, significant re-
sult. On the other hand, even if the current effect
is somehow real, it is actually quite weak. Note
that the theme-preference values. which are nega-
tive in the narrative condition, are merely less neg-
ative in the causal condition—not enough to flip-
flop resolution preferences. So, it seems difficult
to make the case here that coherence relations shift
these preferences in any meaningful way.

4 Discussion

In the present study, there were three questions un-
der investigation. Let me review these three ques-
tions in turn and what the results say about them.
First there was the primary question of categori-
cal versus gradient approaches to salience ranking.
The results here are not consistent with a categor-
ical approach and clearly suggest a gradient ap-
proach. In this respect, the study lends psycholin-
guistic support to the many implementations of
pronoun resolution algorithms which incorporate
a gradient ranking of candidate referents for reso-
lution (e.g., Kennedy and Boguraev (1996); Lap-
pin and Leass (1994)).

However, just how fine-grained an approach
is necessary is not conclusive from this investi-
gation since competition among only two non-
salient referents was tested. A more thorough
study with stimuli including a large number of ref-
erents would be necessary to draw further conclu-
sions about the necessity of a fine-grained gradient
model of salience ranking.

The second question in this study was the ques-
tion of whether syntactic prominence or seman-
tic prominence is more important for determin-
ing the salience of referents. Results quite clearly
point toward semantic prominence. These results
contrast with those of Rose (2005) in two ways.
The psycholinguistic results in that study suggest
first that both syntactic and semantic prominence
play a role in determining salience and second
that theme is higher than location on the seman-
tic prominence hierarchy.
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The first contrast might be attributed to differ-
ences in experimental technique. The fact that par-
ticipants in the present experiment had to compose
a completion to each sentence means that they may
have spent more time focusing on the semantic
representation of the situation. This may have in-
flated the semantic prominence effects while at-
tenuating syntactic prominence effects.

The second contrast, however, is somewhat
more difficult to resolve. But once again, it may
be useful to appeal to differences in the experi-
mental technique. In the present study, the pro-
cess of composing a sentence continuation for the
events described by spray/load verbs would have
required visualizing the event in a more vivid way
than might be required for mere reading com-
prehension. If this visualization process were
to require participants to anchor their visualiza-
tions through some fixed objects in the represen-
tation, this might naturally lead them toward pay-
ing closer attention to the location than the theme.
Further testing will be required to evaluate this
hypothesis and disambiguate these contrasting re-
sults.

Finally, the third question in this study dealt
with the influence of coherence relations on pro-
noun resolution to competing non-salient refer-
ents. The present study did not test this in a man-
ner comparable to previous studies since unlike
those studies, both target referents were associated
with the end-state of the event. Nonetheless, re-
sults showed a weak (but inconclusive) tendency
to shift resolution preferences from location to-
ward (but not to) theme. While more evidence
would be necessary to confirm this to be a real
effect, if it does turn out to be real then it would
be a very interesting result. Assuming for the
sake of argument that it is, then this might sug-
gest that participants do not see the theme argu-
ment of spray/load verbs as part of the end-state of
the event. To illustrate how this might be so, con-
sider a couple of examples. Once a bucket of paint
has been sprayed onto a wall, it takes on certain
properties of the wall—for instance, its texture and
size. Similarly, hay loaded onto a cart also takes
on certain properties of the cart such as its size and
shape. It might then be the case that the end-state
of a spray/load event is more centrally focused on
the location argument than on the theme argument
because it is the location which determines many
of the main properties of the end-state.

Before concluding, I would like to suggest some
applications of these findings. Computational im-
plementations of resolution algorithms that use
an explicit salience ranking mechanism can be
adapted to incorporate semantic prominence in-
formation as one of the contributors to a candi-
date’s overall salience index (e.g., as in Lappin
and Leass (1994)). However, even implementa-
tions that do not have an explicit salience rank-
ing mechanism might still incorporate semantic
prominence information. The coreference resolu-
tion system described in Soon et al. (2001) and its
more knowledge-rich extension in Ng and Cardie
(2002) classify NP pairs as coreferent or not based
on constraints learned from an annotated corpus.
These constraints are based on a number of fea-
tures. While the Ng and Cardie system does in-
corporate a syntactic role feature (i.e., whether or
not either NP in a pair is a subject), neither sys-
tem incorporates a semantic prominence feature.
It would be interesting to see if any further gains
could be made in these systems by incorporating
such a feature in future work.

5 Conclusion

The main aim of this paper has been to explore the
question of whether a gradient model of salience
ranking for candidate referents in pronoun reso-
lution is necessary, or if a categorical model is
sufficient. In this endeavor, two other questions
have been addressed along the way: the influence
of syntactic and semantic prominence on salience
ranking of referents and the influence of coher-
ence relations on pronoun resolution preferences.
Results point toward the necessity of a gradient
model of salience in which salience ranking is pri-
marily determined by semantic information. Re-
sults were inconclusive regarding the influence of
coherence relations. However, further work is nec-
essary to confirm that this is the case.
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Abstract

Proficiency in a second language is of vi-
tal importance for many people. Today’s
access to corpora of text, including the
Web, allows new techniques for improv-
ing language skill. Our project’s aim is the
development of techniques for presenting
the user with suitable web text, to allow
optimal language acquisition via reading.
Some text found on the Web may be of a
suitable level of difficulty but appropriate
techniques need to be devised for locating
it, as well as methods for rapid retrieval.
Our experiments described here compare
the range of difficulty of text found on the
Web to that found in traditional hard-copy
texts for English as a Second Language
(ESL) learners, using standard readability
measures. The results show that the ESL
text readability range fall within the range
for Web text. This suggests that an on-line
text retrieval engine based on readability
can be of use to language learners. How-
ever, web pages pose their own difficulty,
since those with scores representing high
readability are often of limited use. There-
fore readability measurement techniques
need to be modified for the Web domain.

1 Introduction

In an increasingly connected world, the need and
desire for understanding other languages has also
increased. Rote-learning and grammatical ap-
proaches have been shown to be less effective
than communicative methods for developing skills
in using language (Higgins, 1983; Howatt, 1984;
Kellerman, 1981), therefore students who need to

be able to read in the language can benefit greatly
from extensively reading material at their level of
skill (Bell, 2001). This reading material comes
from a variety of sources: language learning text-
books, reading books with a specific level of vo-
cabulary and grammar, native language texts, and
on-line text.

There is considerable past work on measuring
the readability of text, however, most of it was
originally intended for grading of reading material
for English-speaking school children. The bulk of
readability formulae determined from these stud-
ies incorporate two main criteria for readability:
grammatical difficulty — usually estimated by
sentence length, and vocabulary difficulty, which
is measured in a variety of ways (Klare, 1974).
Publishers later decided to use the readability mea-
sures as a guideline for the writing of texts, with
mixed success. However, new reading texts cater-
ing for foreign language learners of various lan-
guages are still being published. Most of these
use specific vocabulary sizes as the main crite-
rion for reading level. Others are based on spe-
cific language skills, such as the standard devel-
oped by the European community known as the
“Common European Framework of Reference for
Languages” (COE, 2003).

The goal of our research is to build an applica-
tion that allows the user to improve their language
skills through accessing appropriate reading mate-
rial from the Web. This may incorporate person-
alised retrieval based on a user’s level of skill in
the target language, first language and specific vo-
cabulary of interest. Greater detail about the appli-
cation’s requirements and potential implementa-
tion issues are discussed elsewhere (Uitdenbogerd,
2003).
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In order for appropriate documents to be pre-
sented to the user for reading practice, new read-
ability measurement techniques that are more ap-
propriate to on-line documents will need to be de-
veloped. Measures of distance between languages
that are related to reading may be useful for finer-
tuned readability (as opposed to the speaking-
based measure developed elsewhere (Chiswick,
2004)). For many language pairs, cognates —
words that are similar in both languages, help peo-
ple to understand text. There is some evidence that
these affect text readability of French for English
speakers (Uitdenbogerd, 2005). Automatic detec-
tion of cognates is also part of our research pro-
gram. Some work exists on this topic (Kondrak,
2001), but will need to be tested as part of read-
ability formulae for our application.

Some applications that allow the location or
sorting of suitable on-line reading material already
exist. One example is Textladder (Ghadirian,
2002), a program that allows the sorting of a
set of texts based on their vocabulary, so that
users will have learnt some of the words in ear-
lier texts before tackling the most vocabulary-rich
text in the set. However, often vocabulary is not
the main criterion of difficulty (Si and Callan,
2001; Uitdenbogerd, 2003; Uitdenbogerd, 2005).
SourceFinder (Katz and Bauer, 2001) locates ma-
terials of a suitable level of readability given a list
of URLs. It is simply a crawler that accepts a web
page of URLs such as those produced by Google,
and then applies a readability measure to these to
rank them. The software was developed with the
aim of finding material of the right level of diffi-
culty for school children learning in their native
language.

Using English as a test case, the research ques-
tions we raise in this work are:

• What is the range of difficulty of text on the
web?

• How does the range of text difficulty found on
the web compare to texts especially written
for language learners?

If there is overlap in the readability ranges be-
tween web documents and published ESL texts,
then the combination of the two may be adequate
for language learning through reading once learn-
ers are able to comfortably read published texts.
In fact, we have found that ESL texts fit within
the range of readability found on the Web, but that

there are problems with assessing readability of
the Web pages due to the types of structures found
within them.

In future work we intend to develop readability
formulae that take into account bulleted lists and
headings. It is known from usability studies that
these increase readability of text for native readers
of technical documents (Redish, 2000; Schriver,
2000). We will then be in a position to better de-
termine how the readability factors differ for peo-
ple with different language backgrounds and skills
within a Web context. We have already exam-
ined the case of French as a foreign language for
those whose main language is English and found
that standard readability formulae developed for
native English speakers are less closely correlated
to French reading skill than a simple sentence
length measure (Uitdenbogerd, 2005). However,
this work was based on prose and comic-book text
samples, not HTML documents.

This article is structured as follows. We review
the literature on language learning via reading, as
well as describe past research on readability. We
then describe our current work that examines the
readability of English text on the Web. This is
compared to the readability of reading books for
students with English as a second language. These
results are then discussed in the context of improv-
ing language skills via the Web.

2 BACKGROUND

Two main research areas are of relevance to the
topic of computer-assisted language acquisition
via reading: readability and language acquisition.
Readability measures allow us to quickly evaluate
the appropriateness of reading material, and lan-
guage acquisition research informs us how best to
use reading material in order to acquire language.

2.1 Readability

Readability has been studied for most of the
twentieth century, and has more recently become
a topic of interest to information retrieval re-
searchers. There have been several phases in its
development as a research topic. In the initial and
most influential era, readability measures were de-
veloped by applying regression to data collected
from children’s comprehension tests. Later, Cloze
tests were used as a simpler method of collecting
human readability data (Bormuth, 1968; Davies,
1984). The output of this era included a vast ar-
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ray of formulae, mostly incorporating a compo-
nent representing vocabulary difficulty, such as
word length, as well as a grammatical difficulty
component, which usually is represented by sen-
tence length (Klare, 1974). The majority of pub-
lished work was on English language readability
for native speakers, however, some work from this
era examined other languages, again in a native
speaker context. More recently the language mod-
elling approach has been applied to readability es-
timation of text (Si and Callan, 2001).

Despite the success of the techniques, they
fell out of favour within some research and
education communities due to their simplic-
ity (Chall and Dale, 1995; Redish, 2000; Schriver,
2000) and failure to handle hand-picked counter-
examples (Gordon, 1980). Other criticism was of
their abuse in writing texts or in enforcing reading
choices for children (Carter, 2000). Researchers
tried to capture more complex aspects of read-
ability such as the conceptual content. Dale and
Chall, in response to the criticism, updated their
formula to, not only use a more up-to-date vocab-
ulary, but to allow conceptual content to be catered
for. They emphasized however, that grammati-
cal and vocabulary difficulty are still the dominant
factors (Chall and Dale, 1995). In work on read-
ability for English-speaking learners of French,
we found further evidence that conceptual aspects
are of minor importance compared to grammat-
ical complexity (Uitdenbogerd, 2005). For ex-
ample, the well-known fairy tale Cinderella was
consistently perceived as more difficult than many
unknown stories, due to the relative grammatical
complexity.

The readability measures used in the experi-
ments reported here are those implemented in the
unix-based style utility. The measures used
were the Kincaid formula, Automated Readabil-
ity Index (ARI), Coleman-Liau Formula, Flesch
reading ease, Fog index, Lix, and SMOG. Some
readability formulae are listed below.

The ARI formula as calculated by style is:

ARI = 4.71 ∗Wlen + 0.5 ∗WpS − 21.43 (1)

where Wlen is the length of the word and WpS is
the average number of words per sentence.

The Flesch formula for reading ease (RE) as de-
scribed by Davies, is given as:

RE = 206.835 −(0.846 ×NSYLL)

−(1.015 ×W/S) , (2)

where NSYLL is the average number of syllables
per 100 words and W/S is the average number of
words per sentence (Davies, 1984).

The Dale-Chall formula (not used in our exper-
iments) makes use of a vocabulary list in addition
to sentence length:

S = 0.1579p + 0.0496s + 3.6365 , (3)

where p is the percentage of words on the Dale list
of 3,000, and s is the average number of words per
sentence. The resulting score represents a reading
grade.

The above formulae illustrate three ways of de-
termining vocabulary difficulty: word length in
characters, number of syllables, and membership
of a list of words known by children with English
as their native language. Most formulae use one of
these techniques in addition to the sentence length.

More recent research into readability has
involved the application of language mod-
els (Collins-Thompson and Callan, 2004;
Schwarm and Ostendorf, 2005). Using unigram
models allowed very small samples of text to be
used to predict a grade level for the text (Collins-
Thompson and Callan, 2004). The technique
was shown to be more robust than a traditional
readability measure for estimating web page
readability. However, the unigram approach is
unlikely to be effective for the case of foreign
languages, where grammatical complexity is a
much more important factor than vocabulary for
at least one language pair (Uitdenbogerd, 2005).

Schwarm and Ostendorf (2005) built a readabil-
ity classifier that incorporated a wide variety of
features, including traditional readability measure
components, as well as n-gram models, parse-tree
based features to model grammatical complexity,
and features representing the percentage of un-
usual words. The classifier was trained and evalu-
ated using articles written for specific grade levels.
It is possible that the approach and feature set used
may be applicable to foreign language learning.

2.2 Second and Foreign Language
Acquisition via Reading

The idea of language acquisition via reading at
an appropriate level was first formally studied
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by Michael West. He found that his techniques
of English teaching with Bengali boys were far
more successful than other approaches of the
time (West, 1927). He controlled the introduction
of vocabulary to no more than one new word per
60 words of text. The concept remains with us to-
day and is known as “controlled-vocabulary”. Oc-
casionally the reading approach falls out of favour
and conversation becomes a more prominent tech-
nique. Then reading is rediscovered (Kellerman,
1981).

Studies of different ways of reading for lan-
guage acquisition conclude that extensive read-
ing at a comfortable level is superior to inten-
sive reading at a more challenging level (Bell,
2001), and the use of glosses and multimedia im-
prove vocabulary acquisition (Lomicka, 1998; Al-
Seghayer, 2001). Looking up word meanings is
more likely to lead to retention, but words can
be learnt through repeated exposure and meaning
inference. However, due to the need for repeti-
tion, inference is only useful for fairly common
words (Krantz, 1991).

3 EXPERIMENTS

The main experiment that we discuss here is an
analysis of a corpus of English web text. The cor-
pus is a subset of the TREC web 10G collection
consisting of 93,064 documents. The collection is
a general snapshot of the web, including a wide
variety of types of web pages.

We extracted the text and punctuation from
each document in the corpus, and applied sev-
eral standard readability measures to them, as im-
plemented by the unix-based style utility. The
measures used were the Kincaid formula, ARI,
Coleman-Liau Formula, Flesch reading ease, Fog
index, Lix, and SMOG.

In a second experiment we applied the same
readability measures to extracts from reading
books written for students of English as a second
or foreign language. The statistics for the two sets
of text were compared.

Results

The first part of Table 1 shows statistics describing
the range of readability scores found in the collec-
tion. For the Flesch Index, the highest value rep-
resents the easiest to read, whereas for the other
measures the lowest value is the easiest.

It is clear by looking at the extreme values that

there are difficulties in processing web documents
compared to normal text. In this section we look at
the types of problem documents that are classified
as very easy by a naı̈ve application of readability
formulae.

Documents with extreme scores

We examined several web documents that had
extreme values for each readability measurement
type.

All measures except Coleman-Liau agreed as to
which was the hardest document in the collection
— a large document listing access statistics of In-
ternet domains. There were few true sentences in
this document.

There were many documents (49) that had the
minimum score of -3.4 using the Kinkaid measure-
ment. On close inspection of a couple of these,
we found they were devoid of punctuation, con-
taining a few headings and links only. The same
documents received the maximum (easiest) score
of 121.2 in the Flesch reading ease measure.

The Fog measure also shared the same easiest
documents, however, it also included other docu-
ments amongst those with its lowest score of 0.4.
An example that was in this set of extra docu-
ments was a page of links to images, with duration
times listed next to the image. The only terminat-
ing punctuation was in an email address. The Lix
measure had a similar but not identical set of 48
documents receiving its lowest score of 1.

Two documents received the lowest value -12.1
using the ARI measure. In the first, the only un-
tagged text was within title tags: “V.I.She:
Pharmacy”. The second document contained the
same title and some labelled links without punctu-
ation.

The lowest value using the Coleman-Liau mea-
sure was associated with a short document in
which most of the words had their letters inter-
spersed with spaces, for example “C H A N G I
N G”. The second lowest consisted of a heading,
links to images, with their sizes, such as “127.1
KB” shown next to them, and a single sentence.

The SMOG score was less discriminating, giv-
ing 2,967 documents the same lowest score of 3.

Published Reading Books

The second part of Table 1 shows the readabil-
ity of nine published ESL books. Interestingly,
the readability results bear little resemblance to the
levels advertised by the publishers. For example,
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Table 1: Distribution of readability scores in the Web collection and of a range of books written for
learners of ESL. For all measures except Flesch, the highest value represents the most difficult text to
read. The ESL book measured as most and least difficult are indicated with a † and an asterisk (’*’)
symbol respectively.

Quartile Kinkaid ARI Coleman-Liau Flesch Fog Lix SMOG
Min -3.4 -12.1 -8.3 -62809.2 0.4 1 3
LQ 6.4 7.4 11.1 46.2 9.4 37 8.9
Med 9.1 10.7 13.2 60.8 12.3 46 10.9
UQ 12.2 14.3 15.6 73.4 15.8 55.3 13.2
Max 24174.6 30988 130.4 121.2 24798 61997.5 219.6
Average 11.809 14.20 13.4176 54.09 15.13571 52.1665 11.28505
Book Kinkaid ARI Coleman-Liau Flesch Fog Lix SMOG
card 5.3 †6.1 †9.0 †84.7 †8.2 28.6 †7.8
christmas 3.5 2.9 8.2 88.5 5.8 22.1 6.6
dead 1.1 -0.0 6.4 100.6 3.8 16.6 5.2
ghost 3.4 3.1 7.6 91.3 6.1 24.0 6.5
lovely 2.5 2.7 7.5 96.9 5.0 21.5 5.2
murders †5.4 5.9 7.7 86.7 7.8 28.7 6.5
presidents *0.2 -0.1 6.2 *107.0 3.2 14.0 *4.2
simon 1.3 *-0.9 *5.9 97.0 *3.1 *12.6 4.7
thirty 5.2 5.3 7.2 87.7 7.9 †28.9 7.0
Min 0.2 -0.9 5.9 84.7 3.1 12.6 4.2
Max 5.4 6.1 9.0 107.0 8.2 28.9 7.8

Table 2: Web pages out of 93, 064 with readability scores within the range of sample ESL texts.

Kinkaid ARI Coleman-Liau Flesch Fog Lix SMOG
Count 16123 17321 7863 8176 14748 8166 11344
Percent 17 19 8 9 16 9 12

The Card is described as a level 3 story with 1,000
headwords, making it in the middle of the range
of 5 levels of difficulty. However, five of the read-
ability measures identified it as the most difficult
book of the set. In contrast, Simon the Spy and
The President’s Murder are both identified as easy
texts, which is in agreement with the advertised
beginner level of these stories.

When the levels are compared to those of the
analysed web pages, it is clear that the ranges fall
well within the extremes found on the web. How-
ever, as we have already seen, these extremes are
often pathological cases, and not usually of inter-
est for reading practice. As a percentage, the set
of suitable texts for those that require the read-
ing level found in ESL books, is probably quite
small, given that the lower quartiles of web read-
ability exceed the maximum scores for the range
of books tested. In fact, depending on the refer-
ence readability measure, the percentage of web
texts falling within the same range of readability
is in the range 8 to 19% (See Table 2 for details).

In Figure 1 we show a few examples of web text
that fall in the range of readability found in the
ESL texts. These examples illustrate a few types

of content found in web pages: links and message
headers.

Discussion

While there is a wide range of values for the
readability measures in the web collection stud-
ied, a very large proportion of documents with
low scores are arguably not very useful for reading
practice. The style utility assumes that the input
consists of normal text in the form of sentences. If
these are not found, or if there are too many non-
sentences in the document, then the utility fails.
In addition, documents that do contain sufficient
text may still consist largely of headings, links,
and lists. It is unclear how useful these documents
would be for reading practice.

For a reading recommender to be successful,
further criteria than just a readability score will
be needed. Some preprocessing of the documents
for better readability assessment may be neces-
sary. It was observed in the documents receiving
low scores that there were sentences without punc-
tuation. Web authors often include instructions
without punctuation, both within links and in nor-
mal displayed text. Some examples found in the
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low-scoring documents are “Click on books”, “To
view Shockedmovies, you need to have Netscape
2.0 and the Shockwave plug-in”, “Last modified
on December 10, 1995”, and “Update Your Pro-
file”. Inserting punctuation may make readabil-
ity scores more reliable, however, automatic tech-
niques for deciding when to do so are not com-
pletely obvious. As mentioned in the introduc-
tion, readability measures that take into consider-
ation the use of bulleted lists and headings would
be of utility for web page assessment, since these
structures are frequently used in web pages, and
often are the only textual content within a page.
Collins-Thompson and Callan’s approach avoids
this issue by using unigram word models exclu-
sively to measure readability (Collins-Thompson
and Callan, 2004). However, for the bilingual
case, particularly in language pairs such as French
and English, this is likely to be ineffective (Uit-
denbogerd, 2005).

An alternative approach is to filter the pool of
web pages to be analysed, either by crawling suit-
able subdomains, or by applying a set of rules to
ensure sufficient suitable text on a page before in-
clusion.

Another important consideration is how inter-
esting the document will be to the user, as a per-
son’s comprehension skills vary with their interest
in the text. Indeed, the documents should be suf-
ficiently interesting for users to want to use the
proposed system. An existing technique for in-
creasing the chance of interesting documents be-
ing presented to the user is collaborative filtering,
which relies on user feedback, whether explicit or
implicit. Another possibility involves the exami-
nation of content words and phrases within docu-
ments.

4 CONCLUSIONS

The purpose of this preliminary work towards a
utility for assisting users in improving foreign lan-
guage skills via reading, was to find evidence that
sufficient documents of suitable readability are
likely to exist on the web. We determined the
readability of over 90,000 web pages written in
English, using the unix style utility and found
a considerable range of readability scores. The
range of readability scores found in ESL books
fell within the lower quartile of web page read-
ability scores, representing 8 to 19% of documents
in the collection. This could mean that there are

many suitable pages for reading practice which
a readability-based reading recommender system
could retrieve for users. However, due to the arti-
facts of web pages and the readability measures,
not all pages with low scores in readability are
suitable for reading practice. The automated loca-
tion of those that are suitable is part of the future
research plans of this project. An additional factor
that must be incorporated is prediction of how in-
teresting the documents are likely to be for users.

Our analysis used web pages written in English
and compared these to ESL texts under the broad
assumption that similar distributions of readability
would occur in other languages. However, cultural
and political differences of the countries speaking
different languages may influence the types of text
available, and hence the readability range.

Learners of English are relatively fortunate in
that there are many reading books specifically
written for them. This is not the case for many
other languages. It is possible that the Internet
may be an even more important reading resource
for languages other than English.
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a)

You must complete at least 9 credits of graduate work with a GPA of
3.00 (B) and not more than one grade of B-.

Back to Communicative Disorders

Back To The Graduate Programs Catalog Page

Back To The Graduate Catalog Page
Back To The Catalog Home Page

Back To The UWSP Home Page

b)

Exchange logo
[ Post Message [post] ] [ Home [/index.html] ] [ Newsgroups [USENET]
]
- gold rule -
Li’l Builder [/entryform.html]

Did You Win? [/win1196.html] November’s Software Award generously
provided by Borland International

December’s Giveaway [/entryform.html] Sponsored by: Net-It Software,
makers of Net-It Now!

- gold rule - To win great intranet software, register
[/entryform.html] once, then post [post] at least twice a week each
month. Winners are chosen based on the quality and frequency of
contributions.
The Intranet Exchangesm
Intranet Standards [msg/1120.html] - Dan Boarman 16:03:36 12/31/96
(0)
How can I open EXCEL file from CGI ? [msg/1108.html] - Katsumi Yajima
12:03:34 12/30/96 (1)
Re: How can I open EXCEL file from CGI ? [msg/1118.html] - Brett
Kottmann 15:40:08 12/31/96 (0)
Telecommuting on intranet [msg/1092.html] - Erick Pijoh 07:57:16
12/29/96 (7)
Re: Telecommuting on intranet [msg/1119.html] - Brett Kottmann
15:57:36 12/31/96 (0)

Figure 1: Sample Web Documents with Readability Matching Typical ESL Texts. Both the above doc-
uments received a score of 5.9 on the Coleman-Liau readability measure, thus equivalent to the easiest
ESL texts in our study. Item a) shows the complete text extracted from the document. Item b) is an
extract of the document with the largest number of words and a score of 5.9.
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Abstract

Direct questions such as “Who saw
Mary?” intuitively request for a certain
type of answer, for instance a noun phrase
“John” or a quantified noun phrase such
as “A man”. Following the structured
meaning approach to questions, we pro-
pose an analysis of wh-questions in type-
logical grammar that incorporates the re-
quirement for a certain type of answer into
the type assigned to wh-phrases. Inter-
estingly, the syntactic and semantic de-
composition leads to a derivability pattern
between instances of wh-phrases. With
this pattern we can explain the differ-
ence between wh-pronouns (‘who’) and
wh-determiners (‘which’), and derive wh-
questions that require multiple answers.

1 Introduction

In this paper, we discuss the uniform basis of dif-
ferent types of wh-questions focusing on the de-
pendency relation between questions and answers.
In loose terms, a wh-question can be interpreted
as a sentence which still requires an answer. The
answer to a question such as “‘Who saw Mary?”
serves as an argument of the main or embedded
verb clause. In more formal terms, the meaning
assembly of the above wh-question may be repre-
sented by the lambda term, λx.((see m) x). We
show that by incorporating the dependency rela-
tion between questions and answers into the lexi-
cal type-assignments of wh-phrases, wh-questions
can be instantiated in an uniform way.

Section 2 gives a short introduction in type-
logical grammar and introduces the basic setup of
the grammatical reasoning system. In section 3,

we briefly discuss two approaches to the semantics
of questions: the proposition set approach and the
structured meaning approach. Section 4 provides
the syntactic and semantic type of wh-questions
and introduces a wh-type schema to identify wh-
phrases. Additionally, we show how meaning as-
sembly for wh-questions is derived on the basis
of a structured meaning approach to questions and
answers. In section 5, we show how we can de-
rive type alternations for wh-phrases which lead
to derivability schemata between instances of wh-
type schema. Finally, in section 6, we analyze dif-
ferent types of question-answer combinations and
multiple wh-questions in English on the basis of
these derivability schema. We finish with the con-
clusion and some pointers for future research.

2 Type-logical grammar

Type-logical grammar (Moortgat, 1997) offers
logical tools that can provide an understanding of
both the constant and the variable aspects of lin-
guistic form and meaning.1 Type-logical gram-
mar is a strongly lexicalised grammar formalism,
which, in the case of a categorial system, means
that a derivation is fully driven by the types as-
signed to lexical elements: these types are the ba-
sic declarative units on which the computational
system acts. The basis for the type system is a
set of atomic or basic types. The full set of types
is then built out of these basic types by means
of a set of type-forming operations. We consider
unary and binary type-forming operations. The
unary type-forming operations are ♦ (diamond)
and 2 (box). The binary ones are the two slashes
/, \ (forward and backward slash) and • (prod-

1Combinatory categorial grammar (Steedman, 2000) is a
related approach with a comparable notation. However, note
the differences in notation and the proof-theoretic setup.
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uct). In this paper, we will only consider the bi-
nary operators concentrating on the meaning of
wh-questions. The unary operators are not visible
in the analyses discussed in this paper, but play
a role in deriving the right word-order of the wh-
expressions. The inductive definition below char-
acterises the full set of types built out of a set of
atomic or basic types A.

F ::= A | F/F | F • F | F\F | 2F | ♦F

The type system is used to classify groups of
expressions with a similar grammatical behavior.
An expression belongs to a certain category de-
pending on its grammatical relation to other ex-
pressions. The basic categories n, np and s are
used to classify for nouns, noun phrases and sen-
tences, expressions that are complete in them-
selves, i.e. expressions for which we have gram-
maticality judgments that do not depend on their
relation with other expressions. Slash categories
express incompleteness with respect to some other
expressions. A product category represents the
composition of two expressions. An expression
of category A/B is incomplete with respect to an
expression of category B on its right (symmetri-
cally for B\A). A category such as vp for verbs is
not needed as a basic category because verbs can
be defined in relation to their arguments. In par-
ticular, tensed intransitive verbs are characterised
as compound categories of type np\s. The type
specifies that the verb is incomplete and needs an
expression of category np on its left to form an
expression of category s.

Complex expressions are built from their sub-
part using a deductive reasoning system. The goal
is to proof that a complex expression belongs to a
certain category. In this paper, we use the sequent-
style presentation originally due to Gentzen to
present derivations. An expression Γ of category
A is represented as Γ ` A. The proof for a cer-
tain expression consists of an deductive analysis
over the different types of formulas. Each opera-
tor comes with a set of introduction and elimina-
tion rules ([\E], [\I], [/E], [/I]). The derivation
of a complex expression is a relation between a
structure and a formula.

Structures are built out of elementary structures,
formulas, that are built with structure building op-
erations. In this paper the structure building oper-
ator is restricted to the binary operator (· ◦ ·) which
combines two substructures and preserves linear

order and dominance with respect to the subfor-
mulas. In the structures, instead of writing formu-
las, we write the headword that belongs to a cer-
tain category (cf. sleeps ` np\s). To save space,
we will display the lexical insertion, the axioms,
as follows:

sleeps

np\s

For a more elaborate introduction in the proof-
theoretical aspects of type-logical grammar, we re-
fer the reader to Vermaat (2006).

3 Semantics of questions

Many theories that account for the semantics of
questions relate the meaning of a question to
its possible answers (for an overview, see Groe-
nendijk and Stokhof (1997). Two approaches of
relating questions and answers are the proposition
set approach (Hamblin, 1958; Karttunen, 1977) in
which questions represent propositions; and the
approach which Krifka (2001) named the struc-
tured meaning approach, also referred to as the
functional or categorial approach (Groenendijk
and Stokhof, 1984). In this latter approach, the in-
terrogative in combination with its answer forms a
statement.

The proposition set approach (Hamblin, 1958)
influenced the logical approach to the semantics
of questions (Karttunen, 1977; Groenendijk and
Stokhof, 1984). Hamblin (1958) stated that to de-
termine the meaning of an interrogative one has to
inspect what kind of statement can serve as a re-
sponse:“an answer to a question is a sentence, or
statement”. The theory implements the idea that
the semantic status of an answer is a proposition
and that the syntactic form of an answer is irrele-
vant.

The structured meaning approach is sometimes
referred to as the functional or categorial ap-
proach. The approach is developed by logicians
and semanticists and supports the idea that the
meaning of a question is dependent on the mean-
ing of the answer and vice versa. Along sim-
ilar lines, Hiż (1978) points out that questions
and their answers are not autonomous sentences,
but that they form a semantic unit — a question-
answer pair. We briefly discuss the structured
meaning approach.

Structured meaning approach An appropriate
answer to a single constituent question may be any
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type of syntactic object. This might be a general-
ized quantifier phrase or a verb phrase, as well as a
noun phrase or prepositional phrase. Additionally,
in multiple wh-questions, different combinations
of syntactic objects can be used as an answer. The
wh-question directs the kind of answers that can
be expected.

(1) a. ‘Who saw Mary?’ John, nobody, John’s
sister, . . .

b. ‘Which man did John see?’ His father,
the neighbor, . . .

c. ‘Who saw whom?’
pair list reading: John (saw) Bill, Mary
(saw) Sue, . . .
functional reading: every professor/his
student, John/his sister

As the sentences illustrate, the answers have a di-
rect relation to the interrogative phrase in the ques-
tion. To capture the relation between the question
and its possible answer type, the structured mean-
ing approach formulates the idea that the ques-
tion and answer form a unit, both syntactically
and semantically. Syntactically, the interrogative
in combination with its answer forms an indica-
tive sentence or a question-answer sequence. This
syntactic unit is reflected in the semantics where
the question meaning is a function that yields a
proposition when applied to the meaning of an-
swer (Krifka, 2001).

Within the type-logical grammar framework,
a functional view on question and answer types
comes quite naturally, as shown in work of
Hausser (1983) and more recently in Bernardi and
Moot (2003). We will follow the structured mean-
ing approach and show that the diversity in an-
swer types can be derived from uniformly typed
wh-phrases.

4 Question and answer types

In a structured meaning approach questions are ex-
pected to be functions that, when applied to an an-
swer, yield a proposition. In this section, we spell
out wh-questions as types that reflect the functor-
argument relation between a wh-question and its
response. In section 4.1 and 4.2, we show how this
relation is captured in the syntactic type definition
of wh-questions and wh-phrases. In section 4.3,
we determine the effects on the meaning assembly
of wh-questions.

4.1 Type definition of wh-questions
Adopting a structured meaning approach of ques-
tions, we incorporate the type of possible answers
into the type of the wh-question. Generalizing
over the possible types of answers and questions,
we decompose wh-questions into the following
type:

syntactic category semantic type

B/?A = A → B

The semantic type A → B is a direct mapping
from the components of the syntactic category
B/?A. A is the semantic type of category A which
is the type of the expected answer. B is the se-
mantic type of category B which is the type of the
question-answer sequence.

Notice that the type connective has an additional
index ?. We use this index to capture a compo-
sitional difference between predicates and argu-
ments on a sentential level (structural composi-
tion relation: ◦) and between questions and an-
swers on a dialogue level (structural composition
relation: ◦?). Following the structured meaning
approach, we assume question-answer sequences
to form a syntactic and semantic unit. Syntacti-
cally, we assume the question-answer sequence to
belong to category s. Semantically, the question-
answer sentence is a proposition which has a cer-
tain truth value, similar to declarative clauses. Be-
fore we look at how this question type determines
the meaning of wh-questions, we need to know
how wh-phrases are categorised.

4.2 Wh-type schema
We use an abbreviated type schema, a three-
place operator, to lexically identify wh-elements.
The selectional requirements of wh-phrases are
encoded into this operator type schema and re-
sult in an uniform interpretation of wh-questions2.
The type schema can be decomposed into the
usual type-connectives of the base logic (Moort-
gat, 1997; Vermaat, 2006).

We adopt the q-type schema which was pro-
posed by Moortgat (1991) to account for in-situ
binding of generalized quantifier phrases. We pro-
pose a three-place type schema, WH, ranging over
three subtypes: WH(A,B, C). The three variables

2In Vermaat (2006), we recognise three structural variants
of the wh-type schema that account for cross-linguistics vari-
ation in the word-order of wh-questions.
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indicate the categories of substructures where a
wh-phrase acts on. B is the category of the body of
the wh-question; A is the category of the expres-
sion that the wh-phrase represents; C is the type of
the result of merging the body of the wh-question
with the wh-phrase. Variable A is the category of
the ‘gap’ in the question body, which in this frame-
work is introduced as an hypothesis, and occupies
a structural position relative to the predicate.

The following inference rule defines the merg-
ing an arbitrary wh-phrase (= Γ) and a question
body which contains an hypothesis of category A
(= ∆[A]).3 The result of merging the wh-phrase
and the body is a structure ∆[Γ] in which the wh-
phrase replaces the gap hypothesis.

∆[A] ` B
.... Γ ` WH(A,B, C)

∆[Γ] ` C

Example We analyze the direct question ‘Who
saw Bill?’. The wh-phrase ‘who’ is categorised as
the wh-type schema, WH(np, s, s/?(s/(np\s))).
When the wh-phrase is applied to its ques-
tion body it yields a wh-question of category
s/?(s/(np\s)), a sentence which is incomplete for
a generalized quantifier. For ease of exposition we
abbreviate s/(np\s) to gq. The reason for choos-
ing this type for ‘who’ is that the answer could be
a np typed phrase as well as generalized quantifier
phrase (section 6).

The following derivation shows the analysis of
the wh-question in a natural deduction style with
the abbreviated inference rule for merging the wh-
phrase.

[np ` np]1

saw
(np\s)/np

bill
np

saw ◦ bill ` np\s [/E]

np ◦ (saw ◦ bill) ` s
[\E]

.... who ` WH(np, s, s/?gq),1

who ◦ (saw ◦ bill) ` s/?gq

The main clause is built as usual, only the subject
argument phrase is a hypothesised np argument in-
stead of an actual noun phrase. After the body of
the clause s is derived, the wh-phrase merges with
the question body and replaces the np hypothesis,
yielding a clause of type s/?gq.

3Γ[∆] is the representation of a structure Γ, a sequence of
formulas which contains a substructure ∆.

4.3 Meaning assembly of wh-questions
To get a good understanding of the meaning rep-
resentation of a wh-question, it’s good to be aware
of the type construction in the semantic type lan-
guage. The semantic type that corresponds to the
wh-type schema takes the corresponding semantic
types of each subtype in the type schema and ar-
ranges them. Wh-type schema WH(A,B, C) maps
to the following semantic type:

(A →(2) B) →(1) C

The semantic type reveals the inherent steps en-
coded in the rule schema. →(1) is the application
step, merging a wh-phrase with the body. →(2)

represents abstraction of the hypothesis, with-
drawing the gap from the body of the wh-question.

Following the Curry-Howard correspondence
each syntactic type formula is mapped to a cor-
responding semantic type. In turn, we interpret
each expression by providing a semantic term that
matches the semantic type. The semantic term as-
signed to wh-type schema WH(A,B, C) is term
operator ω which corresponds to the above seman-
tic type. After merging the wh-phrase and the
question body, the syntactic derivation yields the
following semantic term for wh-questions:

(ω λxA.BODYB)C

In this term, BODY is the term computed for the
body of the wh-question which contains the hy-
pothesis A associated with term variable x. Ap-
plying the ω-operator to the lambda abstraction of
x over the term of the question body yields a term
of the expected semantic type, C.

Example We present the last step in the deriva-
tion of the wh-question ‘Who saw Bill?’ illustrat-
ing the the semantic composition of the wh-phrase
with the question body.

x : np ◦ (saw ◦ bill) ` ((see b) x) : s
.... who ` ω : WH(np, s, s/?gq)

who ◦ (saw ◦ bill) ` (ω λx.((see b) x)) : s/?gq

The precise meaning representation of a wh-
question depends, however, on the kind of wh-
phrase that constitutes a wh-question. We argue
that, at least for argument wh-phrases, different
wh-type schema can be derived from a single wh-
type schema. The basic case for wh-phrases is
a wh-type schema that ranges over higher-order
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typed answers: WH(np, s, s/?gq). The ω-operator
that captures the meaning assembly of this wh-
type schema can be regarded as a logical constant.
The definition of the ω-operator generalises over
different types of wh-phrases:

ω = λPA→B.λQ(A→B)→B.(Q P )

Example The meaning assembly for the wh-
question ‘Who saw Bill?’ is derived from the syn-
tactic analysis of the sentence. The syntactic cate-
gory and the lexical meaning assembly of the wh-
phrase ‘who’ is:

who ` λP (et).λQ(et)t.(Q P ) : WH(np, s, s/?gq)

The semantic term assignment to ‘who’ derives the
right meaning assembly for a wh-question ‘Who
saw Bill?’.

Who saw Bill? ` λQ.(Q λx.((see m) x)) : s/?gq

On the basis of this type-assignments for wh-
phrases, we can derive different instances of the
wh-type schema using axioms in the semantic type
language (Moortgat, 1997).

5 Derivability patterns

Incorporating the answer type into the wh-type
schema enables us to derive different instances of
wh-type schema. On the basis of this derivability
pattern, we can account for answer restrictions of
certain wh-phrases and for the derivation of multi-
ple wh-questions in section 6.

5.1 Semantic derivability
The derivability pattern of wh-type schema is
based on three theorems that are derivable in
semantic type language: type-lifting, geach and
exchange. We illustrate each rule in semantic type
language and present the meaning assembly for
each type-shifting rule.

[type-lifting] A ` (A → B) → B
x 7→ λy.(y x)

[geach] B → A ` (C → B) → (C → A)
x 7→ λy.λz.(x (y z))

[exchange] C → (D → E) ` D → (C → E)
x 7→ λz.λy.((x y) z)

Using these theorems, we can derive two ad-
ditional laws argument lowering and dependent
geach.

argument lowering The type-lifting rule lifts
any arbitrary type A to a type (A → B) → B.
The type lifting may alter the answer type to fit the
answer type requested by the wh-question. From
the type-lifting rule, we can also derive the rule for
argument lowering which encodes the alternation
of the answer type in the wh-type schema.

((A → B) → B) → C ` A → C

x 7→ λy.(x λz.(z y))

dependent geach The geach rule adds an addi-
tional dependent to both the main clause type A
and its argument type B. Again, each type may be
a complex type. The exchange rule captures the
reordering of two dependents. If the geach rule is
applied to a complex type (D → E) → (B → A),
the result type is the complex type (C → (D →
E)) → (C → (B → A)). Additionally, we apply
exchange to the consequent and the antecedent of
the geach type and shift the order of the dependent
types. We obtain a type-shifting rule which we re-
fer to as dependent geach by combining the two
rules.

(D → E) → (B → A) `
(D → (C → E)) → (B → (C → A))

x 7→ λz.λy.λv.((x λu.((z u) v)) y)

The theorems in the semantic type language re-
veal that under certain assumptions a number of
type alternations are also derivable in the syn-
tactic formula language. In Vermaat (2006), we
show that argument lowering and dependent geach
are derivable in the grammatical reasoning sys-
tem. Applying the two rules to different instances
of wh-type schema gives us derivability patterns
between instances of wh-type schema. In fig-
ure 1, the syntactic derivability pattern of wh-type
schemata is presented abstractly4. The syntactic
pattern maps to the meaning assembly pattern as
presented in figure 2.

6 Linguistic application

The syntactic decomposition of wh-question types
into types that are part of an question-answer
sequence adds polymorphism to the wh-type
schemata. The semantic representation of wh-
questions reflects the question’s requirement for

4For the actual syntactic derivation, we need to reason
structurally over unary operators ♦ and 2, see Vermaat
(2006).
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Argument lowering Dependent geach

I WH(np, s, s/?np)

H
WH(np, s, s/?gq) WH(np, s/?np, (s/?np/?np)

I WH(np, s/?np, (s/?np/?gq)

N

Dependent geach Argument lowering

Figure 1: Syntactic derivability pattern of wh-type schemata

Argument lowering Dependent geach

I λQ.Q

H
λP ′λQ′.(Q′ P ′) λP ′.λx.λy.((P ′ y) x)

I λP.λQ.λR.(Q λz.((P z) R))

N

Dependent geach Argument lowering

Figure 2: Meaning assembly of derivability patterns

certain types of answers. In this section, we ex-
plore the linguistic application of the derivability
pattern for wh-question formation.

In section 6.1, we focus on the derivation of
single constituent questions in English. We dis-
cuss the syntactic and semantic consequences of
argument lowering for the derivation of question-
answer sequences in local wh-questions. In sec-
tion 6.2, we discuss multiple wh-questions in En-
glish. We show that we can account for the deriva-
tion of multiple wh-questions on the basis of de-
riving geach types for both ex-situ and in-situ type
schema. And as a result derive the correct mean-
ing assembly for multiple wh-questions.

6.1 Single constituent questions

A single constituent question requires a single
constituent answer. We concentrate here on argu-
ment wh-phrases to illustrate the relation between
a wh-question and possible answers. We will look
at direct questions where the associated gap hy-
pothesis appears in the local domain.

In direct questions in English a fronted wh-
phrase associates with a np gap hypothesis. The
expected answer, however, depends on the kind
of wh-phrase. Wh-questions with argument wh-
phrases such as ‘what’ or ‘who’ expect either a ref-
erential or a quantified noun phrase. Wh-questions
with which-determiners only expect a referential

noun phrase as an answer. On the basis of the
derivability pattern of wh-ex-situ types we can ac-
count for the distinction between the two types of
wh-phrases. First, we discuss the lexical type-
assignments of wh-pronouns. Then, we present
the contrast with wh-determiners.

Wh-pronouns A suitable answer to a wh-
question such as ‘Who saw Bill?’ might be a refer-
ential noun phrase e.g. ‘John’, as well as a gener-
alized quantifier phrase e.g. ‘everyone’. To allow
both types of answers, ‘who’ and ‘whom’ are as-
signed the following wh-type schema in the lexi-
con.

who(m) ` λP et.λQ(et)t.(Q P )
WH(np, s, s/?(s/(np\s)))

The sentence in 2 is an example of the differ-
ent kinds of question-answer sequences that can be
derived using the given type-assignments for wh-
pronouns. The type that is derived for subject wh-
questions is a s-typed clause which is incomplete
for a lifted np type, (s/(np\s)). A generalized
quantifier phrase can be merged directly, while ref-
erential noun phrases such as ‘John’ in example
2b have to be lifted before they can be merged.
Along with the syntactic category, lifting alters the
semantic type of the answer in such a way that
the lifted type matches the semantic type requested
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by the interrogative clause. The semantic term is
computed as usual. The same line of reasoning
applies to the derivation of question-answer pairs
with non-subject argument wh-questions.

(2) Who saw Mary? `
λQ(et)t.(Q λx.((see m) x)) : s/?(s/(np\s)

a. Answer: ‘every man’ ` gq
∀y((man y) → ((see m) y))

b. Answer: ‘John’ ` np

(λP.(P j) λx.((see m) x))
;β (λx.((see m) x) j)
;β ((see m) j)

Wh-determiners Suitable answers to wh-
questions that are built with wh-determiners like
‘which’ are restricted to definite noun phrases.
The semantic difference between wh-phrases and
wh-determiners lies in the specific denotation of
the which-phrases. For instance, the wh-question
‘Which man saw Mary?’ can be paraphrased as
‘Who is the man that saw Mary?’. The person
who utters the question and the hearer already
have the background knowledge that the person
who saw Mary is a man. A definite answer is
the most likely response. This gives us evidence
to assume that a wh-determiner has a minimal
type-assignments that derives a question of
type: s/?np. On the basis of this assumption,
wh-determiners belong to a wh-type that yields a
question of type s/?np. The semantic term that
matches this type reveals the definiteness of the
answer that is requested.

which ` WH(np, s, s/?np)/n
λV.λP.λx.(x = ιy.((V y) ∧ (P y)))

On the basis of this type-assignments we can
derive the following question-answer sequence in
example 3a, while the answer in 3b is underivable.

(3) Which man saw Mary? ` s/?np
λx.(x = ιy.(man y) ∧ ((see m) y))

a. Answer: ‘John’ ` np
j = ιy.((man y) ∧ ((see m) y))

b. Which man saw Mary? ` s/?np
Answer: ∗ ‘every man’ ` gq

6.2 Multiple wh-questions

With the derivability pattern of wh-type schema
using dependent Geach, as presented in section 5,

we can derive multiple wh-questions from a sin-
gle type-assignments to a wh-phrase in the lexi-
con. Multiple wh-questions in English are recog-
nised by a single wh-phrase that appears at the
front of the main clause, whereas additional wh-
phrases appear embedded. In Vermaat (2006), we
have explored the syntax of multiple wh-phrases.
Wh-phrases that occur in-situ are lexically cate-
gorised as:

wh-in-situ ` WHin(np, s/?np, (s/?np)/?np)

This type encodes that the wh-phrase may only
appear in-situ in a wh-question body of type
s/?np, i.e. a sentence which already contains a
wh-phrase. The wh-type schema encodes that a
wh-phrase merges with a question body of type
s/?np, which contains a gap hypothesis of type
np. Notice that the wh-in-situ type schema can be
derived from WHin(np, s, s/?gq) using argument
lowering and dependent geach. By assigning wh-
in-situ phrases the above type, we correctly derive
that ‘whom’ can never occur in-situ in a phrase that
does not have a fronted wh-phrase. With this min-
imal type-assignments the wh-in-situ phrase is al-
ways dependent on the occurrence of another wh-
phrase (s/?gq). This dependency is reflected in
both syntax and semantics.

Syntactically, the wh-in-situ phrase is depen-
dent on the occurrence of the subject wh-phrase.
Semantically, the lambda abstraction binds the
type of the subject wh-phrase over the object wh-
phrase.

ex-situ who ` λR.λQ.(Q R) : WH(np, s, s/?gq)
in-situ whom ` λP.λx.λy.((P y) x) :

WHin(np, s/?np, (s/?np)/?np)

On the basis of this type-assignments and the
usual wh-type schema assigned to the subject wh-
phrase, we derive the multiple wh-question ‘Who
saw whom’ in Fig. 3. In the derivation the in-
ference steps are represented as structure ` type
whereas the meaning assembly is written below
the sequent.

7 Conclusion and future research

In this paper, we have discussed the syntactic and
semantic consequences of a structured meaning
approach to wh-questions. In a structured mean-
ing approach, wh-questions are taken to be incom-
plete sentences that are part of a question-answer
sequence. We have proposed to decompose wh-
questions into a type A/?B where A is the type
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whom
WHin(np, s/?np, (s/?np)/?np)

λPλx.λy.((P y) x)

who
WH(np, s, s/?gq)
λP.λQ.(Q P )

[u : np]1

saw
(np\s)/np [z : np]2

saw ◦ np ` np\s [/E]

np ◦ (saw ◦ np) ` s
[\E]

((see z) u)
who ◦ (saw ◦ np) ` s/?gq

[WH]1

λQ.(Q λu.((see z) u))
who ◦ (saw ◦ np) ` s/?np

[lowering]

λu.((see z) u)
who ◦ (saw ◦ whom) ` (s/?np)/?np

[WHin]2

λx.λy.((λz.λu.((see z) u) y) x)
;∗

β λx.λy.((see y) x)

Figure 3: Derivation of multiple wh-question

of the question-answer sequence and B is the type
of the answer. With the syntactic decomposition
of wh-types, we have been able to express the se-
mantic decomposition of the semantic ω-operator
as a λ-term.

Additionally, the syntactic and semantic decom-
position of the type for wh-questions leads to a
derivability pattern of wh-type schemata. This pat-
tern provides generalizations for different ques-
tion answer sequences. For instance, the differ-
ence between wh-pronouns and wh-determiners
and the derivation of multiple wh-questions. The
presented sentences have been computed using
the on-line parser for type-logical grammars. See
http://grail.let.uu.nl/~vermaat for further
analyses of this specific grammar fragment and
that of other languages.

The theoretical results in this paper have been
limited to argument wh-phrases. Next step is to
see how the derivability schema and the wh-type
schema apply to other types of wh-phrases, such
as adverbial wh-phrases. Additionally, we would
like to investigate additional logical axioms that
may lead to further generalizations for natural lan-
guage analysis. For a practical purpose, it would
be interesting to see whether the theoretical issues
addressed in this paper could be used in existing
question-answer dialogue systems, for example to
validate the answer.
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Abstract

The Natural Language Generation com-
munity is currently engaged in discussion
as to whether and how to introduce one
or several shared evaluation tasks, as are
found in other fields of Natural Language
Processing. As one of the most well-
defined subtasks in NLG, the generation
of referring expressions looks like a strong
candidate for piloting such shared tasks.
Based on our earlier evaluation of a num-
ber of existing algorithms for the genera-
tion of referring expressions, we explore
in this paper some problems that arise in
designing an evaluation task in this field,
and try to identify general considerations
that need to be met in evaluating genera-
tion subtasks.

1 Introduction

In recent years, the inclusion of an evaluation com-
ponent has become almost obligatory in any pub-
lication in the field of Natural Language Process-
ing. For complete systems, user-based and task-
oriented evaluation are almost standard practice in
both the Natural Language Understanding (NLU)
and Natural Language Generation (NLG) commu-
nities. A third, more competitive, form of eval-
uation has become increasingly popular in NLU

in the form of shared-task evaluation campaigns
(STECs). In a STEC, different approaches to a well-
defined problem are compared based on their per-
formance on the same task. A large number of dif-
ferent research communities within NLP, such as
Question Answering, Machine Translation, Doc-
ument Summarisation, Word Sense Disambigua-
tion, and Information Retrieval, have adopted a

shared evaluation metric and in many cases a
shared-task evaluation competition.

The NLG community has so far withstood this
trend towards a joint evaluation metric and a com-
petitive evaluation task, but the idea has surfaced
in a number of discussions, and most intensely at
the 2006 International Natural Language Genera-
tion Conference (see, for example, Bangalore et al.
(2000), Reiter and Sripada (2002), Reiter and Belz
(2006), Belz and Reiter (2006), Belz and Kilgarriff
(2006), Paris et al. (2006), and van Deemter et al.
(2006)).

Amongst the various component tasks that
make up Natural Language Generation, the gen-
eration of referring expressions is probably the
subtask for which there is the most agreement on
problem definition; a significant body of work now
exists in the development of algorithms for gener-
ating referring expressions, with almost all pub-
lished contributions agreeing on the general char-
acterisation of the task and what constitutes a so-
lution. This suggests that, if formal shared tasks
for NLG are to be developed, the generation of re-
ferring expressions is a very strong candidate.

In (Viethen and Dale, 2006), we argued that the
evaluation of referring expression generation algo-
rithms against natural, human-generated data is of
fundamental importance in assessing their useful-
ness for the generation of understandable, natural-
sounding referring expressions. In this paper, we
discuss a number of issues that arise from the eval-
uation carried out in (Viethen and Dale, 2006), and
consider what these issues mean for any attempt to
define a shared task in this area.

The remainder of this paper has the follow-
ing structure. In Section 2, we briefly describe
the evaluation experiment we carried out for three
well-established referring expression generation
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algorithms, and report the performance of these
algorithms in the chosen test domain. This leads
us to identify three specific issues that arise for the
evaluation of referring expression generation algo-
rithms, and for NLG systems in general; we dis-
cuss these in the subsequent sections of the paper.
Section 3 looks at the problem of input represen-
tations; Section 4 explores how the wide variety
of acceptable outputs, and the lack of a single cor-
rect answer, makes it hard to assess generation al-
gorithms; and Section 5 explores whether we can
usefully provide a numeric measure of the perfor-
mance of a generation algorithm. Finally, in Sec-
tion 6 we point to some ways forward.

2 An Evaluation Experiment

In (Viethen and Dale, 2006), we observed that sur-
prisingly little existing work in natural language
generation compares its output with natural lan-
guage generated by humans, and argued that such
a comparison is essential. To this end, we carried
out an experiment consisting of three steps:

1. the collection of natural referring expressions
for objects in a controlled domain, and the
subsequent analysis of the data obtained;

2. the implementation of a knowledge base
corresponding to the domain, and the re-
implementation of three existing algorithms
to operate in that domain; and

3. a detailed assessment of the algorithms’ per-
formance against the set of human-produced
referring expressions.

In the remainder of this section we briefly describe
these three stages. As we are mainly concerned
here with the evaluation process, we refer to (Vi-
ethen and Dale, 2006) for a more detailed account
of the experimental settings and an in-depth dis-
cussion of the results for the individual algorithms.

2.1 The Human-Generated Data
Our test domain consists of four filing cabinets,
each containing four vertically arranged drawers.
The cabinets are placed directly next to each other,
so that the drawers form a four-by-four grid as
shown in Figure 1. Each drawer is labelled with
a number between 1 and 16 and is coloured ei-
ther blue, pink, yellow, or orange. There are four
drawers of each colour distributed randomly over
the grid.

Figure 1: The filing cabinets

The human participants were given, on a num-
ber of temporally-separated occasions, a random
number between 1 and 16, and then asked to pro-
vide a description of the corresponding drawer to
an onlooker without using any of the numbers;
this basically restricted the subjects to using either
colour, location, or some combination of both to
identify the intended referent. The characterisa-
tion of the task as one that required the onlooker
to identify the drawer in question meant that the
referring expressions produced had to be distin-
guishing descriptions; that is, each referring ex-
pression had to uniquely refer to the intended ref-
erent, but not to any of the other objects in the do-
main.

The set of natural data we obtained from this
experiment contains 140 descriptions. We filtered
out 22 descriptions that were (presumably unin-
tentionally) ambiguous or used reference to sets
of drawers rather than only single drawers. As
none of the algorithms we wanted to test aims to
produce ambiguous referring expressions or han-
dle sets of objects, it is clear that they would not
be able to replicate these 22 descriptions. Thus
the final set of descriptions used for the evaluation
contained 118 distinct referring expressions.

Referring expression generation algorithms typ-
ically are only concerned with selecting the se-
mantic content for a description, leaving the de-
tails of syntactic realisation to a later stage in
the language production process. We are there-
fore only interested in the semantic differences be-
tween the descriptions in our set of natural data,
and not in superficial syntactic variations. The
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primary semantic characteristics of a referring ex-
pression are the properties of the referent used to
describe it. So, for example, the following two re-
ferring expressions for drawer d3 are semantically
different:

(1) The pink drawer in the first row, third col-
umn.

(2) The pink drawer in the top.

For us these are distinct referring expressions. We
consider syntactic variation, on the other hand, to
be spurious; so, for example, the following two
expressions, which demonstrate the distinction be-
tween using a relative clause and a reduced rela-
tive, are assumed to be semantically identical:

(3) The drawer that is in the bottom right.

(4) The drawer in the bottom right.

We normalised the human-produced data to re-
move syntactic surface variations such as these,
and also to normalise synonymic variation, as
demonstrated by the use of the terms column and
cabinet, which in our context carry no difference
in meaning.

The resulting set of data effectively charac-
terises each human-generated referring expression
in terms of the semantic attributes used in con-
structing those expressions. We can identify four
absolute properties that the human participants
used for describing the drawers: these are the
colour of the drawer; its row and column; and in
those cases where the drawer is located in one of
the corners of the grid, what we might call cor-
nerhood. A number of participants also made use
of relations that hold between two or more draw-
ers to describe the target drawer. The relational
properties that occurred in the natural descriptions
were: above, below, next to, right of, left of and be-
tween. However, relational properties were used
a lot less than the other properties: 103 of the 118
descriptions (87.3%) did not use relations between
drawers.

Many referring expression generation algo-
rithms aim to produce minimal, non-redundant de-
scriptions. For a referring expression to be mini-
mal means that all of the facts about the referent
that are contained in the expression are essential
for the hearer to be able to uniquely distinguish the
referent from the other objects in the domain. If
any part of the referring expression was dropped,

the description would become ambiguous; if any
other information was added, the resulting expres-
sion would contain redundancy.

Dale and Reiter (1995), in justifying the fact
that their Incremental Algorithm would sometimes
produce non-minimal descriptions, pointed out
that human-produced descriptions are often not
minimal in this sense. This observation has been
supported more recently by a number of other re-
searchers in the area, notably van Deemter and
Halldórsson (2001) and Arts (2004). However, in
the data from our experiment it is evident that the
participants tended to produce minimal descrip-
tions: only 24.6% of the descriptions (29 out of
118) contain redundant information.

2.2 The Algorithms

Many detailed descriptions of algorithms are
available in the literature on the generation of re-
ferring expressions. For the purpose of our eval-
uation experiment, we focussed here on three al-
gorithms on which many subsequently developed
algorithms have been based:

• The Full Brevity algorithm (Dale, 1989) uses
a greedy heuristic for its attempt to build a
minimal distinguishing description. At each
step, it always selects the most discriminatory
property available.

• The Relational Algorithm from (Dale and
Haddock, 1991) uses constraint satisfaction
to incorporate relational properties into the
framework of the Full Brevity algorithm. It
uses a simple mechanism to avoid infinite
regress.

• The Incremental Algorithm (Reiter and Dale,
1992; Dale and Reiter, 1995) considers the
available properties to be used in a descrip-
tion via a predefined preference ordering over
those properties.

We re-implemented these algorithms and applied
them to a knowledge base made up of the proper-
ties evidenced collectively in the human-generated
data. We then analysed to which extent the out-
put of the algorithms for each drawer was seman-
tically equivalent to the descriptions produced by
the human participants. The following section
gives a short account of this analysis.
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2.3 Coverage of the Human Data
Out of the 103 natural descriptions that do not use
relational properties, the Full Brevity Algorithm is
able to generate 82 by means of at least one pref-
erence ordering over the object properties, provid-
ing a recall of 79.6%. The recall achieved by the
Incremental Algorithm is 95.1%: it generates 98
of the 103 descriptions under at least one prefer-
ence ordering. The relational descriptions from
the natural data are not taken into account in eval-
uating the performance of these two algorithms,
since they are not designed to make use of rela-
tional properties.

Both the Full Brevity Algorithm and the Incre-
mental Algorithm are able to replicate all the mini-
mal descriptions found in the natural data. Against
its specification to avoid all redundancy, the Full
Brevity Algorithm also generates nine of the re-
dundant descriptions; the Incremental Algorithm
replicates 24 of the 29 redundant descriptions pro-
duced by humans.

Perhaps surprisingly, the Relational Algorithm
does not generate any of the human-produced de-
scriptions. The particular strategy adopted by
this algorithm is quite at odds with the human-
generated descriptions in our data; we refer the
reader to (Viethen and Dale, 2006) for a discus-
sion of this failure, since it does not have a direct
bearing on the present topic.

We now go on to discuss some of the key issues
for NLG evaluation that became evident in this ex-
periment.

3 Deciding on Input Representations

3.1 A Key Problem in NLG
It is widely accepted that the input for NLG sys-
tems is not as well-defined as it is in NLU tasks.
In NLU the input will always be natural language,
which is processed according to the task and trans-
formed into a machine-usable format of some
kind. In NLG, on the other hand, we are working
in the other direction: there exists no consensus of
what exact form the input into the system should
take. The input is a knowledge base in a machine-
usable format of some kind, whereas it is the de-
sired format of the output—natural language—
that is clear. As Yorick Wilks is credited with ob-
serving, Natural Language Understanding is like
counting from 1 to infinity, but Natural Language
Generation is like the much more perplexing task
of counting from infinity to 1. The problem of de-

termining what the generation process starts from
is probably one of the major reasons for the lack of
shared tasks in the field: each researcher chooses
a level of representation, and a population of that
level of representation, that is appropriate to ex-
ploring the kinds of distinctions that are central to
the research questions they are interested in.

3.2 A Problem for Referring Expression
Generation

As alluded to earlier, the generation of referring
expressions seems to avoid this problem. The task
is generally conceived as one where the intended
referent, and its distractors in the domain, are rep-
resented by symbolic identifiers, each of which is
characterised in terms of a collection of attributes
(such as colour and size) with their corresponding
values (red, blue, small, large. . . ).

However, this apparent agreement is, ultimately,
illusory. A conception in terms of symbolic
identifiers, attributes, and values provides only a
schema; to properly be able to compare different
algorithms, we still need to have agreement on the
specific attributes that are represented, and the val-
ues these attributes can take.

As we employed a new domain for the purpose
of our evaluation experiment, we had to first de-
cide how to represent this domain. Some of our
representational primitives might seem to be non-
contentious: the choice of colour, row and column
seem quite straightforward. However, we also ex-
plicitly represented a more controversial attribute
position, which took the value corner for the four
corner drawers. Although cornerhood can be in-
ferred from the row and column information, we
added this property explicitly because it seems
plausible to us that it is particularly salient in its
own right.

This raises the general question of what prop-
erties should be encoded explicitly, and which
should be inferred. In our experiment, we ex-
plicitly encode relational properties that could be
computed from each other, such as left-of and right-
of. We also chose not to implement the transitivity
of spatial relations. Due to the uniformity of our
domain the implementation of transitive inference
would result in the generation of unnatural de-
scriptions, such as the orange drawer (two) right
of the blue drawer for d12. Since none of the algo-
rithms explored in our experiment uses inference
over knowledge base properties, we opted here
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to enable a fairer comparison between human-
produced and machine-produced descriptions and
decided against any inferred properties.

The decisions we took regarding the represen-
tation of cornerhood, inferrable properties in gen-
eral, and transitive properties, were clearly influ-
enced by our knowledge of how the algorithms to
be tested work. If we had only assessed different
types of relational algorithms, we might have im-
plemented corners, and possibly even columns and
rows, as entities that drawers are spatially related
to. If the assessed algorithms had been able to
handle inferred properties, cornerhood might have
been implemented only implicitly as a result of the
grid information about a drawer. The point here is
that our representational choices were guided by
the requirements of the algorithms, and our intu-
itions about salience as derived from our exami-
nation of the data; other researchers might have
made different choices.

3.3 Consequences

From the observations above, it is evident that, in
any project that focusses on the generation of re-
ferring expressions, the design of the underlying
knowledge base and that of the algorithms that
use that knowledge base are tightly intertwined.
If we are to define a shared evaluation task or
metric in this context, we can approach this from
the point of view of assessing only the algorithms
themselves, or assessing algorithms in combina-
tion with their specific representations. In the first
case, clearly the input representation should be
agreed by all ahead of time; in the second case,
each participant in the evaluation is free to choose
whatever representation they consider most appro-
priate.

The latter course is, obviously, quite unsatisfac-
tory: it is too easy to design the knowledge base
in such a way as to ensure optimal performance of
the corresponding algorithm. On the other hand,
the former course is awash with difficulty: even
in our very simple experimental domain, there
are representational choices to be made for which
there is no obvious guidance. We have discussed
this problem in the context of what, as we have
noted already, is considered to be a generation sub-
task on which there is considerable agreement; the
problem is much worse for other component tasks
in NLG.

4 Dealing with Determinism

4.1 There is More than One Way to Skin a
Cat

One very simple observation from the natural data
collected in our experiment is that people do not
always describe the same object the same way.
Not only do different people use different refer-
ring expressions for the same object, but the same
person may use different expressions for the same
object on different occasions. Although this may
seem like a rather unsurprising observation, it has
never, as far as we are aware, been taken into ac-
count in the development of any algorithm for the
generation of referring expressions. Existing al-
gorithms typically assume that there is a best or
most-preferred referring expression for every ob-
ject.

How might we account for this variation in the
referring expressions that are produced by people?
Where referring expressions are produced as part
of natural dialogic conversation, there are a num-
ber of factors we might hypothesize would play a
role: the speaker’s perspective or stance towards
the referent, the speaker’s assumptions about the
hearer’s knowledge, the appropriate register, and
what has been said previously. However, it is hard
to see how these factors can play an important role
in the simple experimental setup we used to gen-
erate the data discussed here: the entities are very
simple, leaving little scope for notions of perspec-
tive or stance; and the expressions are constructed
effectively ab initio, with no prior discourse to set
up expectations, establish the hearer’s knowledge,
or support alignment. The sole purpose of the
utterances is to distinguish the intended referent
from its distractors.

We noted earlier that one regard in which multi-
ple different descriptions of a referent may vary is
that some may be redundant where others are not.
Carletta (1992) distinguishes risky and cautious
behaviour in the description task: while some par-
ticipants would use only the briefest references,
hoping that these would do the job, others would
play safe by loading their descriptions with addi-
tional information that, in absolute terms, might
make the overall description redundant, but which
would make it easier or less confusing to interpret.
It is possible that a similar or related speaker char-
acteristic might account for some of the variation
we see here; however, it would still not provide a
basis for the variation even within the redundant
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and minimal subsets of the data.
Of course, it can always be argued that there is

no ‘null context’, and a more carefully controlled
and managed experiment would be required to
rule out a range of possible factors that predispose
speakers to particular outcomes. For example, an
analysis in terms of how the speakers ‘come at’ the
referent before deciding how to describe it might
be in order: if they find the referent by scanning
from the left rather than the right (which might
be influenced by the ambient lighting, amongst
other things), are different descriptions produced?
Data from eye-tracking experiments could provide
some insights here. Or perhaps the variation is due
to varying personal preferences at different times
and across participants.

Ultimately, however, even if we end up simply
attributing the variation to some random factor, we
cannot avoid the fact that there is no single best
description for an intended referent. This has a
direct bearing on how we can evaluate the output
of a specific algorithm that generates references.

4.2 Evaluating Deterministic Algorithms

The question arising from this observation is this:
why should algorithms that aim to perform the
task of uniquely describing the drawers in our do-
main have to commit to exactly one ‘best’ refer-
ring expression per drawer? In the context of eval-
uating these algorithms against human-generated
referring expressions, this means that the algo-
rithms start out with the disadvantage of only be-
ing able to enter one submission per referent into
the competition, when there are a multitude of pos-
sible ‘right’ answers.

This issue of the inherent non-determinism of
natural language significantly increases the degree
of difficulty in evaluating referring expression al-
gorithms, and other NLG systems, against natural
data. Of course, this problem is not unique to
NLG: recent evaluation exercises in both statisti-
cal machine translation and document summarisa-
tion have faced the problem of multiple gold stan-
dards (see Akiba et al. (2001) and Nenkova and
Passonneau (2004), respectively). However, it is
not obvious that such a fine-grained task as refer-
ring expression generation can similarly be evalu-
ated by comparison against a gold standard set of
correct answers, since even a large evaluation cor-
pus of natural referring expressions can never be
guaranteed to contain all acceptable descriptions

for an object. Thus an algorithm might achieve an
extremely low score, simply because the perfectly
acceptable expressions it generates do not happen
to appear in the evaluation set. Just because we
have not yet seen a particular form of reference in
the evaluation corpus does not mean that it is in-
correct.

We might try to address this problem by encour-
aging researchers to develop non-deterministic al-
gorithms that can generate many different accept-
able referring expressions for each target object to
increase the chances of producing one of the cor-
rect solutions. The evaluation metric would then
have to take into account the number of referring
expressions submitted per object. However, this
would at most alleviate, but not entirely solve, the
problem.

This poses a major challenge for attempts
to evaluate referring expression generation algo-
rithms, and many other NLG tasks as well: for such
tasks, evaluating against a gold standard may not
be the way to go, and some other form of compar-
ative evaluation is required.

5 Measuring Performance

Related to the above discussion is the question of
how we measure the performance of these sys-
tems even when we do have a gold standard cor-
pus that contains the referring expressions gener-
ated by our algorithms. In Section 2.3, we noted
that the Incremental Algorithm achieved a recall
of 95.1% against our human-produced data set,
which is to say that it was able to produce 95.1%
of the descriptions that happened to appear in the
data set; but as noted in the previous section, we
cannot simply consider this data set to be a gold
standard in the conventional sense, and so it is not
really clear what this number means.

The problem of counting here is also impacted
by the nature of the algorithm in question: as noted
in Section 2.3, this performance represents the be-
haviour of the algorithm in question under at least
one preference ordering.

The Incremental Algorithm explicitly encodes
a preference ordering over the available proper-
ties, in an attempt to model what appear to be
semi-conventionalised strategies for description
that people use. The properties are considered in
the order prescribed by the preference list and a
particular property is used in the referring expres-
sion if it provides some discriminatory power, oth-
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erwise it is skipped.
However, even within a single domain, one can

of course vary the preference ordering to achieve
different effects. It was by means of manipula-
tion of the preference ordering that we were able
to achieve such a high coverage of the human-
produced data. We chose to view the manipula-
tion of the preference ordering as the tweaking of
a parameter. It could be argued that each distinct
preference ordering corresponds to a different in-
stantiation of the algorithm, and so reporting the
aggregate performance of the collection of instan-
tiations might be unfair. On the other hand, no sin-
gle preference ordering would score particularly
highly; but this is precisely because the human
data represents the results of a range of different
preference orderings, assuming that there is some-
thing analogous to the use of a preference ordering
in the human-produced referring expressions. So
it seems to us that the aggregated results of the best
performing preference orderings provide the most
appropriate number here.

Of course, such an approach would also likely
produce a large collection of referring expressions
that are not evidenced in the data. This might
tempt us to compute precision and recall statistics,
and assign such an algorithm some kind of F-score
to measure the balance between under-generation
and over-generation. However, this evaluation ap-
proach still suffers from the problem that we are
not sure how comprehensive the gold standard
data set is in the first place.

Ultimately, it seems that performance metrics
based on the notion of coverage of a data set are
fundamentally flawed when we consider a task
like referring expression generation. We have ar-
gued above that asking the question ‘Does the al-
gorithm generate the correct reference?’ does not
make sense when there are multiple possible cor-
rect answers. The question ‘Does the algorithm
generate one of the correct answers?’ on the other
hand, is impracticable, because we don’t have ac-
cess to the full set of possible correct answers. Al-
though it is not clear if a data-driven evaluation ap-
proach can fully achieve our purpose here, a better
question would be: ‘Does this algorithm generate
a reference that a person would use?’

6 Conclusions

It is widely agreed that the requirement of numeri-
cal evaluation has benefitted the field of NLP by fo-

cussing energy on specific, well-defined problems,
and has made it possible to compare competing
approaches on a level playing field. In this paper,
we have attempted to contribute to the debate as
to how such an approach to evaluation might be
brought into the field of NLG. We did this by ex-
ploring issues that arise in the evaluation of algo-
rithms for the generation of referring expressions,
since this is the area of NLG where there already
seems to be something like a shared task defini-
tion.

By examining the results of our own experi-
ments, where we have compared the outputs of
existing algorithms in the literature with a collec-
tion of human-produced data, we have identified
a number of key concerns that must be addressed
by the community if we are to develop metrics for
shared evaluation in the generation of referring ex-
pressions, and in NLG more generally.

First, it is essential that the inputs to the systems
are agreed by all, particularly in regard to the na-
ture and content of the representations used. This
is a difficult issue, since NLG researchers have typ-
ically constructed their own representations that
allow exploration of the research questions in their
particular foci of interest; agreement on represen-
tations will not come easily. One could look to
representations that exist for separately motivated
tasks, thus providing an independent arbiter: for
example, one might use tabular data correspond-
ing to stock market results or meteorological phe-
nomena. However, such representations consid-
erably under-represent the content of texts that
might describe them, leaving considerable scope
for researchers to add their own special ingredi-
ents.

Second, we observe that there are many ways in
which language can say the same thing or achieve
the same result. Any attempt to assess the out-
put of a language generation system has to contend
with the fact that there are generally many correct
answers to the problem, and there are no easy so-
lutions to producing a reference set that contains
all the possible answers. This suggests that an al-
ternative paradigm might need to be developed for
assessing the quality of NLG system output. Task-
based evaluations (for example, testing if a user is
able to complete a particular task given a machine-
generated set of instructions) are an option to cir-
cumvent this problem, but are too coarse-grained
to give us insights into the quality of the generated
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output.
Finally, and related to the point above, it is not

at all obvious that numeric measures like preci-
sion and recall make any sense in assessing gen-
eration system output. A generation system that
replicates most or all of the outputs produced by
humans, while overgenerating as little as possible,
would clearly be highly adequate. However, we
cannot automatically penalise systems for gener-
ating outputs that have not, so far, been seen in
human-produced data.

Our analysis makes it seem likely that the im-
practicability of constructing a gold standard data
set will prove itself as the core problem in design-
ing tasks and metrics for the evaluation of systems
for the generation of referring expressions and of
NLG systems in general. There are various ways
in which we might deal with this difficulty, which
will need to be examined in turn. One possible
way forward would be to take a more detailed look
at the solutions that other tasks with output in the
form of natural language, such as machine transla-
tion and text summarisation, have found for their
evaluation approaches. We might also come to the
conclusion that we can make do with a theoreti-
cally ‘imperfect’ evaluation task that works well
enough to be able to assess any systems conceiv-
ably to be developed in the near or medium term.

Although we concede that a lot of groundwork
still needs to be done, we are convinced that a
more standardised evaluation approach is impor-
tant for the advancement of the field of NLG.
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Abstract

This paper describes a mechanism for
identifying errors made by a student dur-
ing a computer-aided language learning
dialogue. The mechanism generates a set
of ‘perturbations’ of the student’s origi-
nal typed utterance, each of which em-
bodies a hypothesis about an error made
by the student. Perturbations are then
passed through the system’s ordinary ut-
terance interpretation pipeline, along with
the student’s original utterance. An utter-
ance disambiguation algorithm selects the
best interpretation, performing error cor-
rection as a side-effect.

1 Introduction

The process of identifying and correcting the er-
rors in an input utterance has been extensively
studied. Kukich (1992) discusses three progres-
sively more difficult tasks. The first task is the
identification of nonwords in the utterance. A
nonword is by definition a word which is not part
of the language, and which therefore must must
have been misspelled or mistyped. The difficulty
in identifying nonwords is due to the impossibility
of assembling a list of all the actual words in a lan-
guage; some classes of actual words (in particular
proper names) are essentially unbounded. So the
system should have a reliable way of identifying
when an unknown word is likely to belong to such
a class.

The second task is to suggest corrections for in-
dividual nonwords, based purely on their similar-
ity to existing words, and a model of the likelihood
of different sorts of errors. This task is performed
quite well by the current generation of spellcheck-
ers, and is to some extent a solved problem.

The third task is to detect and correct valid
word errors—that is, errors which have resulted
in words (for instance their misspelled as there).
This task requires the use of context: the error
can only be detected by identifying that a word
is out of place in its current context. Probabilis-
tic language models which estimate the likelihood
of words based on their neighbouring words have
been used quite successfully to identify valid word
errors (see e.g. Golding and Schabes (1996);
Mangu and Brill (1997); Brill and Moore (2000));
however, there are situations where these tech-
niques are not able to identify the presence of er-
rors, and a richer model of context is needed, mak-
ing reference to syntax, semantics or pragmatics.
In summary, two of the outstanding problems in
automated error correction are identifying proper
names and detecting and correcting errors which
require a sophisticated model of context.

In this paper, we consider a domain where
these two problems arise with particular force:
computer-aided language learning dialogues (or
CALL dialogues. In this domain, the system
plays the role of a language tutor, and the user is a
student learning a target language: the student en-
gages with the system in a dialogue on some pre-
set topic. One of the system’s key roles is to iden-
tify errors in the student’s utterances and to correct
these errors (either indirectly, by prompting the
student, or directly, by reporting what the student
should have said). In either case, it is crucial that
the system makes correct diagnoses about student
errors. While a regular spell-checker is relatively
passive, simply identifying possibly misspelled
words, a language tutor frequently takes interven-
tions when detecting errors, and initiates subdia-
logues aimed at correcting them. (Of course, a tu-
tor may choose to ignore some of the errors she
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identifies, to avoid overwhelming the student with
negative feedback, or to concentrate on a particu-
lar educational topic. However, it is in the nature
of a tutorial dialogue that the tutor frequently picks
up on a student’s errors.) In this domain, therefore,
it is particularly important to get error correction
right.

The focus of the paper is on our system’s mech-
anism for error correction, which is tightly inte-
grated with the mechanism for utterance disam-
biguation. Our claim is that a semantically rich
utterance disambiguation scheme can be extended
relatively easily to support a sophisticated model
of error correction, including the syntactic and se-
mantic errors which are hard for surface based n-
gram models of context. We will begin in Sec-
tion 2 by reviewing the kinds of error found in
language-learning dialogues. In Section 3, we dis-
cuss some different approaches to modelling lan-
guage errors, and outline our own approach. In
Section 4 we introduce our dialogue-based CALL
system. In Section 5 we discuss our approach to
error correction in detail: the basic suggestion is
to create perturbations of the original sentence
and interpret these alongside the original sentence,
letting the regular utterance disambiguation mod-
ule decide which interpretation is most likely. In
Section 6 we discuss some examples of our sys-
tem in action, and in Section 7, we discuss how
the model can be extended with a treatment of un-
known words.

2 The types of error found in
language-learning dialogues

Learners of a language can be expected to make
more errors than native speakers. If we restrict our
errors to those present in typed utterances, some
types of error are essentially the same—in partic-
ular, we can expect a similar proportion of typos in
learners as in native speakers. Other types of error
will be qualitatively similar to those made by na-
tive speakers, but quantitatively more prevalent—
for instance, we expect to find more spelling mis-
takes in learners than in native speakers, but the
mechanisms for detecting and correcting these are
likely to be similar. However, there are some types
of error which we are likely to find only in lan-
guage learners. We will consider two examples
here.

Firstly, there are grammatical errors. The
learner of a language does not have a firm grasp

of the grammatical rules of the language, and is
likely to make mistakes. These typically result in
syntactically ill-formed sentences:

(1) T: How are you feeling?1

S: I feeling well.

It may be that a bigram-based technique can iden-
tify errors of this kind. But it is less likely that such
a technique can reliably correct such errors. Cor-
rections are likely to be locally suitable (i.e. within
a window of two or three words), but beyond this
there is no guarantee that the corrected sentence
will be grammatically correct. In a CALL system,
great care must be taken to ensure that any correc-
tions suggested are at least syntactically correct.

Another common type of errors are vocabulary
errors. Learners often confuse one word for an-
other, either during interpretation of the tutor’s
utterances or generation of their own utterances.
These can result in utterances which are syntacti-
cally correct, but factually incorrect.

(2) T: Where is the bucket?
S: It is on the flour. [meaning ‘floor’]

(Note that vocabulary errors can manifest them-
selves as grammatical errors if the wrongly used
word is of a different syntactic category.) To detect
errors of this sort, the system must have a means
of checking utterances against a model of relevant
facts in the world.

Thirdly, there are pragmatic errors, which in-
volve an utterance which is out of place in the cur-
rent dialogue context.

(3) T: How are you feeling?
S: You are feeling well.

These errors can result from a failure to compre-
hend something in the preceding dialogue, or from
a grammatical or vocabulary error which happens
to result in a syntactically well-formed sentence.
To detect and correct errors of this type, a model
of coherent dialogue is needed—in particular, a
model of the relationship between questions and
answers.

These three types of error are relatively com-
mon in language-learning dialogues. Detecting
them requires relatively deep syntactic and seman-
tic processing of the utterances in the dialogue.

1T stands for ‘tutor’ in these examples, and S stands for
‘student’.
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Such processing is not yet feasible in an unre-
stricted dialogue with a native speaker—however,
in a language-learning dialogue, there are sev-
eral extra constraints which make it more feasi-
ble. Firstly, a language learner has a much smaller
grammar and vocabulary than a native speaker.
Thus it may well be feasible to build a grammar
which covers all of the constructions and words
which the user currently knows. If the system’s
grammar is relatively small, it may be possible
to limit the explosion of ambiguities which are
characteristic of wide-coverage grammars. Sec-
ondly, the semantic domain of a CALL dialogue
is likely to be quite well circumscribed. For one
thing, the topics of conversation are limited by the
syntax and vocabulary of the student. In practice,
the topic of conversation is frequently dictated by
the tutor; there is a convention that the tutor is re-
sponsible for determining the content of language-
learning exercises. Students are relatively happy
to engage in semantically trivial dialogues when
learning a language, because the content of the di-
alogue is not the main point; it is simply a means
to the end of learning the language.

In summary, while CALL dialogues create
some special problems for an error correction sys-
tem, they also well suited to the deep utterance in-
terpretation techniques which are needed to pro-
vide the solutions to these problems.

3 Alternative frameworks for modelling
language errors

There are several basic schemes for modelling lan-
guage errors. One scheme is to construct spe-
cialised error grammars, which explicitly ex-
press rules governing the structures of sentences
containing errors. The parse tree for an error-
containing utterance then provides very specific
information about the error that has been made.
We have explored using a system of this kind
(Vlugter et al., (2004), and others have pursued
this direction quite extensively (see e.g. Michaud
et al. (2001); Bender et al. (2004); Foster and Vo-
gel (2004)). This scheme can be very effective—
however, creating the error rules is a very spe-
cialised job, which has to be done by a grammar
writer. We would prefer a system which makes it
easy for language teachers to provide input about
the most likely types of error made by students.

Another scheme is to introduce ways of relax-
ing the constraints imposed by a grammar if a sen-

tence cannot be parsed. The relaxation which re-
sults in a successful parse provides information
about the type of error which has occurred. This
technique has been used effectively by Menzel
and Schröder (1998), and similar techniques have
been used by Fouvry (2003) for robust parsing.
However, as Foster and Vogel note, the technique
has problems dealing with errors involving addi-
tions or deletions of whole words. In addition, the
model of errors is again something considerably
more complicated than the models which teachers
use when analysing students’ utterances and pro-
viding feedback.

In the scheme we propose, the parser is left un-
changed, only accepting syntactically correct sen-
tences; however, more than one initial input string
is sent to the parser. In our scheme, the student’s
utterance is first permuted in different ways, in
accordance with a set of hypotheses about word-
level or character-level errors which might have
occurred. There are two benefits to this scheme.
Firstly, hypotheses are expressed a ‘surface’ level,
in a way which is easy for non-specialists to under-
stand. Secondly, creating multiple input strings in
this way allows the process of error correction to
be integrated neatly with the process of utterance
disambiguation, as will be explained below.

4 Utterance interpretation and
disambiguation in our dialogue system

Our CALL dialogue system, called Te Kaitito
(Vlugter et al. (2004); Knott (2004); Slabbers
and Knott (2005)) is designed to assist a student
to learn M āori. The system can ‘play’ one or more
characters, each of which enters the dialogue with
a private knowledge base of facts and an agenda
of dialogue moves to make (principally questions
to ask the student about him/herself). Each les-
son is associated with an agenda of grammatical
constructions which the student must show evi-
dence of having assimilated. The system supports
a mixed-initiative multi-speaker dialogue: system
characters generate initiatives which (if possible)
are relevant to the current topic, and feature gram-
matical constructions which the student has not
yet assimilated. System characters can also ask
‘checking’ questions, to explicitly check the stu-
dent’s assimilation of material presented earlier in
the dialogue.

The system’s utterance interpretation mecha-
nism takes the form of a pipeline. An utterance
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by the student is first parsed, using the LKB sys-
tem (Copestake (2000)). Our system is config-
ured to work with a small grammar of M āori, or
a wide-coverage grammar of English, the English
resource grammar (Copestake et al. (2000)). Each
syntactic analysis returned by the parser is associ-
ated with a single semantic representation. From
each semantic representation a set of updates is
created, which make explicit how the presupposi-
tions of the utterance are resolved, and what the
role of the utterance is in the current dialogue con-
text (i.e. what dialogue act it executes). Utterance
disambiguation is the process of deciding which
of these updates is the intended sense of the utter-
ance.

To disambiguate, we make use of information
derived at each stage of the interpretation pipeline.
At the syntactic level, we prefer parses which
are judged by the probabilistic grammar to be
most likely. At the discourse level, we prefer up-
dates which require the fewest presupposition ac-
commodations, or which are densest in success-
fully resolved presuppositions (Knott and Vlugter
(2003)). At the dialogue level, we prefer updates
which discharge items from the dialogue stack: in
particular, if the most recent item was a question,
we prefer a dialogue act which provides an answer
over other dialogue acts. In addition, if a user’s
question is ambiguous, we prefer an interpretation
to which we can provide an answer.

Our system takes a ‘look-ahead’ approach to ut-
terance disambiguation (for details, see Lurcock
et al. (2004); Lurcock (2005)). We assume
that dialogue-level information is more useful for
disambiguation than discourse-level information,
which is in turn more useful than syntactic in-
formation. By preference, the system will de-
rive all dialogue-level interpretations of each pos-
sible syntactic analysis. However, if the number
of parses exceeds a set threshold, we use the prob-
ability of parses as a heuristic to prune the search
space.

Each interpretation computed receives an in-
terpretation score at all three levels. Interpre-
tation scores are normalised to range between 0
and 10; 0 denotes an impossible interpretation,
and 10 denotes a very likely one. (For the syn-
tax level, an interpretation is essentially a proba-
bility normalised to lie between 0 and 10, but for
other levels they are more heuristically defined.)
When interpretations are being compared within a

level, we assume a constant winning margin for
that level, and treat all interpretations which score
within this margin of the top-scoring interpretation
as joint winners at that level.

If there is a single winning interpretation at the
dialogue level, it is chosen, regardless of its scores
at the lower levels. If there is a tie between sev-
eral interpretations at the highest level, the scores
for these interpretations at the next level down are
consulted, and so on. To resolve any remaining
ambiguities at the end of this process, clarification
questions are asked, which target syntactic or ref-
erential or dialogue-level ambiguities as appropri-
ate.

5 The error correction procedure

Like disambiguation, error correction is a process
which involves selecting the most contextually ap-
propriate interpretation of an utterance. If the ut-
terance is uninterpretable as it stands, there are
often several different possible corrections which
can be made, and the best of these must be se-
lected. Even if the utterance is already inter-
pretable, it may be that the literal interpretation is
so hard to accept (either syntactically or semanti-
cally) that it is easier to hypothesise an error which
caused the utterance to deviate from a different,
and more natural, intended reading. The basic idea
of modelling error correction by hypothesising in-
tended interpretations which are easier to explain
comes from Hobbs et al. (1993); in this section,
we present our implementation of this idea.

5.1 Perturbations and perturbation scores

Each error hypothesis is modelled as a perturba-
tion of the original utterance (Lurcock (2005)).
Two types of perturbation are created: character-
level perturbations (assumed to be either ty-
pos or spelling errors) and word-level perturba-
tions (assumed to reflect language errors). For
character-level perturbations, we adopt Kukich’s
(1992) identification of four common error types:
insertion of an extra character, deletion of a char-
acter, transposition of two adjacent characters
and substitution of one character by another. Ku-
kich notes that 80% of misspelled words contain
a single instance of one of these error types. For
word-level perturbations, we likewise permit in-
sertion, deletion, transposition and substitution of
words.

Each perturbation created is associated with a
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‘perturbation score’. This score varies between
0 and 1, with 1 representing an error which is so
common that it costs nothing to assume it has oc-
curred, and 0 representing an error which never
occurs. (Note again that these scores are not prob-
abilities, though in some cases they are derived
from probabilistic calculations.) When the inter-
pretation scores of perturbed utterances are being
compared to determine their likelihood as the in-
tended sense of the utterance, these costs need to
be taken into account. In the remainder of this sec-
tion, we will describe how perturbations are cre-
ated and assigned scores. Details can be found in
van der Ham (2005).

5.1.1 Character-level perturbations

In our current simple algorithm, we perform
all possible character-level insertions, deletions,
substitutions and transpositions on every word.
(‘Space’ is included in the set of characters, to al-
low for inappropriately placed word boundaries.)
Each perturbation is first checked against the sys-
tem’s lexicon, to eliminate any perturbations re-
sulting in nonwords. The remaining perturbations
are each associated with a score. The scoring func-
tion takes into account several factors, such as
phonological closeness and keyboard position of
characters. In addition, there is a strong penalty
for perturbations of very short words, reflecting
the high likelihood that perturbations generate new
words simply by chance.

To illustrate the character-level perturbation
scheme, if we use the ERG’s lexicon and English
parameter settings, the set of possible perturba-
tions for the user input word sdorted is sorted,
sported and snorted. The first of these results from
hypothesising a character insertion error; the latter
two result from hypothesising character substitu-
tion errors. The first perturbation has a score of
0.76; the other two both have a score of 0.06. (The
first scores higher mainly because of the closeness
of the ‘s’ and ‘d’ keys on the keyboard.)

5.1.2 Word-level perturbations

As already mentioned, we employ Kukich’s tax-
onomy of errors at the whole word level as well as
at the single character level. Thus we consider a
range of whole-word insertions, deletions, substi-
tutions and transpositions. Clearly it is not pos-
sible to explore the full space of perturbations at
the whole word level, since the number of possible
words is large. Instead, we want error hypotheses

to be driven by a model of the errors which are
actually made by students.

Our approach has been to compile a database of
commonly occurring whole-word language errors.
This database consists of a set of sentence pairs
〈Serr, Sc〉, where Serr is a sentence containing ex-
actly one whole-word insertion, deletion, substitu-
tion or transposition, and Sc is the same sentence
with the error corrected. This database is simple
to compile from a technical point of view, but of
course requires domain expertise: in fact, the job
of building the database is not in fact very different
from the regular job of correcting students’ written
work. Our database was compiled by the teacher
of the introductory M āori course which our sys-
tem is designed to accompany. Figure 1 illustrates
with some entries in a (very simple) database of
English learner errors. (Note how missing words

Error sentence Correct sentence Error type
I saw GAP dog I saw a dog Deletion (a)
I saw GAP dog I saw the dog Deletion (the)
He plays the football He plays GAP football Insertion (the)
I saw a dog big I saw a big dog Transposition

Figure 1: Extracts from a simple database of
whole-word English language errors

in the error sentence are replaced with the token
“GAP”.)

Given the student’s input string, we consult the
error database to generate a set of candidate word-
level perturbations. The input string is divided into
positions, one preceding each word. For each po-
sition, we consider the possibility of a deletion
error (at that position), an insertion error (of the
word following that position), a substitution error
(of the word following that position) and a trans-
position error (of the words preceding and follow-
ing that position). To generate a candidate pertur-
bation, there must be supporting evidence in the
error database: in each case, there must be at least
one instance of the error in the database, involving
at least one of the same words. So, for instance,
to hypothesise an insertion error at the current po-
sition (i.e. an error where the word w following
that position has been wrongly inserted and needs
to be removed) we must find at least one instance
in the database of an insertion error involving the
word w.

To calculate scores for each candidate perturba-
tion, we use the error database to generate a prob-
ability model, in which each event is a rewriting of
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a given word sequence Sorig as a perturbed word
sequence Spert (which we write as Sorig → Spert.)
The database may contain several different ways
of perturbing the word sequence Sorig. The rela-
tive frequencies of the different perturbations can
be used to estimate perturbation probabilities, as
follows:

P (Sorig→Spert) ≈
count(Sorig→Spert)

count(Sorig→ )

(The denominator holds the count of all perturba-
tions of Sorig in the error database.)

Naturally, if we want useful counts, we cannot
look up a complete sentence in the error database.
Instead, we work with an n-gram model, in which
the probability of a perturbed sentence is approxi-
mated by the probability of a perturbation in an n-
word sequence centred on the perturbed word. In
our model, the best approximation is a perturbed
trigram; thus if the student’s input string is I saw
dog, the probability of a perturbation creating I
saw the dog is given by

count(saw GAP dog → saw the dog)

count(saw GAP dog → )

Again, it is unlikely these counts are going to be
high enough, so we also derive additional backed-
off estimates, two based on bigrams and one based
on unigrams:

count(GAP dog → the dog)

count(GAP dog → )

count(saw GAP → saw the)

count(saw GAP → )

count(GAP → the)

count(GAP → )

See van der Ham (2005) for details of the backoff
and discounting schemes used to derive a single
probability from these different approximations.

5.2 Integrating perturbations into utterance
disambiguation

When an incoming utterance is received, a set of
perturbations is generated. Naturally, we do not
want to hypothesise all possible perturbations, but
only the most likely ones—i.e. those whose score
exceeds some threshold. The threshold is cur-
rently set at 0.8. We also want to keep the num-
ber of hypothesised perturbations to a minimum.
Currently we only allow one perturbation per ut-
terance, except for a special class of particularly

common spelling mistakes involving placement of
macron accents, of which we allow three. (Where
there are multiple perturbations, their scores are
multiplied.)

Each perturbed sentence is passed to the utter-
ance interpretation module. Most of the pertur-
bations result in ungrammatical sentences, and so
fail at the first hurdle. However, for any which can
be parsed, one or more full updates is created. The
complete set of updates produced from the origi-
nal sentence and all its selected perturbations are
then passed to the disambiguation module.

The disambiguation module must now take into
account both the interpretation score and the per-
turbation score when deciding between alternative
interpretations. At any level, the module computes
an aggregate score Sagg , which is the product of
the perturbation score Spert (weighted by a pertur-
bation penalty) and the interpretation score Sint:

Sagg =
Spert

pert penalty
× Sint

(The perturbation penalty is a system parameter,
which determines the importance of perturbation
scores relative to interpretation scores; it is cur-
rently set to 1.) To choose between alternative in-
terpretations at a given level, we now take all in-
terpretations whose aggregate score is within the
winning margin of the highest aggregate score.

5.3 Responding to the user’s utterance

After the utterance disambiguation process is
complete, either a single interpretation remains,
or a set of interpretations whose aggregate scores
are too close to call at any of the three levels. In
either case, how the system responds depends on
whether the remaining interpretations derive from
the unperturbed utterance or from a perturbed ver-
sion.

If a single interpretation remains, then if it de-
rives from the original utterance, the dialogue
manager responds to it in the usual way. However,
if it derives from a perturbed utterance, then the
system is confident that an error has occurred, and
that it knows what the error is. In this case the sys-
tem enters a subdialogue with the user to address
the error. Our system’s current strategy is simply
to report the error explicitly:

(4) I think you mean [perturbed utterance].
Please try again!
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(If the student’s utterance was responding to a
forward-looking dialogue act—e.g. a question—
the system then reiterates this forward-looking act,
to recreate the context for the student’s second at-
tempt.) Note that a good tutor would probably give
the student an opportunity to correct her error her-
self; we are still exploring ways of doing this with-
out irritating the student.

If more than one interpretation remains when
utterance disambiguation is complete, what hap-
pens again depends on where the interpretations
come from. If they all come from the unper-
turbed utterance, an ordinary clarifiction question
is asked (see Lurcock (2005) for details of how
clarification questions are generated). If they all
come from a single perturbed utterance, we sim-
ply present the suggested correction, as above; if
the student then enters the hypothesised correc-
tion, a regular clarification question will be asked.
However, it is also possible that the interpretations
come from several different perturbations. In this
case, we formulate our error feedback as a ques-
tion:

(5) Do you mean [perturbation 1] or (...) or
[perturbation n]?2

6 Some examples

In this section, we give some examples of our
error-correction scheme in action. First, a simple
character-level correction:

(6)
U: I am hapy3

S: I think you mean ‘I am happy’.

The perturbation here is motivated by syntactic
well-formedness: the original utterance does not
parse, but the perturbed utterance does.

Here is another character-level correction, this
time informed by contextual appropriateness:

(7)

U: I saw my chief
S: Okay
U: The chef is happy
S: I think you mean ‘The chief is happy’.

There are two things to note about this example.
Firstly, note that the user’s original utterance is
syntactically correct, so a full interpretation will
be derived for this utterance as well as for the
version perturbing chef to chief. When these two

2The question is formulated as a multiple choice question,
using the same format as some types of syntactic clarification
question.

interpretations are compared by the disambigua-
tion module, the perturbed version is preferred, be-
cause it is cheaper to incorporate into the current
dialogue context: the chief refers back to an ex-
isting discourse entity, while the chef requires the
accommodation of a new one.

Here is a final example, this time at the level of
whole-word perturbations:

(8)
S: What is your name?
U: Your name is Sally.
S: I think you mean ‘My name is Sally’.

The error database contains enough instances of
the perturbation your→my to cause the system to
create this candidate perturbation; an interpreta-
tion for this perturbation is thus created alongside
that of the original utterance. Again, the interpre-
tation deriving from the perturbation is easier to
incorporate into the dialogue context, since it an-
swers the system’s question, so the perturbed sen-
tence is preferred over the original, even though
the original contains no syntactic errors.

7 Future work: incorporating a
treatment of unknown words

The error correction scheme has performed rea-
sonably well in informal user trials. However there
is one fairly major problem still to be addressed,
relating to unknown words. If a word in the stu-
dent’s utterance is not found in the system’s lex-
icon, there are two possibilities: either the stu-
dent has made an error, or the word is one which
the system simply does not know. In the current
scheme, only the first possibility is considered.

We have already implemented a treatment of
unknown words, in which the system assumes an
unknown word is of a lexical type already defined
in the grammar, and proceeds by asking the user
questions embedding the word in example sen-
tences to help identify this type (see van Scha-
gen and Knott (2004)). However, word-authoring
subdialogues would be a distraction for a student;
and in any case, it is fairly safe to assume that
all unknown words used by the student are proper
names. We therefore use a simpler treatment re-
lated to the constraint-relaxation scheme of Fou-
vry (2003), in which the system temporarily adds
an unknown word to the class of proper names and
then attempts to reparse the sentence. A success-
ful parse is then interpreted as evidence that the
unknown word is indeed a proper name.
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A problem arises with this scheme when it is
used in conjunction with error-correction: wher-
ever it is possible to use a proper name, hy-
pothesising a proper name gives a higher aggre-
gate score than hypothesising an error, all other
things being equal. The problem is serious, be-
cause grammars typically allow proper names in
many different places, in particular as preposed
and postposed sentence adverbials functioning as
addressee terms (see Knott et al. (2004)). To rem-
edy this problem, it is important to attach a cost
to the operation of hypothesising a proper name,
comparable to that of hypothesising an error.

In our (as-yet unimplemented) combined
unknown-word and error-correction scheme, if
there is an unknown word which can be inter-
preted as a proper name, the lexicon is updated
prior to parsing, and perturbations are created as
usual. A special unknown word cost is associated
with the original utterance and with each of these
perturbations, except any perturbations which
alter the unknown word (and thus do not rely
on the hypothesised lexical item). The unknown
word cost is another number between 0 and 1,
and the aggregate score of an interpretation is
multiplied by this number when deciding amongst
alternative interpretations. The number is set to
be lower than the average perturbation score. If
any perturbations of the unknown word survive
the parsing process, they stand a good chance of
being preferred over the proper name hypothesis,
or at least being presented as alternatives to it.
We will experiment with this extension to the
error-correction algorithm in future work.
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Abstract

As research in text-to-text paraphrase gen-
eration progresses, it has the potential
to improve the quality of generated text.
However, the use of paraphrase genera-
tion methods creates a secondary problem.
We must ensure that generated novel sen-
tences are not inconsistent with the text
from which it was generated. We propose
a machine learning approach be used to
filter out inconsistent novel sentences, or
False Paraphrases. To train such a filter,
we use the Microsoft Research Paraphrase
corpus and investigate whether features
based on syntactic dependencies can aid us
in this task. Like Finch et al. (2005), we
obtain a classification accuracy of 75.6%,
the best known performance for this cor-
pus. We also examine the strengths and
weaknesses of dependency based features
and conclude that they may be useful in
more accurately classifying cases of False
Paraphrase.

1 Introduction

In recent years, interest has grown in paraphrase
generation methods. The use of paraphrase gen-
eration tools has been envisaged for applications
ranging from abstract-like summarisation (see for
example, Barzilay and Lee (2003), Daumé and
Marcu (2005), Wan et al. (2005)), question-
answering (for example, Marsi and Krahmer
(2005)) and Machine Translation Evaluation (for
example, Bannard and Callison-Burch (2005) and
Yves Lepage (2005)). These approaches all em-
ploy a loose definition of paraphrase attributable
to Dras (1999), who defines a ‘paraphrase pair’

operationally to be “a pair of units of text deemed
to be interchangeable”. Notably, such a definition
of paraphrase lends itself easily to corpora based
methods. Furthermore, what the more modern ap-
proaches share is the fact that often they generate
new paraphrases from raw text not semantic rep-
resentations. The generation of paraphrases from
raw text is a specific type of what is commonly
referred to as text-to-text generation (Barzilay and
Lee, 2003).

As techniques for generating paraphrases im-
prove and basic concerns such as grammaticality
are less of an issue, we are faced with an addi-
tional concern. That is, we must validate whether
or not the generated novel sentence is in fact a
paraphrase. It may be detrimental in some appli-
cations, for example abstract-like summarisation,
to allow a novel sentence that is inconsistent with
the content of the input text to be presented to the
end user.

As an example of the type of inconsistencies
that can arise from paraphrase generation, in Fig-
ure 1, we present two examples of generated sen-
tences. In each example, a sentence pair is pre-
sented in which the second sentence was gener-
ated from an input news article statistically us-
ing a four-gram language model and a probabilis-
tic word selection module. Although other para-
phrase generation approaches differ in their un-
derlying mechanisms1, most generate a novel sen-
tence that cannot be found verbatim in the input
text.

The generated second sentence of the example
is intended to be a paraphrase of the article head-
line. One might be convinced that the first exam-

1The details of the generation algorithm used for this ex-
ample are peripheral to the focus of this paper and we direct
the interested reader to Wan et al. (2005) for more details.
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Example 1:
Original Headline:
European feeds remain calm on higher dollar.

Generated Sentence:
The European meals and feeds prices were firm
on a stronger dollar; kept most buyers in this
market.

Example 2:
Original Headline:
India’s Gujral says too early to recognise Taleban.

Generated Sentence:
Prime Minister Inder Kumar Gujral of India and
Pakistan to recognise the Taleban government in
Kabul.

Figure 1: Two examples of generated novel sen-
tences. Articles from the Reuters corpus were fed
as input to the statistical summary generation sys-
tem.

ple passes as a paraphrase, however the second is
clearly inconsistent. We would like to identify this
sentence pair as a false paraphrase. In addition
to the ambiguity in the subject noun phrase (The
Prime Minister of Pakistan is not the same as that
of India), the generated sentence seems to ignore
the adverbial phrase “too early” resulting in a far-
cical sentence that is almost the polar opposite of
the headline.

We propose that an automatic classifier be em-
ployed to identify and filter out inconsistent novel
sentences. To do so, we couch Paraphrase Classi-
fication as a supervised machine learning task and
train a classifier on the Microsoft Research Para-
phrase (MSR) Corpus (Dolan et al., 2004), a cor-
pus specifically collected for this task. In partic-
ular, we are especially interested in exploring the
use of syntactic dependency information in mak-
ing this classification.

In this paper, we present our findings in train-
ing, testing and evaluating a paraphrase classifier.
Section 2, we describe the research problem and
outline related work in paraphrase classification.
In Section 3, we present the features used in our
classifier. Our classification experiments and re-
sults are described in Section 4. Before conclud-
ing, we discuss the strengths and weaknesses of
dependency-based features in Section 5.

2 Paraphrase Classification and Related
Work

In general, our task is to compare two sentences
and produce a binary classification indicating if
one is interchangeable with the other. To do so,
we adopt the ‘entailment decision’ problem as put
forward by the Pascal Recognising Textual Entail-
ment (RTE) challenge (Dagan et al., 2005). The
challenge requires participant systems to decide,
given a pair of sentences, if the first sentence (re-
ferred to as the hypothesis) is entailed by the sec-
ond sentence (referred to as the text). Although
the task is that of logical entailment, participant
systems are free to use any method, logic-based
or not, to decide if sentence pairs are entailments.
Crucial to this exercise is the simplification that
the entailment decision be made on the basis of
information within the sentences alone, and not
on extensive representations of extensive world
knowledge.

Similarly in our task, two sentences are checked
for ‘entailment’. In contrast to the RTE challenge,
the MSR corpus has been collected based on a def-
inition of paraphrase pairs as bi-directional entail-
ment. That is, we must decide if one sentence is
‘entailed’ by its paired sentence, and vice versa.
Sentence pairs were annotated as being True para-
phrases if they were judged to be ‘more or less se-
mantically equivalent’. Otherwise, sentence pairs
were annotated as being False Paraphrases.

Previous approaches to this classification task
have focused on semantic equivalence at both the
word and syntax level. Papers standardly report
classification accuracy which is defined as the
number of correctly classified test cases divided by
the total number of test cases. Corley and Mihal-
cea (2005) use word equivalence features resulting
in a classification accuracy of 71.5%. Zhang and
Patrick (2005) examine string edit distance fea-
tures and ngram overlap features collected on pairs
of sentences in their canonical form. An overall
accuracy of 71.9% is obtained.

Qiu et al. (2006) also focus on the detection of
False Paraphrases. In this work, features based on
predicate-argument information designed to indi-
cate dissimilarity between the two sentences are
collected. Using a support vector machine, this
method results in an accuracy of 72.0%.

The best published result for this classification
task is obtained by Finch et al. (2005) who ob-
tained a classification accuracy of 74.96% using a

132



1 unigram recall
2 unigram precision
3 lemmatised unigram precision
4 lemmatised unigram recall
5 Bleu precision
6 Bleu recall
7 lemmatised Bleu precision
8 lemmatised Bleu recall
9 fmeasure
10 dependency relation precision
11 dependency relation recall
12 lemmatised dependency relation precision
13 lemmatised dependency relation recall
14 tree-edit distance (Zhang and Sasha algorithm)
15 lemmatised tree-edit distance (Zhang and Sasha algo-
rithm)
16 difference in sentence length (in words)
17 absolute difference in sentence length (in words)

Figure 2: A list of all possible features

support vector machine trained on relatively sim-
ple features based on ngram overlap.

3 Features

In this paper, we decided to explore features en-
coding information about the relative difference
between the structures of the two sentence. We
thus experimented with a range of features ranging
from differences in sentence length, to word over-
lap, to syntax dependency tree overlap, where the
latter approximately represent predicate and argu-
ment structure. Figure 2 presents an overview of
our features. We now describe each of these fea-
tures.

3.1 N-gram Overlap: Features 1 to 9

We used variety of features based on word over-
lap and word-sequence overlap, where tokenisa-
tion is delimited by white space. We considered
unigram overlap and explored two metrics, recall
(feature 1) and precision (feature 2), where a pre-
cision score is defined as:

precision =
word-overlap(sentence1, sentence2)

word-count(sentence1)

and recall is defined as:

recall =
word-overlap(sentence1, sentence2)

word-count(sentence2)

For each of the unigram overlap features de-
scribed, we also computed a lemmatised vari-
ant. Both sentences were parsed by the Con-

nexor parser2 which provides lemmatisation infor-
mation. For both sentences, each original word is
replaced by its lemma. We then calculated our un-
igram precision and recall scores as before (fea-
tures 3 and 4).

The Bleu metric (Papineni et al., 2002), which
uses the geometric average of unigram, bigram
and trigram precision scores, is implemented as
feature 5. The score was obtained using the orig-
inal Bleu formula3 with a brevity penalty set to
1 (that is, the brevity penalty is ignored). Note
that in our usage, there is only one ’reference’ sen-
tence. By reversing which sentence was consid-
ered the ‘test’ sentence and which was considered
the ‘reference’, a recall version of Bleu was ob-
tained (feature 6). Lemmatised versions provided
features 7 and 8.

Finally, because of the bi-directionality prop-
erty of paraphrase, the F-Measure4, which com-
bines both precision and recall into a single score
using the harmonic mean, was implemented as
feature 9.

3.2 Dependency Relation Overlap: Features
10 to 13

Overlap of dependency tuples has been cited by
other researchers as being a useful approximate
representation of sentence meaning (Mollá, 2003).
Indeed, Rouge-BE (Hovy et al., 2005), a recall-
based metric similar to this feature, is currently
being used in summarisation evaluations to mea-
sure the content overlap of summaries with source
documents.

We again make use of the Connexor parser, this
time to provide a dependency structure analysis
of a sentence. Each sentence was parsed result-
ing in a set of dependency relations (one set per
sentence). A relation is simply a pair of words in
a parent-child relationship within the dependency
tree5, refered to as head-modifier relationships. In
this paper, we ignored the label of the relationships
which indicates the semantic role. The next series
of features examines the use of features based on
an overlap of such head-modifier relations (here-
after, relations) between sentences.

Feature 10 is the precision score calculated from
the overlap according to the following formula:

2see http://www.connexor.com/software/syntax/
3http://www.ics.mq.edu.au/∼szwarts/downloads/Bleu.cpp
4http://www.ics.mq.edu.au/∼szwarts/downloads/FMeasure.cpp
5That is, an edge and the two nodes on either side
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precision
d

=
|relations(sentence1) ∩ relations(sentence2)|

|relations(sentence1)|

where precision
d

stands for dependency preci-
sion and relations(sentencei) is the set of head-
modifier relations for some sentence.

A recall variant of this feature was also used
(feature 11) and is defined as:

recalld =
|relations(sentence1) ∩ relations(sentence2)|

|relations(sentence2)|

Lemmatised versions of these features were
used in feature 12 and 13.

3.3 Dependency Tree-Edit Distance: Features
14 and 15

As another measure of how alike or different the
two sentences are from each other, we decided to
examine how similar their respective dependency
trees were. Ordered tree-edit distance algorithms
are designed to find the least costly set of opera-
tions that will transform one tree into another. In
our case, we want to find the cost of transforming
dependency parse trees.

Our implementation is based on the dynamic
programming algorithm of Zhang and Shasha
(1989). The algorithm finds the optimum (cheap-
est) set of tree-edit operations in polynomial time.
This algorithm has been used in the past in
Question-Answering as a means of scoring sim-
ilarity between questions an candidate answers
(Punyakanok et al., 2004). In a similar vein to our
work here, it has also been used in the RTE chal-
lenge (Kouylekov and Magnini, 2005).

We calculated the tree-edit distance over the
syntactic dependency parse trees returned by the
Connexor parser. Inserting, deleting and renaming
nodes, or words, into a dependency tree, were all
given an equal cost.

The cost returned by the algorithm is simply the
sum of all operations required to transform one
tree into the other. This cost was normalised by
the number nodes in the target dependency tree to
produce a value between 0 and 1 (feature 14). A
lemmatised variant of this feature was obtained by
first lemmatising the two dependency trees (fea-
ture 15).

3.4 Surface Features: Features 16 and 17
Finally, we looked at the difference in length of
the two sentences as measured in words by sub-
tracting one length from the other. This difference
(feature 16) could be a negative or positive integer.
An absolute variant was used in Feature 17.

4 Experiments

4.1 Data and Software
The Microsoft Paraphrase Corpus (MSR) (Dolan
et al., 2004) is divided into a training set and a test
set. In the original training set, there were 2753
True Paraphrase pairs and 1323 False Paraphrase
pairs. The original test set contained 1147 True
Paraphrases pairs and 578 False Paraphrases pairs.

We first parsed the MSR paraphrase corpus us-
ing the Connexor parser. While Connexor is by
no means a perfect parser, it usually produces par-
tial parses if a more complete one is not possible.
Our experience with Connexor is that these partial
parses have tended to be useful. We are currently
comparing Connexor to other dependency parsers
to see what kinds of errors it introduces. However,
due to time constraints, utilising this information
is left for future work.

Because there were several cases which broke
our parsing scripts (due to an occasional non-XML
character), our training and test sets were slightly
smaller. These included 2687 True Paraphrase
pairs and 1275 False Paraphrase pairs in our train-
ing set, and 1130 True Paraphrase pairs and 553
False Paraphrases pairs in our test set.

We used the open source WEKA Data Min-
ing Software (Witten and Frank, 2000). A se-
lection of commonly used techniques was exper-
imented with including: a Naive Bayes learner
(bayes.NaiveBayes), a clone of the C4.5 decision
tree classifier (trees.J48), a support vector machine
with a polynomial kernel (functions.SMO), and K-
nearest neighbour (lazy.IBk). Each machine learn-
ing technique was used with the default configu-
rations provided by WEKA. The baseline learning
technique (rules.ZeroR) is simply the performance
obtained by choosing the most frequent class. We
report only the results obtained with the support
vector machine as this machine learning method
consistently outperformed the other methods for
this task.

Finally, we tested for significance between cor-
rect and incorrect classifications of the two sys-
tems being compared using the Chi-squared test
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Features Acc. C1-prec. C1-recall C1-Fmeas. C2-prec C2-recall C2-Fmeas.
lemma’d 1-grams 0.69 0.52 0.56 0.54 0.78 0.75 0.76

1-grams 0.73 0.63 0.39 0.49 0.75 0.89 0.81
ZeroR 0.66 0 0 0 0.67 1 0.80
Finch 0.75 0.69 0.46 0.55 0.77 0.90 0.83

Best Features 0.75 0.70 0.46 0.55 0.77 0.90 0.83

Table 1: Classification performance of the best feature vector found. C1 denotes False Paraphrase pairs,
C2 denotes True Paraphrase pairs. C1 scores for the best system in Finch et al. (2005) were calculated
from the C2 scores published.

Features Acc. C1-prec. C1-recall C1-Fmeas. C2-prec C2-recall C2-Fmeas.
Dependencies 0.75 0.67 0.45 0.54 0.77 0.89 0.82

Bleu 0.75 0.69 0.45 0.55 0.77 0.90 0.83

Table 2: Classification performance comparison between dependency features and n-gram features. C1
denotes False Paraphrase pairs, C2 denotes True Paraphrase pairs.

implemented in the R-Statistical package.

4.2 Best Performing Feature Set

Through experimentation, we found the best per-
forming classifier used all features except for lem-
matised unigrams6. The results on the test set
are presented in Table 1. Accuracy is the num-
ber of correctly classified test cases (regardless of
class) divided by the total number of test cases.
Recall for True Paraphrase class is defined as the
number of cases correctly classified as True Para-
phrase divided by the total number of True Para-
phrase test cases. Precision differs in that the de-
nominator is the total number of cases (correct or
not) classified as True Paraphrase by the system.
The F-Measure is the harmonic mean of recall and
precision. Likewise, the recall, precision and f-
measure for the False Paraphrase class is defined
analogously.

We note an improvement over majority class
baseline, a unigram baseline and a lemmatised
unigram baseline. In particular, the addition of
our features add a (3%) improvement in overall
accuracy compared to the best performing base-
line using (unlemmatised) unigram features. Im-
provement over this baseline (and hence the other
baselines) was statistically significant (χ-squared
= 4.107, df = 1, p-value = 0.04271). Our perfor-
mance was very close to that reported by (Finch et
al. (2005) is not statistically significant. The sys-
tem employed by Finch et al. (2005) uses features
that are predominantly based on the Bleu metric.

6features: 1,2,5,6,7,8,9,10,11,12,13,14,15,16,17

The improvement of the unigram-based classi-
fier is 6 percentage points above the majority class
is also significant (χ-squared = 11.4256, df = 1,
p-value = 0.0007244). Interestingly, results from
using just precision and recall unigram features7

without lemmatisation are comparable to Finch et
al. (2005). Indeed, a principal components anal-
ysis showed that unigram features were the most
informative accounting for 60% of cases.

Oddly, the results for the lemmatised unigram
features are poorer even the majority class base-
line, as demonstrated by a lower True Paraphrase
F-Measure. Why this is so is puzzling as one
would expect lemmatisation, which abstracts away
from morphological variants, to increase the sim-
ilarity between two sentences. However, we note
that two sentences can differ in meaning with the
inclusion of a single negative adverb. Thus, an in-
creased similarity for all training cases may sim-
ply make it much harder for the machine learn-
ing algorithm to differentiate effectively between
classes.

5 The Strengths and Weaknesses of
Dependency Features

The previous experiment showed that together,
Bleu-based features and dependency-based fea-
tures were able to achieve some improvement.
We were also interested in comparing both fea-
ture types to see if one had any advantage over the
other.

We note that bigrams and dependencies in ac-

7features: 1,2
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2685 True False 1275
Bleu Dep Bleu Dep

A: 44 F T F T B: 41
C: 2342 T T T T D: 654

E: 50 T F T F F: 49
G: 249 F: F F F H: 531

Table 3: Error Analysis showing the number
of cases in which the Bleu-based classifier dis-
agreed with the Dependency-based classifier. ‘T’
and ‘F’ stand for predicted ‘TRUE’ and predicted
‘FALSE’. The other capital letters A to H are cell
labels for ease of reference.

tuality encode very similar types of information,
that is a pairing of two words. In the case of
dependency relations, the words are connected
via some syntactic dependency structure, whereas
word pairs in bigrams (for example) are merely
‘connected’ via the property of adjacency. How-
ever, Collins (1996) points out that in English,
around 70% of dependencies are in fact adjacent
words. Thus one would think that Bleu and depen-
dency features have similar discriminative power.

Two versions of the classifier were trained based
on two separate sets of features that differed only
in that one included four Bleu features8 whereas
the other included four dependency overlap fea-
tures9. All other features were kept constant.

The results obtained on the test set are presented
in Table 2. As expected, the two seem to per-
form at the same level of performance and were
not statistically different. This is consistent with
the same levels of performance observed between
our system and that of Finch et al. (2005) in Table
1. However, it would also be interesting to know
if each feature might be more suitable for different
types of paraphrase phenomena.

5.1 Differences in Predictions

To understand the strengths and weaknesses of n-
gram and dependency features, we performed an
analysis of the cases where they differed in their
classifications. We tested the two classifiers in Ta-
ble 2 on the training set to gives us an indication
of the ideal situation in which the training data re-
flects the testing data perfectly. Table 3 presents
this analysis. For example, Cell A indicates that
there were 44 true paraphrase cases that were cor-

8features: 1,2,5,6,7,8,16,17
9features: 1,2,10,11,12,13,16,17

rectly classified by the dependency-based classi-
fier but misclassified by the bleu-based classifier.

For the dependency-based classifier to outper-
form the Bleu-based classifier in classifying True
Paraphrases, Cell A must be greater than Cell
E. That is, the number of cases in which the
Dependency-based classifier improves the true
positive count must outweigh the false negative
count. Unfortunately, this isn’t the case.

Correspondingly, for the dependency-based
classifier to outperform the Bleu-based classifier
in classifying True Paraphrases, Cell F must be
greater than Cell B. In this case, the dependency-
based classifier does performs better than the
Bleu-based classifier.

One could summarise this analysis by saying
that the dependency-based classifier tended make
pairs look more dissimilar than the Bleu-based
classifier. To gain some insight as to how to create
features that build on the strengths of the two fea-
ture types, for example using dependency based
features to better classify False Paraphrase cases,
we manually examined the sentence pairs from the
training set in which the two classifiers disagreed
in the hopes of identifying reasons for the erro-
neous classifications.

5.2 Wrongly Predicting ‘True’ on False
Paraphrase cases

Table 3 suggest that dependency-features might
improve the precision and recall of the False Para-
phrase class. Thus, we focused on the cases where
the dependency-based classifier incorrectly classi-
fied False Paraphrase cases. We found several sit-
uations where this was the case. Often, some por-
tion of both sentences would share a high degree
of word overlap that we suspect was confusing our
classifier.

In the case of Sentence Pair 1, a title is quoted in
both increasing the textual similarity. However, on
closer inspection the clauses are different, specif-
ically the main clause verb and subject. In Sen-
tence Pair 2, we notice this also happened with
long noun phrases relating to organisations.

Sentence Pair 1:
Details of the research appear in the Nov. 5 issue of the

Journal of the American Medical Association.
The results, published in the Journal of the American

Medical Association, involved just 47 heart attack patients.

Sentence Pair 2:
The Securities and Exchange Commission has also initi-

ated an informal probe of Coke.
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That federal investigation is separate from an informal in-
quiry by the Securities and Exchange Commission.

Similarly, despite high overlap in both words
and dependency relations, some sentences pairs
simply differed in the focus of the main clause as
in Sentence Pair 3. We see a similar problem in
Sentence Pair 4 in which the main clause of the
first sentence matches the subordinate clause of
the second but the focus of each is different.

Sentence Pair 3:
He replaces Ron Dittemore, who announced his resigna-

tion in April.
Dittemore announced his plans to resign on April 23.

Sentence Pair 4:
Peterson told police he fished alone in San Francisco Bay

on Christmas Eve, returning to an empty house.
Peterson told police he left his wife at about 9:30 a.m. on

Dec. 24 to fish alone in San Francisco Bay.

5.3 Follow-on Experiment
One of the reasons why our use of dependencies
leads to the problem exemplified by Sentence Pairs
1 to 4, is that all dependency pairs are treated
equal. However, clearly, some are more equal than
others. Dependency relations concerning the main
verb and subject ought to count for more.

The simplest way to model this inequality is to
give more weight to relations higher up in the tree
as these will tend to express the semantics of the
main clause.

Our extra set of features represent the weighted
dependency precision, the weighted dependency
recall, and the lemmatised versions of both those
feature types. In total four new features were
added.

To begin with nodes were scored with the size of
their subtrees. We then traversed the tree breadth-
first where siblings were traversed in decreasing
order with respect to the size of their respective
subtrees. Nodes were given a position number
according to this traversal. Each node was then
weighted by the inverse of its position in this or-
dering. Thus, the root would have weight 1 and
it’s heaviest child node would receive a weight of
0.5. The relation weight is simply the product of
the weights of the nodes.

The overall score for the sentence pair is sim-
ply the sum of relation weights normalised accord-
ingly to yield precision and recall scores.

The results on the test set are presented in Ta-
ble 4. Note that this result differs drastically from
all the previous systems reported. In contrast to

these systems, our last classifier seems to produce
good precision results (83%) for the True Para-
phrase class at the expense of recall performance.
Consequently, it has the best performing recall
for False Paraphrase (71%) out of all the systems
tested. This gain in recall, while compensated by
a loss in precision, ultimately leads to the highest
F-Measure observed for this class (61%), an im-
provement on Finch et al. (2005). This seems to
suggest that our additional features are doing what
we hoped they would, improve the classification
of the False Paraphrase class. However, this effect
also has an overall harmful effect on our classi-
fier which may be over-classifying cases as False
Paraphrase. Thus, a drop in accuracy is observed.
Avenues to integrate the benefits of these new fea-
tures without harming our overall accuracy remain
further work.

6 Conclusion

In this paper, we presented work on Paraphrase
Classification with the Microsoft Research Para-
phrase Corpus. We show that dependency-based
features in conjunction with bigram features im-
prove upon the previously published work to give
us the best reported classification accuracy on this
corpus, equal with Finch et al. (2005). In addi-
tion, using weighted dependency overlap seems
to provide promise, yielding the best F-Measure
for False Paraphrase classification seen so far.
We conclude that dependency features may thus
be useful in more accurately classifying cases of
False Paraphrase. In future work, we will build
upon the strengths of the weighted dependency
features to improve the classifier further.

We also argue that Paraphrase Classification be
used as a means to validate whether or not, in the
context of abstract-like summarisation, a gener-
ated paraphrase reflected the source material. For
this purpose, performance of precision and recall
of the False Paraphrase classification seems more
important, as we do not want to waste the end
user’s time by generation misleading information.
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Features Acc. C1-prec. C1-recall C1-Fmeas. C2-prec C2-recall C2-Fmeas.
Best Features 75.63 0.70 0.46 0.55 0.77 0.90 0.83
All Features 71.00 0.55 0.71 0.61 0.83 0.72 0.77

Table 4: Classification performance of the best feature vector found and the feature vector including
weighted dependency overlap. C1 denotes False Paraphrase pairs, C2 denotes True Paraphrase pairs.

feedback.
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Abstract

This paper investigates whether multi-
semantic-role (MSR) based selectional
preferences can be used to improve the
performance of supervised verb sense dis-
ambiguation. Unlike conventional se-
lectional preferences which are extracted
from parse trees based on hand-crafted
rules, and only include the direct subject
or the direct object of the verbs, the MSR
based selectional preferences to be pre-
sented in this paper are extracted from
the output of a state-of-the-art semantic
role labeler and incorporate a much richer
set of semantic roles. The performance
of the MSR based selectional preferences
is evaluated on two distinct datasets: the
verbs from the lexical sample task of
SENSEVAL-2, and the verbs from a movie
script corpus. We show that the MSR
based features can indeed improve the per-
formance of verb sense disambiguation.

1 Introduction

Verb sense disambiguation (VSD) is the task of
examining verbs in a given context and specify-
ing exactly which sense of each verb is the most
appropriate in that context. VSD is a subtask of
word sense disambiguation (WSD). Given a verb
sense inventory and a set of verb senses, VSD is
essentially a classification task (Yarowsky, 2000).

VSD has not received much attention in the lit-
erature of WSD until recently. Most of WSD sys-
tems disambiguate verbs in the same way as nouns
using mostly collocation based features, and this
has led to rather poor VSD performance on cor-
pora such as SENSEVAL-2. One useful but often

ignored source of disambiguation information for
verbs is the patterns of verb-argument structures.
In this paper, we will attempt to capture these pat-
terns through the use of selectional preferences.

In general, selectional preferences describe the
phenomenon that predicating words such as verbs
and adjectives tend to favour a small number of
noun classes for each of their arguments. For ex-
ample, the verbeat (“take in solid food”) tends to
select nouns from to theANIMATED THING class
as its EATER role, and nouns from theEDIBLE

class as itsEATEE role.
However, it is possible to extend the concept

of selectional preferences to include nouns which
function as adjuncts to predicating words. For ex-
ample, the verbhit in the sentenceI hit him with
my fistsstands for “deal a blow to, either with the
hand or with an instrument”, but in the sentenceI
hit him with a car, it stands for “to collide with”,
with the only difference between the two instances
of hit being their manner modifiers. Intuitively, the
inclusion of verb adjuncts can enrich the semantic
roles (SRs) and provide additional disambiguation
information for verbs. Therefore, in the rest of this
paper, the concept of “semantic role” will include
both the arguments and adjuncts of verbs.

All the selectional preference based WSD sys-
tems to date have only used the subject and di-
rect object of verbs as semantic roles, extracting
the necessary argument structure via hand-crafted
heuristics (Resnik, 1997; McCarthy and Carroll,
2003, inter alia). As a result, it is difficult to ex-
tend the selectional preferences to anything else.
However, with recent progress in Semantic Role
Labelling (SRL) technology, it is now possible to
obtain additional semantic roles such as the indi-
rect object of ditransitive verbs and the locational,
temporal and manner adjuncts.
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Given the lack of research in VSD using multi-
semantic-role based selectional preferences, the
main contribution of the work presented in this
paper is to show that it is possible to use the
multi-semantic-role based selectional preferences
extracted using the current state-of-the-art SRL
systems to achieve a certain level of improvement
for verb VSD. We also give detailed descriptions
for all the features, feature selection algorithms
and the tuning of the machine learner parameters
that we have used in the construction of our VSD
system, so that our system can be easily repro-
duced.

The remainder of this paper is organized as fol-
lows: we first introduce the framework for con-
structing and evaluating the VSD systems in Sec-
tion 2; we then give detailed descriptions of all
the feature types that we experimented with dur-
ing our research in Section 3; Section 4 intro-
duces the two datasets used to train and evaluate
the features; the feature selection algorithms are
presented in Section 5; the results of our experi-
ments are presented in Section 6; and finally we
conclude in Section 7.

2 VSD Framework

There are three components in our VSD Frame-
work: extraction of the disambiguation features
from the input text (feature extraction), selection
of the best disambiguation features with respect to
unknown data (feature selection), and the tuning
of the machine learner’s parameters. Since feature
extraction is explained in detail in Section 3, we
will only disscuss the other two components here.

Within our framework, feature selection is per-
formed only on the training set. We first use the
feature selection algorithms described in Section 5
to generate different feature sets, which are used to
generate separate datasets. We then perform cross
validation (CV) on each dataset, and the feature
set with the best performance is chosen as the fi-
nal feature set.

The machine learning algorithm used in our
study is Maxium Entropy (MaxEnt: Berger et
al. (1996)1). MaxEnt classifiers work by mod-
elling the probability distribution of labels with re-
spect to disambiguation features, the distribution
of which is commonly smoothed based on a Gaus-

1We used Zhang Le’s implementation which is avail-
able for download athttp://homepages.inf.ed.
ac.uk/s0450736/maxent toolkit.html

sian prior. Different values for the Gaussian prior
often lead to significant differences in the classi-
fication of new data, motivating us to include the
tuning of the Gaussian prior in VSD framework.2

The tuning of the Gaussian prior is performed in
conjunction with the feature selection. The CV for
each feature set is performed multiple times, each
time with a different parameterisation of the Gaus-
sian prior. Therefore, the final classifier incorpo-
rates the best combination of feature set and pa-
rameterisation of the Gaussian prior for the given
dataset.

3 Features Types

Since selectional preference based WSD features
and general WSD features are not mutually ex-
clusive of each other, and it would be less con-
vincing to evaluate the impact of selectional pref-
erence based features without a baseline derived
from general WSD features, we decided to include
a number of general WSD features in our exper-
iments. The sources of these features include:
Part-of-Speech tags extracted using a tagger de-
scribed in Gimnez and Mrquez (2004); parse trees
extracted using the Charniak Parser (Charniak,
2000); chunking information extracted using a sta-
tistical chunker trained on the Brown Corpus and
the Wall Street Journal (WSJ) section of the Penn
Treebank (Marcus et al., 1993); and named enti-
ties extracted using the system described in Cohn
et al. (2005).

3.1 General WSD Features

There are3 broad types of general WSD features:
n-gram based features of surrounding words and
WordNet noun synsets, parse-tree-based syntactic
features, and non-parse-tree based syntactic fea-
tures.

3.1.1 N -gram based features

The followingn-gram based features have been
experimented with:

Bag of Words Lemmatized open class words in
the entire sentence of the target verb. Words that
occur multiple times are only counted once.

Bag of Synsets The WordNet (Fellbaum, 1998)
synsets for all the open class words in the entire

2We experimented with the following settings for the stan-
dard deviation (with a mean of 0) of the Gaussian prior in all
of our experiments:0.1, 0.5, 1.0, 5.0, 10.0, 50.0, 100.0,
500.0, 1000.0.
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sentence; hypernyms for nouns and verbs are also
included.

Bag of POS Tags The POS tag of each word
within a window of 5 words surrounding the target
verb, paired with its relative position and treated as
a separate binary feature.

Bag of Chunk Tags The chunk tags (in
Inside-Outside-Beginning (IOB) format: Tjong
Kim Sang and Veenstra (1999)) surrounding and
including the target verb within a window of 5
words, paired with their relative positions.

Bag of Chunk Types The chunk types (e.g. NP,
VP) surrounding and including the target verb
within a window of 5 words.

Bag of Named Entities The named entities in
the entire sentence of the target verb.

Left Words Each lemmatized word paired with
its relative position to the left of the target verb
within a predefined window.

Right Words Each lemmatized word paired
with its relative position to the right of the target
verb within a predefined window.

Surrounding Words The union ofLeft Words
andRight Words features.

Left Words with Binary Relative Position
Each lemmatized word and its position3 to the left
of the target verb within a predefined window.

Right Words with Binary Relative Position
Each lemmatized word and its binary position to
the right of the target verb within a predefined win-
dow.

Surrounding Words with Binary Relative Po-
sition The union ofLeft Words with Binary
Position andRight Words with Binary Position
features.

Left POS-tags The POS tag of each word to the
left of the target verb within a predefined window,
paired with its relative position.

Right POS-tags The POS tag of each word to
the right of the target verb within a predefined win-
dow is paired with its relative position.

3All words to the left of the target verb are given the “left”
position, and all the to the right of the target verb are given
the “right” position.

Surrounding POS Tags The Union of theLeft
POS-tags andRight POS-tags features.

It may seem redundant that for the same win-
dow size, the Surrounding-Words (POS) features
are the union of the Left-Words (POS) features
and the Right-Words (POS) features. However,
this redundancy of features makes it convenient
to investigate the disambiguation effectiveness of
the word collocations before and after the target
verb, as well as the syntactic pattern before and
after the target verb. Furthermore, we have also
experimented with different window sizes for the
Surrounding-Words (POS), Left-Words (POS) and
Right-Words (POS) to determine the most appro-
priate window size.4

3.1.2 Parse tree based features

The parse tree based syntactic features are in-
spired by research on verb subcategorization ac-
quisition such as Korhonen and Preiss (2003), and
are intended to capture the differences in syntactic
patterns of the different senses of the same verb.
Given the position of the target verbv in the parse
tree, the basic form of the corresponding parse tree
feature is just the list of nodes ofv’s siblings in
the tree. Figure 1 shows the parse tree for a sen-
tence containing the ambiguous verbcall. Given
the position of the target verbcalled in the parse
tree, the basic form of the features that can be cre-
ated will be(NP,PP ). However, there are3 ad-
ditional types of variations that can be applied to
the basic features. The first variation is to include
the relative positions of the sibling node types as
part of the feature: this variation will change the
basic feature forcall to {(1,NP ), (2, PP )}. The
second variation is to include the binary relative
direction of the siblings to the target verb as part of
the feature, i.e. is the sibling to the left or right of
the target verb: this variation will change the basic
feature forcall to {(right,NP ), (right, PP )}.
The third variation is to include the parent node
type as part of the sibling node type to add more
information in the syntactic pattern. Figure 2
shows what the original parse tree looks like when
every nonterminal is additionally annotated with
its parent type. Since the third variation is com-
patible with the first two variations, we decided to
combine them to create the following parse tree

4In the ranking based evaluation method described in Sec-
tion 5, only the Surrounding-Words (POS) feature types with
the largest window size are used.
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based features:

Type 1 Original sibling node types (zero level of
parent node annotated) with relative positions.

Type 2 Original sibling node types with relative
binary directions.

Type 3 One level of parent-node-annotated sib-
ling node types with relative positions. Us-
ing the call example, this feature will be
{(1, VP-NP), (2, VP-PP)}.

Type 4 One level of parent-node-annotated sib-
ling node types with relative binary directions.
Using the call example, this feature will be
{(right, VP-NP), (right, VP-PP)}.

Type 5 Two levels of parent-node-annotated sib-
ling node types with relative positions.

Type 6 Two levels of parent-node-annotated
sibling node types with relative binary directions.

On top of the 6 types of purely syntactic based
parse tree features, there is an additional type of
parse tree based feature designed to capture the
verb-argument structure of the target verb. The
type of features only cover four particular types
of parse tree nodes which are immediately after
the pre-terminal node of the target verb. The four
types of parse tree nodes are: ADVP, NP, PP and
clausal nodes.

For an ADVP node, we extract its head adverb
H ADV , and treat the tuple of (ADVP, H ADV )
as a separate binary feature.

For an NP node, we first extract its head nouns,
then replace each head noun with its WordNet
synsets and the hypernyms of these synsets, and
treat each of these synsets as a separate binary fea-
ture. In order to cover the cases in which the head
noun of a NP node is a quantity noun, e.g.a glass
of water, the head nouns of PPs attached to the NP
nodes are also included as head nouns. Further-
more, head nouns which are named entities identi-
fied by the system described in Cohn et al. (2005)
are replaced by appropriate WordNet synsets.

For a PP node, we first extract its head preposi-
tion, then we extract the head noun synsets in the
same way as the NP node, and finally we combine
each synset with the head preposition to form a
separate binary feature.

For a clausal node which is an SBAR, we ex-
tract the list of node types of its direct children

and arrange them in their original order, and treat
this list as a single binary feature.

For a clausal node which is not an SBAR, but
has a single non-terminal child node, we first ex-
tract the type of this child node, then we ex-
tract the list of node types for the children of this
child node. The tuple of (child-node-type, list-of-
grandchildren-node-types) is then treated as a sep-
arate binary feature.

3.1.3 Non-parse tree based syntactic features

There are3 types of non-parse-tree based syn-
tactic features:

Voice of the verb The voice of the target verb
(active or passive).

Quotatives Verbs that appear in directly quoted
speech have a greater likelihood of occurring in
the imperative and losing the surface subject, e.g.
“Call the police!” . We therefore include this as a
standalone feature.

Additional Chunk based features A number
of additional chunk based features are also used
to capture the phrase level localized syntactic
and collocation patterns from the context to the
right of the target verb within a window of be-
tween 3 and 10 chunks. For example, using a
window of 7, for the verbkick in the sentence:
[I/PRP]NP [kicked/VBD]VP [him/PRP]NP [out/IN
of/IN]PP [the/DT door/NN]NP [through/IN]PP

[which/WDT]NP [he/PRP]NP [came/VBD]VP, the
first 7 chunks after the chunk that containskick
will be used for feature extraction. These addi-
tional chunk based features are:

Chunk-type-sequence The concatenation of all
the relevant chunk types. For example, us-
ing the abovekick example, this feature will be
NP PP NP PP NP NP VP.

Regular expression (RE) representation
of the chunk types The consecutive
identical chunk types in theChunk-type-
sequence feature merged into a single symbol.
For example, the chunk-type-sequence of
NP PP NP PP NP NP VP will be represented
asNP PP NP PP NP+ VP.

First word of each chunk with the chunk type
The list that contains the first word of each
chunk will be treated as a separate binary fea-
ture. With thekick example, this feature would
behim out the through which he came.
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Figure 1: Basic parse tree feature example

Figure 2: One level parent annotated parse tree

Last word of each chunk with the chunk
type The list that contains the last word of
each chunk will be treated as a separate fea-
ture. With thekick example, this feature would
behim of door through which he came.

First POS tag of each chunk with the chunk
type The list that contains the first POS tag
of each chunk will be treated as a separate fea-
ture. With thekick example, this feature would be
PRP IN DT IN WDT PRP VBD.

Last POS tag of each chunk with the chunk
type The list that contains the last POS tag of
each chunk will be treated as a separate fea-
ture. With thekick example, this feature would
bePRP IN NN IN WDT PRP VBD.

Chunk-type-sensitive combinations This fea-
ture is created by merging the chunk types and
some additional information associated with the
chunks. If a chunk is a PP, then the head prepo-
sition will also be part of the feature; if a chunk
is an NP and the head word is a question word
(who, what, when, how, whereor why), the head
word itself will be part of the feature, but if the
head word is not a question word, its POS tag will
be part of the feature; if a chunk is a VP, then
the POS tag of the head verb will be part of the

feature. Using the abovekick example, this fea-
ture will be: (NP, PRP) (PP, out) (NP, NN) (PP,
through) (NP, which) (NP, PRP) (VP, VBD).

3.2 Selectional Preference Based Features

We used the ASSERT5 system (Hacioglu et al.,
2004) to extract the semantic roles from the tar-
get sentences. The following selectional prefer-
ence based features have been experimented with:

WordNet synsets of the head nouns of the SRs
For each semantic role, the WordNet synsets of its
head noun, paired with the corresponding seman-
tic role.

Semantic role’s relative positions These fea-
tures are designed to capture the syntactic patterns
of the target verb and its semantic roles. The rel-
ative position is set up such that the first semantic
role to the left of the target verb will be given the
position of−1, and the first one to the right will
be given the position of+1.

Lemmatized head noun of each semantic role
Similar to the synset features, each semantic role
is also paired with its head noun.

5We used version 1.4b of this system which can be down-
loaded fromhttp://oak.colorado.edu/assert/
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Preposition of the adjunct semantic role If
there is an adjunct semantic role which is also a
prepositional phrase, the preposition is also paired
with the semantic role.

4 Evaluation Datasets

We used two datasets based on distinct text gen-
res to examine the effectiveness of the multi-
semantic-role based selectional preferences: the
verb dataset from the English lexical-sample sub-
task of SENSEVAL-2, and a manually sense tagged
movie script corpus (MSC).6 The SENSEVAL-
2 data contains 28 polysemous verbs, and 3564
training instances. The movie script corpus con-
tains 8 sense labelled verbs and 538 training in-
stances. Table 1 outlines the composition of the
movie script corpus dataset.

The sense tagged movie script corpus is impor-
tant because it is an integral part of a broader NLP
project which aims to generate computer anima-
tion by interpreting movie scripts. Since most of
the actions in movie scripts are described by verbs,
we believe it is necessary to investigate whether
knowing the senses of the verbs can improve the
accuracy of the animation generation.

The movie script corpus was hand-tagged by
two annotators according to WordNet 2.0 senses,
and the differences in the annotation were ar-
bitrated by a third judge. Compared with the
SENSEVAL-2 data, which comes from the Brown
Corpus, the sentences in the movie script corpus
tend to be shorter because they describe certain
actions to be performed in the movie. Example
sentences from this corpus include the following:

1. A rubber darthits the glass and drops into a
trash can next to the door .

2. Neo slowly sets down his duffel bag and
throws open his coat, revealing an arsenal
of guns, knives, and grenades slung from a
climbing harness.

3. Morpheus tries tolook not sad.

5 Feature Selection Algorithms

It has been observed that combining certain fea-
tures together can lead to a decrease in classifi-
cation accuracy, hence a feature selection process

6The entire MSC dataset contains more than 250 movie
scripts, but due to limited resources, only 3 scripts were sense
tagged, and only 8 high frequency and highly polysemous
verbs were chosen for this study.

is deemed necessary. Due to the high numbers
of individual binary features and feature types,
it would be impractical to generate all possible
combinations of the individual features or feature
types. Therefore, we propose two automatic fea-
ture selection algorithms here: the individual fea-
ture ranking algorithm and feature type coverage
algorithm.

5.1 Individual Feature Ranking Algorithm

This algorithm is based on the work of Baldwin
and Bond (2003) and works by first calculating the
information gain (IG), gain ratio (GR) and Chi-
square statistics (Chi) for each binary feature as
3 separate scores. Then, each score is separately
used to rank the features in a way such that the
greater the score, the higher the rank. Features
which have the same value for a particular score
are given the same rank. Once individual ranks
have been determined for each feature, the ranks
themselves are summed up and used as a new
score which is then used to re-rank all the features
one last time. This final ranking will be used to
perform the feature selection.

Once the final ranking of the features has been
calculated, we then generate separate feature sets
using the topN percent ranked features, whereN

ranges from0 to 100 with an increment of5.7 We
evaluate these feature sets in Section 2.

5.1.1 Feature Type Coverage Algorithm

The aim of this algorithm is to use the minimal
number of featuretypes to generate the best per-
formance. It works in the following way. First,
we assign a unique ID to every training instance
in the original training set. We then create a sep-
arate dataset for each individual feature type (e.g.
Bag Of Words, Left Words, etc.) and evaluate
them as per Section 2. Since the single-feature-
typed datasets are all created from the same orig-
inal training set, we can propagate the IDs of
the original training instances to the testing in-
stances in the held-out sets of the single-feature-
typed datasets. Furthermore, as the CVs are strati-
fied, we can calculate the accuracy of each feature
type with respect to each training instance. For
example, suppose the10th training instance for
the verbhit was correctly classified in the held-
out set by the classifier trained with only theverb-
argument structure features, then the accuracy

7The top0% feature set is replaced by the majority-class
heuristic
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Freq. in Sense Freq. in No. of Senses in Majority Inter AnnotatorVerb
Tagged Corpus entire corpus Sense Tagged Corpus Class RatioAgreement

hit 32 1770 6 .438 .828
lift 31 1051 4 .548 .807

look 164 19480 5 .884 .963
pull 79 5734 7 .410 .744
stop 43 3025 4 .524 .917
take 54 8277 14 .370 .679

throw 29 1940 6 .379 .724
turn 106 8982 10 .736 .953

Table 1: Movie script corpus details

of verb-argument structure feature type on this
particular training instance would be1.0. With
these training-instance-specific accuracies, we de-
fine thecoverage of a feature type as a mapping
from training instance IDs to their individual ac-
curacies. We also use the sum of the accuracies
of the individual data instance to assess the overall
coverage of particular feature type with respect to
a training set.

In order to assess the coverage of combined
feature types, we define an additional procedure
called combine for merging two coverages to-
gether to produce a new coverage. The details of
this algorithm are shown in Algorithm 1.

On top of the coverages, we also calculate the
applicability of each feature type as the percent-
age of held-out instances for which one or more
features of that particular type can be extracted.
The final phase of the feature selection algorithm
is a process of greedily combining the cover-
ages of feature types together until the coverage
plateaus to a local maximum. This process is de-
scribed in Algorithm 2.

6 Results and Discussion

For the SENSEVAL-2 data, the feature selection al-
gorithms were applied on the 10-fold cross vali-
dated training set and the chosen features type and
the Gaussian smoothing parameters were applied
to the test set. For the movie script corpus, the
feature selection algorithms were applied to 5-fold
nested cross validation of the entire dataset. The fi-
nal cross validation results are reported here.8 Fur-
thermore, in order to measure the usefulness of the
feature selection algorithm, we have also included
results obtained using “Oracled” feature sets and
Gaussian prior values which were tuned with re-

8In nested cross validation, the training set of each fold is
further divided into a sub-training and sub-held-out set, and
the feature selection and Gaussian smoothing parameters for
the proper held-out sets are tuned on a fold-by-fold basis.

spect to the test data. More specifically, we col-
lected the following information for our evalua-
tion:

Fully Oracled Using both oracled feature sets
and oracled Gaussian prior values.

FS Oracled Using oracled feature sets but auto-
matically selected Gaussian prior values.

Maxent Oracled Using automatically selected
feature sets and oracled Gaussian prior values.

Fully Auto. Using both automatically selected
feature sets and Gaussian prior values.

All Features Including all features and using
automatically selected Gaussian prior values.

Tables 2 and 3 respectively summarize the eval-
uation results on the datasets with and without
SRL features.9

It can be observed that the impact of the feature
selection algorithms on the SENSEVAL-2 dataset
is similar to that on the MSC dataset. The fea-
ture ranking algorithm seems to perform notice-
ably worse than having no feature selection at all,
but the coverage algorithm seems perform mostly
better. This shows that feature selection can be a
useful process irrespective of the corpus.

The disappointing performance of the feature
ranking algorithm on both datasets is caused by
the mismatch between the training and the testing
data. Recall that this algorithm works by selecting
the topN percent of features in terms of their dis-
ambiguation power. Since the feature selection is
only performed on the training set, the chosen fea-
tures could be absent from the test set or have dif-
ferent distributions with respect to the verb senses.
Verb-by-verb analysis for this algorithm revealed

9The majority class baseline for the MSC dataset is gath-
ered from the primary held-out sets of the nested CV, there-
fore it is potentially different to the majority class of theentire
MSC dataset.
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Algorithm 1 The algorithm ofcombine, which merges two coverages to produce a new coverage.
1: LetI be the set of IDs of the training instances
2: LetCoverage

1
andCoverage

2
be the two coverages to be merged

3: LetNewCoveragebe the combined coverage ofCoverage
1

andCoverage
2

4: for i ∈ I do
5: NewCoverage[i] = max(Coverage

1
[i], Coverage

2
[i])

6: end for
7: ReturnNewCoverage

Algorithm 2 The incremental process of determining the final set of feature types
1: LetI be the set of IDs of the training instances
2: CurrentCoverage= {(i→ 0.0)|i ∈ I}
3: LetF be the set of feature types
4: Combine(coverage

1
, coverage

2
) = {(i→ max(coverage

1
[i], coverage

2
[i]))|i ∈ I}

5: while Truedo
6: NCs← {} ⊲ Initialize a temporary list to hold the new combined coverages
7: for fi ∈ F do
8: NewCoveragei ← Combine(CurrentCoverage, Coveragefi

)
9: Add NewCoveragei to NCs

10: end for
11: Let NewCoverage⋆ ∈ NCs be the one with highest overall coverage. ⊲ Break tie with the lowest applicability.
12: if CurrentCoveragehas the same overall coverage asNewCoverage⋆ then
13: Break
14: end if
15: CurrentCoverage← NewCoverage⋆

16: end while

Individual Feature ranking Feat. Coverage Majority
Dataset Fully FS Maxent Fully All Maxent Fully Class

Oracled Oracled Oracled Auto. FeaturesOracled Auto. Baseline
SENSEVAL-2 .623 .615 .556 .540 .574 .588 .583 .396

MSC .774 .743 .602 .577 .690 .712 .712∗ .617

Table 2: Disambiguation accuracies with SRL features (∗ indicates significantly higher performance than
the all features baseline (pairedt-test,p > 90%))

Individual Feature ranking Feat. Coverage Majority
Dataset Fully FS Maxent Fully All Maxent Fully Class

Oracled Oracled Oracled Auto. FeaturesOracled Auto. Baseline
SENSEVAL-2 .606 .595 .544 .529 .558 .583 .576 .396

MSC .780 .747 .554 .532 .714 .721 .693 .617

Table 3: Disambiguation accuracies without SRL features
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that for most verbs, there was very little correla-
tion between the training data and the test data in
terms of the value ofN verses the disambiguation
performance. This is why this algorithm consis-
tently selected suboptimal feature sets which re-
sulted in the poor performance. This mismatching
problem is especially severe for the MSC corpus
which contains many verb senses that occur only
once.

On the other hand, the performance of the cov-
erage based algorithm tends to be similar to or
better than that of using all the features. Recall
that this algorithm selects feature types in such a
way that the coverage of the final feature set is
maximized. As a result, even feature types which
performed poorly on the training set may be se-
lected as long as they performed well on some
of the training instances that other features per-
formed poorly on. Therefore, the features chosen
by this algorithm are less likely to overfit the train-
ing data.

Overall, it can be observed that for both
datasets, most of our automatic classifiers outper-
form the majority class baseline, which is very en-
couraging. For the SENSEVAL-2 dataset, the clas-
sifiers with SRL features consistently outperform
those without. However, for the MSC dataset, the
results of the nested cross validation showed that
the performance of the automatic classifiers with
the SRL features does not consistently outperform
those without the SRL features; the oracled classi-
fiers constructed without the SRL features actually
consistently outperformed those with the SRL fea-
tures.

The differences between the results obtained
from the two datasets make it difficult to conclude
categorically whether SRL can indeed help VSD.
However, a closer examination of the datasets re-
veals that errors in the output of the semantic role
labeler, the intransitivity of the verbs, unresolved
anaphors, and verbal multiword expressions (ver-
bal MWEs) are the main reasons for the lack of
positive contribution from the SRL features.

Most of the verbs on which SRL features per-
formed poorly are intransitive, which means that
only one argument type semantic role is available
– the subject or the agent role, which mostly oc-
curs to the left of the verb. However, the feature
ranking algorithm showed that most of the useful
features occur to theright of the verb, which is
why SRL features tend to perform poorly on in-

transitive verbs.
The unresolved anaphors also limited the effec-

tiveness of SRL features because they carry almost
no disambiguation information, no matter which
semantic role they take, and they occur in a signifi-
cant number of sentences. The anaphor problem is
slightly more pronounced in the movie script cor-
pus, because its texts tend to describe consecutive
actions performed by the same actor(s) and involv-
ing the same objects in the scene, and therefore
anaphors tend to occur more frequently.

Verbal MWEs such astake off are not detected
as a single lexical item, and the verbs themselves
tend to have no suitable sense as far as WordNet is
concerned. However, they often occur more than
once in the data, and since the annotators were
forced always to pick at least one sense, these ex-
pressions tend to end up as noise in the data.

Finally, it is also possible that the lack of train-
ing data in the MSC corpus contributed to the poor
performance, since almost every verb in the MSC
corpus contains two or more senses which occur
less than twice.

7 Conclusions and Future Work

In this paper, we have presented our research on
using multi-semantic-role based selectional pref-
erences obtained from a state-of-the-art semantic
role labeler. We have shown that this particular
type of selectional preferences can indeed improve
the performance of verb sense disambiguation.
However, this improvement still depends on the
performance of the semantic role labeler, the tran-
sitivity of the verbs, the resolution of anaphors,
and the identification of verbal MWEs.

In future research, we hope to focus on integrat-
ing more competent anaphora resolution systems
and verbal MWE detectors into our existing VSD
framework, and investigating how to mitigate the
errors in the semantic role labeler.
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Abstract
Many natural language processes have some
degree of preprocessing of data: tokenisation,
stemming and so on. In the domain of Statisti-
cal Machine Translation it has been shown that
word reordering as a preprocessing step can help
the translation process.

Recently, hand-written rules for reordering in
German–English translation have shown good
results, but this is clearly a labour-intensive and
language pair-specific approach. Two possible
sources of the observed improvement are that (1)
the reordering explicitly matches the syntax of
the source language more closely to that of the
target language, or that (2) it fits the data bet-
ter to the mechanisms of phrasal SMT; but it is
not clear which. In this paper, we apply a gen-
eral principle based on dependency distance min-
imisation to produce reorderings. Our language-
independent approach achieves half of the im-
provement of a reimplementation of the hand-
crafted approach, and suggests that reason (2) is a
possible explanation for why that reordering ap-
proach works.

Help you I can, yes.
Jedi Master Yoda

1 Introduction

Preprocessing is an essential step in Natural Lan-
guage applications. Reordering of words on a sen-
tence level as a more extensive step for prepro-
cessing has succeeded in improving results in Sta-
tistical Machine Translation (SMT). Here, both in
the training and in the decoding phase, sentences
in the source language are reordered before being
processed.
This reordering can be done based on rules over
word alignment learnt statistically; (Costa-Juss
and Donollosa, 2006), for example, describe such
a system. In this work an improvement in over-
all translation quality in a Spanish-English MT

system was achieved by using statistical word
classes and a word-based distortion model to re-
order words in the source language. Reordering
here is purely a statistical process and no syntacti-
cal knowledge of the language is used.

Xia and McCord (2004) do use syntactical know-
ledge; they use pattern learning in their reorder-
ing system. In their work in the training phase
they parse and align sentences and derive reorder-
ing patterns. From the English-French Canadian
Hansard they extract 56,000 different transforma-
tions for translation. In the decoding phase they
use these transformations on the source language.
The main focus then is monotonic decoding (that
is, decoding while roughly keeping the same order
in the target language as in the source language —
reordering done within phrases, for example, is an
exception).

Syntactically motivated rules are also used in re-
ordering models. In Collins et al. (2005) six hand-
written rules for reordering source sentences are
defined. These rules operate on the output of an
automatic parser. The reordering rules however
are language-pair (German-English) specific and
hand-written.

We want to extend this idea of word reordering
as preprocessing by investigating whether we can
find a general underlying principle for reorder-
ing, to avoid either thousands of patterns, or ar-
guably arbitrary hand-written rules to do this. To
do this, we note that a common characteristic of
the Collins et al. (2005) rules is that they reduce
the distances of a certain class of long-distance
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dependencies in German with respect to Eng-
lish. We note that minimising of dependency dis-
tances is a general principle appearing in a num-
ber of guises in psycholinguistics, for example
the work of Hawkins (1990). In this paper we
exploit this idea to develop one general syntacti-
cally motivated reordering rule subsuming those
of Collins et al. (2005).

This approach also helps us to tease out the source
of translation improvement: whether it is because
the reordering matches more closely the syntax of
the target language, or because fits the data better
to the mechanisms of phrasal SMT.

The article is structured as follows: in section 2 we
give some background on previous work of word
reordering as preprocessing, on general word or-
dering in languages and on how we can combine
those. In section 3 we describe the general rule for
reordering and our algorithm. Section 4 describes
our experimental setup and section 5 presents the
results of our idea; this leads to discussion in sec-
tion 6 and a conclusion in section 7.

2 Reordering Motivation

It has been shown that reordering as a preprocess-
ing step can lead to improved results. In this sec-
tion we look in a little more detail at an existing re-
ordering algorithm. We then look at some general
characteristics in word ordering in the field of psy-
cholinguistics and propose an idea for using that
information for word reordering.

2.1 Clause Restructuring

Collins et al. (2005) describe reordering based on
a dependency parse of the source sentence. In their
approach they have defined six hand-written rules
for reordering German sentences. In brief, Ger-
man sentences often have the tensed verb in sec-
ond position; infinitives, participles and separa-
ble verb particles occur at the end of the sentence.
These six reordering rules are applied sequentially
to the German sentence, which is their source lan-
guage. Three of their rules reorder verbs in the
German language, and one rule reorders verb par-
ticles. The other two rules reorder the subject and
put the German word used in negation in a more

English position. All their rules are designed to
match English word ordering as much as possi-
ble. Their approach shows that adding knowledge
about syntactic structure can significantly improve
the performance of an existing state-of-the-art sta-
tistical machine translation system.

2.2 Word Order Tendencies in Languages

In the field of psycholinguistics Hawkins (1990)
argues that the word order in languages is based
on certain rules, imposed by the human parsing
mechanism. Therefore languages tend to favour
some word orderings over others. He uses this to
explain, for example, the universal occurrence of
postposed sentential direct objects in Verb-Object-
Subject (VOS) languages.

In his work, he argues that one of the main rea-
sons for having certain word orders is that we as
humans try to minimise certain distances between
words, so that the sentence is easier to process. In
particular the distance between a head and its de-
pendents is important. An example of this is the
English Heavy Noun Phrase shift. Take the fol-
lowing two sentence variants:

1. I give<NP> back
2. I give back<NP>

Whether sentence 1 or 2 is favourable, or even ac-
ceptable, depends on the size (heaviness) of the
NP. If the NP isit only 1 is acceptable. When the
NP is medium-sized, likethe book, both are fine,
but the longer the NP gets the more favourable
2 gets, until native speakers will say 1 is not ac-
ceptable anymore. Hawkins explains this by using
head-dependent distances. In this examplegive is
the head in the sentence; if the NP is short, both
the NP andback are closely positioned to the head.
The longer the NP gets the further awayback is
pushed. The theory is that languages tend to min-
imise the distance, so if the NP gets too long, we
prefer 2 over 1, because we want to haveback
close to its headgive.

2.3 Reordering Based on Minimising
Dependency Distances

Regarding the work of Collins et al., we sug-
gest two possible sources for the improvement ob-
tained.
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Match target language word order Although
most decoders are capable of generating words in
a different order than the source language, usu-
ally only simple models are used for this reorder-
ing. In Pharaoh (Koehn, 2004), for example, every
word reordering between languages is penalised
and only the language model can encourage a dif-
ferent order. If we can match the word order of
the target language to a certain degree, we might
expect an increase in translation quality, because
we already have more explicitly used information
of what the new word ordering should be.

Fitting phrase length The achievement of
Phrase-Based SMT (PSMT) (Koehn et al., 2003)
was to combine different words into one phrase
and treat them as one unit. Yet PSMT only man-
ages to do this if the words all fit together in the
same phrase-window. If in a language a pair of
words having a dependency relation are further
apart, PSMT fails to pick this up: for example,
verb particles in German which are distant from
the governing verb. If we can identify these long
distance dependencies and move these words to-
gether into the span of one phrase, PSMT can ac-
tually pick up on this and treat it as one unit. This
means also that sentences not reordered can have
a better translation, because the phrases present in
that sentence might have been seen (more) before.

The idea in this paper is to reorder based on a gen-
eral principle of bringing dependencies closer to
their heads. If this approach works, in not ex-
plicitly matching the word order of the target lan-
guage, it suggests that fitting the phrase window
is a contributor to the improvement shown by re-
ordering. The approach also has the following at-
tractive properties.

Generalisation To our knowledge previous re-
ordering algorithms are not capable of reorder-
ing based on a general rule (unlike ‘arbitrary’
hand written language-pair specific rules (Collins
et al., 2005) or thousands of different transforma-
tions (Xia and McCord, 2004)). If one is able
to show that one general syntactically informed
rule can lead to translation quality this is evidence
in favour of the theory used explaining how lan-
guages themselves operate.

Explicitly using syntactic knowledge Al-
though in the Machine Translation (MT) com-
munity it is still a controversial point, syntactical
information of languages seems to be able to help
in MT when applied correctly. Another example
of this is the work of Quirk et al. (2005) where
a dependency parser was used to learn certain
translation phrases, in their work on “treelets”.
When we can show that reordering based on an
elegant rule using syntactical language informa-
tion can enhance translation quality, it is another
small piece of evidence supporting the idea that
syntactical information is useful for MT.

Starting point in search space Finally, most
(P)SMT approaches are based on a huge search
space which cannot be fully investigated. Usu-
ally hill climbing techniques are used to handle
this large search space. Since hill climbing does
not guarantee reaching global minima (error) or
maxima (probability scoring) but rather probably
gets ‘stuck’ in a local optimum, it is important to
find a good starting point. Picking different start-
ing points in the search space, by preprocessing
the source language, in a way that fits the phrasal
MT, can have an impact on overall quality.1

3 Minimal Dependency Reordering

Hawkins (1990) uses the distance in dependency
relations to explain why certain word orderings are
more favourable than others. If we want to make
use of this information we need to define what
these dependencies are and how we will reorder
based on this information.

3.1 The Basic Algorithm

As in Collins et al. (2005), the reordering algo-
rithm takes a dependency tree of the source sen-
tence as input. For every node in this tree the lin-
ear distance, counted in tokens, between the node
and its parent is stored. The distance for a node is
defined as the closest distance to the head of that
node or its children.

1This idea was suggested by Daniel Marcu in his in-
vited talk at ACL2006,Argmax Search in Natural Language
Processing, where he argues the importance of selecting a
favourable starting point for search problems like these.
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wij moeten dit probleem aanpakken wij moeten aanpakken dit probleem

aanpakken

wij
−4 moeten

−3 probleem
−1

dit
−1

aanpakken

wij
−2 moeten

−1 probleem+1

dit
−1

SHD2(node:aanpakken) = SHD2(node:aanpakken) =
(−4)2 + (−3)2 + (−1)2 = 26 (−2)2 + (−1)2 + 12 = 6

Figure 1: Reordering based on the sum of the head distances

To illustrate the algorithm of this section we
present the following two examples:

1. Verb initial in VP:
normal order:
wij moeten dit probleem aanpakken
we must this problem tackle

reordered:
wij moeten aanpakken dit probleem
we must tackle this problem

reference:
we must tackle this particular problem

2. Verb Particle reordering:
normal order:
het parlement neemt de resolutie aan
the parliament takes the resolution over

reordered:
het parlement neemt aan de resolutie
the parliament takes over the resolution

reference:
parliament adopted the resolution

As an example of the calculation of distances, the
left tree of Figure 1 is the dependency tree for the
normal order for example 1; nodes are annotated
with the distance from the word to its governor.
Note that in example 1probleem gets a value of1,
although the word itself is2 away from its head;
we are measuring the distance from this complete
constituent and not this particular word.

Based on the distance of the different child nodes
we want to define an optimal reordering and pick
that one. This means we have to score all the
different reorderings. We want a scoring mea-
sure to do this that ignores the sign of distances

and gives higher weight to longer dependency dis-
tances. Thus, similar to various statistical optimi-
sation algorithms such as Least Mean Squares, we
calculate the square of the Sum of the Head Dis-
tances (SHD2) for each noden, defined as:

SHD2(n) =
∑

c ǫ children(n)

Distance(c, n)2

Every different ordering of children and head has
a SHD2 value; we are interested in minimising this
value. We give an SHD2 example in Figure 1.

We then reorder the children so that the SHD2

score of a node is minimised. The righthand tree
of Figure 1 gives an example. In example 1 we
can see how the Dutch verbaanpakken is moved
to the beginning of the verb phrase. In this ex-
ample we match English word order, even though
this is not an explicit goal of the metric. The sec-
ond example does not match English word order
as such, but in Dutch the verbaannemen was split
into aan andneemt in the sentence. Our reorder-
ing places these two words together so that PSMT
can pickup that this is actually one single unit.
Note that the two examples also demonstrate two
of Collins et al. (2005) hand-written rules. In fact,
this principle subsumes all the examples given in
that paper in the prototypical cases.

3.2 Selecting Minimal Reorderings

In implementing the algorithm, for each node with
children we calculate the SHD2 for all permuta-
tions (note that this is not computationally expen-
sive as each node has only a small number of chil-
dren). We select the collection of sibling orders
with a minimal SHD2. This is indeed a collection
because different orderings can still have the same
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SHD2 value. In these cases we try to match the
original sentence order much as possible.

There are many different way to calculate which
permutation’s order is closer to the original. We
first count all the constituents which are on the
other side of the head compared to the original.
For all permutations from the list with the same
minimal SHD2 we count these jumps and keep
the collection with the minimal number of jumps.
Then we count the breaks where the new order de-
viates from an ascending ordering, when the con-
stituents are labelled with their original position.
For every constituent orderingc this Break Count
(BC) is defined as:

BC(c) =
N∑

n=2

max(0, Poso(n− 1)− Poso(n) + 1)

Here Poso(x) is the original position of thexth
constituent in the new order, andN is the length
of the constituentc. As an example: if we have the
five constituents1, 2, 3, 4, 5 which in a new order
y are ordered2, 1, 3, 4, 5 we have one break from
monotonicity, where from2 we go to1. We add
the number of breaks to the size of the break. In
this case, BC(y) = 2. The original constituent or-
der always gets value0. From the remaining col-
lection of orderings we can now select that one
with the lowest value. This always results in a
unique ordering.

3.3 Source Language Parser

To derive the dependency trees we used the Alpino
(Bouma et al., 2000) parser.2 Because this
grammar comes with dependency information we
closely follow their definition of head-dependent
relations, deviating from this in only one respect.
The Alpino parser marks auxiliary verbs as being
the head of a complete sentence, while we took the
main verb as the head of sentence, transforming
the parse trees accordingly (thus moving closer to
semantic dependencies).

The Alpino parser does not always produce pro-
jective parses. Reading off parse trees of Alpino
in some cases already changes the word order.

2We would like to thank van Noord from the University of
Groningen for kindly providing us the parses made by Alpino
for most of the Dutch sections for the relevant data.

3.4 Four Reordering Models

We investigate four models.

The first, the ‘Alpino model’, is to measure the im-
pact of the parser used, as Alpino does some re-
ordering that is intended to be linguistically help-
ful. We want to know what the result is of using
a dependency parser which does not generate pro-
jective parses i.e. there are parses which do not
result into the original sentence if we read off the
tree for this parse. In this model we parse the sen-
tences with our parser, and we simply read off the
tree. If the tree is projective this results in the orig-
inal tree. If this is not the case we keep for every
node the original order of its children.

The second, the ‘full model’, chooses the reorder-
ing as described in sections 3.1 and 3.2. We hy-
pothesised the algorithm may be too ‘enthusiastic’
in reordering. For example, when we encounter
a ditransitive verb the algorithm usually would put
either the direct or the indirect object in front of the
subject. Longer constituents were moved to com-
pletely different positions in the sentence. This
kind of reordering could be problematic for lan-
guages, like English, which heavily rely on sen-
tence position to mark the different grammatical
functions of the constituents.

We therefore defined the ‘limited model’, a restric-
tion on the previous model where only single to-
kens can be reordered. When analysing previous
syntactically motivated reordering (Collins et al.,
2005) we realised that in most cases constituents
consisting of one token only were repositioned in
the sentence. Furthermore since sentence ordering
is so important we decided only to reorder if ‘sub-
stantial’ parts were changed. To do this we intro-
duced a thresholdR and only accepted a new or-
dering if the new SHD2 has a reduction of at least
R in regard to the original sentence ordering. If it
is not possible to reduce SHD2 that far we would
keep the original ordering. VaryingR between0
and1, in this preliminary work we determined the
valueR = 0.9.

Finally we reimplemented the six rules in
Collins et al. (2005) as closely as possible given
our language pair and our parser, the Alpino
parser. The ‘Collins Model’ will show us the im-
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n = 1 n = 2 n = 3 n = 4 BPa BLEU

Baseline 0.519 0.269 0.155 0.0914 0.981 0.207
Alpino 0.515 0.264 0.149 0.085 0.972 0.198
Full 0.518 0.262 0.146 0.083 0.973 0.196
Limited 0.521 0.271 0.155 0.0901 0.964 0.203
Collins 0.521 0.276 0.161 0.0966 0.958 0.208

abrevity penalty of BLEU

Table 1: Automatic Evaluation Metrics for the different Models

pact of our parser and our choice of language pair.

4 Experimental Setup

For our experiments we used the decoder Pharaoh
(Koehn, 2004). For the phrase extraction we
used our implementation of the algorithm which
is described in the manual of Pharaoh. As a
language model we used the SRILM (Stolcke,
2002) toolkit. We used a trigram model with
interpolated Kneser-Ney discounting.

For a baseline we used the Pharaoh translation
made with a normal GIZA++ (Och and Ney, 2003)
training on unchanged text, and the same phrase
extractor we used for our other four models.

As an automated scoring metric we used
the BLEU (Papineni et al., 2002) and the F-
Measure (Turian et al., 2003)3 method.

For our training data we used the Dutch and
English portions of most of the Europarl Corpus
(Koehn, 2003). Because one section of the Eu-
roparl corpus was not available in a parsed form,
this was left out. After sentence aligning the Dutch
and the English part we divided the corpus into a
training and a testing part. From the original avail-
able Dutch parses we selected every 200th sen-
tence for testing, until we had1500 sentences. We
have a little over half a million sentences in our
training section.

3In this article, we used our own implementations of the
BLEU and the F-Measure score available from
http://www.ics.mq.edu.au/˜szwarts/
Downloads.php

5 Results

For the three models and the baseline, results are
given in Table 1. The first interesting result is the
impact of the parser used. In the Europarl corpus
29% of the sentences have a different word order
when just reading off the Alpino parse compared
to the original word order. It turns out that our
results for the Alpino model do not improve on
the baseline.

In the original Collins et al. work, the improve-
ment over the baseline was from 0.252 to 0.268
(BLEU) which was statistically significant. Here,
the starting point for the Collins reordering is
the read-off from the Alpino tree; the appropriate
baseline for measuring the improvement made by
the Collins reordering is thus the Alpino model,
and the Collins model improvement is (a compa-
rable) 0.01 BLEU point.

The Full Reordering model in fact does worse than
the Alpino model. However, in our Limited Re-
ordering model, our scores show a limited im-
provement in both BLEU and F-Measure above the
Alpino model score.

In this model only half of the sentences (49%)
are reordered compared to the original source
sentences. But as mentioned in section 2 not-
reordered sentences can also be translated differ-
ently because we hope to have a better phrase ta-
ble. When we compare sentence orders from this
model against the sentence ordering from the di-
rect read-off from the Alpino parser46% of the
sentences have a different order, so our method
does much more than changing the29% changed
sentences of the Alpino read-off up to49%.

In Table 2 we present some examples where we ac-
tually produce better translations than the baseline,
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Limited Reordering success
1 B the democratisation process is web of launched

L the democratisation process has been under way
R the process of democratisation has only just begun

2 B the cap should be revised for farmers to support
L the cap should be revised to support farmers
R the cap must be reorganised to encourage farmers

3 B but unfortunately i have to my old stand
L but unfortunately i must stand by my old position
R but unfortunately i shall have to adhere to my old point of view

4 B how easy it is
L as simple as that
R it is as simple as that

5 B it is creatures with an sentient beings
L there are creatures with an awareness
R they are sentient creatures

Limited Reordering failure
6 B today we can you with satisfaction a compromise proposal put

L today we can you and i am pleased submitting a compromise proposal
R i am pleased to see that we have today arrived at a compromisemotion

7 B this is a common policy
L is this we need a common policy
R a common policy is required in this area

Table 2: Examples of translation, B: Baseline, L: Our Limited Reordering model, R: Human Reference

and below that some examples where the baseline
beats our model on translation quality. Example
3 takes advantage of a moved verb; the original
Dutch sentence here ends with a verb indicating
that the situation is unchanged. Example 2 also
takes advantage of a moved final verb. In exam-
ple 4, the baseline gets confused by the verb-final
behaviour.

6 Discussion

The Full Reordering model, without the limitation
of moving only one token constituent and theR

threshold, reorders most of the sentences:90% of
the Dutch sentences get reordered. As can be seen
from Table 1 our scores drop even further than us-
ing only the Alpino model. Getting too close to the
ideal of limiting dependency distance, we actually
move large clauses around so much, for a language
which depends on word order to mark grammati-
cal function, that the sentences gets scrambled and
lose too much information. Manually judging the
sentence we can find examples where the sentence
locally improved in quality, but overall most trans-
lations are worse than the baseline.

In addition, the phrase table for the Fully Re-
ordered model is much smaller than the phrase
table for the non-reordered model. At first we

thought this was due to the new model general-
ising better. For example we find the verb parti-
cle more often next to the governing verb than in
other contexts. However a better explanation for
this in light of the negative results for this model
is based on the GIZA++ training. Eventually the
phrases are derived from the output of a GIZA++
training which iteratively tries to build IBM model
4 (Brown et al., 1994) alignments on the sentence
pairs. When the source sentences are extremely re-
ordered (e.g. an object moved before the subject)
the distortion model of model 4 makes it harder to
link these words, so eventually we would extract
fewer phrases.

Regarding the results of the Limited model com-
pared to original Collins et al. results, we used the
default settings for Pharaoh, while Collins et al.
probably did not. This could explain the difference
in baseline scores (0.207 vs 0.252) for languages
with similar syntactic features.

Comparing the results of the Limited model to
the reimplementation of the Collins rules in this
work, we see that we have achieved half of the
improvement without using any language-specific
rules. That the approach works by bringing related
words closer, in a way that can be taken advantage
of by the phrase mechanisms of SMT without ex-
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plicitly matching the syntax of the target language,
suggests that this is a source of the improvement
obtained by the reordering approach of Collins et
al.

In future work we would like to implement the
proposed reordering technique after correcting for
the parser distortions, hopefully confirming the
Collins results over the standard baseline for this
language pair, and also confirming the relative im-
provement of the approach of this paper.

7 Conclusion

Previous work has demonstrated that reordering
of the text in the source language can lead to an
improvement in machine translation quality. Ear-
lier methods either tried to learn appropriate rules
for reordering, or have used hand-coded rules that
take account of specific differences between lan-
guage pairs. In this work, we have explored how
a claimed universal property of language — that
there is a tendency to minimise the distance be-
tween a head and its dependents — can be adapted
to automatically reorder constituents in the source
language. This leads to an improvement in trans-
lation quality when the source language, Dutch,
is one where this tendency is less present than
in the target language English. We demonstrate
that, in the Dutch-English case, unrestricted appli-
cation of the head-dependent distance minimisa-
tion strategy is not optimal, and that a restricted
version of the strategy does best; we show that
this can achieve half of the improvement of the
handcrafted rules by using only one language-
independent principle, and suggests that what is
contributing to the improvement obtained in the
reordering is the collapsing of elements into the
phrasal window.
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Virtual environments such as internet web sites,

virtual maps, and even video game landscapes pro-

vide digital representations of conceptual or real

spaces. In many cases these virtual maps are best

understood by relating them to a corresponding

physical environment. Moving around these vir-

tual spaces gives users a feeling of moving through

a simulated physical environment.

The way in which a virtual space can describe

its physical counterpart allows us to use the infor-

mation that is easily accessible in the virtual envi-

ronment to give added meaning to elements of the

physical environment. This enables a person in an

information-rich physical environment such as a

city, town, shop or museum to gain access to this

otherwise hidden layer of content through the use

of portable technology.

This study aims to �nd accurate methods of

predicting how a user will act in an information-

rich space. The space focused on in this research

is a museum. The predictions take the form of

which exhibits a visitor will visit given a history

of previously visited exhibits. These predictions

can be used to give the person within the envi-

ronment recommendations on what locations they

may wish to visit in the future, or to relate infor-

mation to the person that is more relevant to them.

A core contribution of this study is its focus on

the relative import of heterogeneous information

sources a user makes use of in selecting the next

exhibit to visit.

Building a Recommender System based on

contextual information such as those given in

Resnick and Varian (1997) is the major goal here.

However the environment in this circumstance is

physical, and the actions of visitors are expected

to vary within such a space. The effectiveness

of statistical information to predict user paths

is detailed and summarised in Zukerman and

Albrecht (2001). Additionally, the relationship

between the nature of the data and the context of

the problem in which it is used for prediction is

acknowledged.

The relationships exhibits have with one

another is key in determining how visitors think

about them. An exhibit in a museum may

be many kinds of things, and most exhibits

will differ in presentation and content. Any

conceptual representation of an exhibit must

contain the elements which identify it, be they

physical attributes, such as size, colour and

shape, or detailed descriptions about the content

of the exhibit. Similarly it is necessary for any

prediction system to have knowledge of how to

treat relationships between exhibits.

The domain in which all experimentation takes

place is the Australia Gallery of the Melbourne

Museum. We categorised each exhibit by way of

its physical attributes (e.g. size) and taxonomic

information about the exhibit content (e.g. cloth-

ing or animal). We also described each exhibit by

way of its physical location within the Australia

Gallery, relative to a �oorplan of the Gallery.

A conceptual model of the exhibition space is

created by visitors with a speci�c task in mind.

Interpretation of this conceptual model is key to

creating accurate recommendations.

The representation of these intrinsically

dynamic models is directly related to the task

the visitor has in mind. Hence multiple exhibit

similarity measures are necessary.

The models of exhibit representation we exam-

ine in this research are exhibit proximity, semantic

relatedness and exhibit sequentiality (based on the

path data of previous visitors), as well as com-

binations of the three. For our present purposes,
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semantic content is described by the set of key-

words associated with each exhibit, although we

hope to extend this in future research to look at

full document representations based on associated

web documents. Semantic content is represented

by way of a term vector, describing the attributes

of the exhibit. The three distinct conceptual sim-

ilarity measures provide insight into how visitors

perceive their own paths.

The methods proposed above were tested over a

representative sample of three exhibit sequences.

These exhibit sequences are designed to test a

selection of different conceptual models that may

be adopted by museum visitors.

1. v1: A visitor interested in the history of the

Melbourne CBD, a total of 6 exhibits visited.

2. v2: A visitor interested in aboriginal art and

tools, a total of 6 exhibits visited.

3. v3: A visitor wandering, approaching things

that catch his/her eye, a total of 17 exhibits

visited.

The goal of testing the predictive methods against

the multiple visitors is to infer which form of con-

ceptual model each user is adhering to.

Representations based on physical proximity

take into account little of how a visitor

conceptualises a museum space. They do

however describe the fact that closer exhibits

are more visible to visitors, and are hence more

likely to be visited. Proximity can be used as an

augmentation to conceptual models designed to

be used within a physical space.

Our preliminary experiments show that visitors

entering the museum with a preconceived concep-

tual model relate strongly to the semantic informa-

tion associated within exhibits. Visitors entering

the museum with no such model tend to follow

the paths of other users, exhibiting behaviour that

relates to a collaborative predictive approach aug-

mented by individual perceptions of the semantic

space.
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Abstract

Instant messaging dialogue is real-time,
text-based computer-mediated communi-
cation conducted over the Internet. Mes-
sages sent over instant messaging can be
encoded We propose a method of using
dialogue acts to predict utterances in task-
oriented dialogue. Dialogue acts provide
a semantic representation of utterances in
a dialogue. An evaluation using a dia-
logue simulation program shows that our
proposed method of predicting responses
provides useful suggestions for almost all
response types.

1 Introduction

Support services in many domains have traditionally
been provided over the telephone: when customers
have queries, they dial a support number and speak
to a support representative. Recent years have seen
an increasing trend in support services provided over
the Internet. Many companies have web sites with
Frequently Asked Questions (FAQs), and also of-
fer e-mail support. More recently, real-time support
via online chat sessionsis being offered where cus-
tomers and support representatives type short mes-
sages to each other.

Chat sessions are conducted over a network, such
as the Internet, where textual messages can be
sent and received between interlocutors in real-time.
These chat sessions are commonly referred to asin-
stant messaging.

Support services that are conducted via instant
messaging vary from being person-person dialogue,

Speaker Message

Agent [Hello Jim]CONVENTIONAL-OPENING, [thank you for
contacting MSN Shopping]THANKING . [This is
Sanders and I look forward to assisting you
today]STATEMENT

Agent [How are you doing today?]OPEN-QUESTION

Customer [good]STATEMENT, [thanks]THANKING

Agent [How may I help you today?]OPEN-QUESTION

Table 1: An example of the beginning of a dia-
logue in our corpus showing utterance boundaries
and dialogue-act tags in superscript.

similar to traditional call centres, through to be-
ing entirely automated where customers engage in
dialogue with a computer program. Commercial
software is available to partially automated online
support by suggesting responses to a human agent,
which may then be accepted or overwritten.

The research presented in this paper aims to pro-
vide a degree of natural language understanding to
assist in automating task-oriented dialogue, such as
support services, by suggesting utterances during the
dialogue. We apply various probabilistic methods to
improve discourse modelling in the support services
domain.

In previous work, we collected a small corpus of
task-oriented dialogues between customers and sup-
port representatives from the MSN Shopping online
support service (Ivanovic, 2005b). The service is de-
signed to assist potential customers with finding var-
ious items for sale on the MSN Shopping web site.
A sample from one of the dialogues in this corpus is
shown in Table 1.

The research presented here advances previous
work which examined various models and tech-
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niques to predict dialogue acts in task-oriented in-
stant messaging. In Ivanovic (2005b), the MSN
Shopping corpus was collected and a gold standard
produced by labelling the utterances with dialogue
acts. Probabilistic models were then trained to pre-
dict dialogue acts given a sequence of utterances.
Ivanovic (2005a) examined probabilistic and lin-
guistic methods to automatically segment messages
from the same corpus into utterances. The present
paper concludes this work by applying the models to
a dialogue simulation program which suggests utter-
ance responses during a dialogue. The performance
of the suggested utterances is then evaluated.

2 Background

Our dialogue act tag set contains 12 dialogue acts,
which are intended to represent the illocutionary
force of an utterance. The tags were derived in
Ivanovic (2005b) by manually labelling the MSN
Shopping corpus using the tags that seemed appro-
priate from a list of 42 tags in Stolcke et al. (2000).

The MSN Shopping corpus we use comprises
approximately 550 utterances and 6,500 words.
Ivanovic (2005b) describes the manual process of
segmenting the messages into utterances and la-
belling the utterances with dialogue act tags to pro-
duce a gold standard version of the data. Kappa
analysis on both the labelling and segmentation
tasks was conducted with results showing high inter-
annotator agreement (Ivanovic, 2005a).

3 Evaluation and Results

As part of a high-level, end-to-end evaluation of di-
alogue act prediction and their usefulness in semi-
automated dialogue systems, we developed a pro-
gram that simulates a live conversation while sug-
gesting responses. The suggested utterances are
ranked by their respective probabilities given the di-
alogue history.

We use cross-validation by training the system on
all but one dialogue in our corpus. Following train-
ing, a customer support scenario is played out us-
ing the one dialogue that was not used for training,
known as thetarget dialogue. The aim is to repli-
cate substantially all of the utterances in the target
dialogue. The process is repeated for each dialogue
in our corpus.

Our interface displays a ranked list of suggested
dialogue acts and utterances. The dialogue acts are
ranked from highest to lowest probability as deter-
mined by the naive Bayes model. The utterances
within the dialogue acts are ranked by their fre-
quency count during training. However, many utter-
ances are only seen once, in which case the ordering
is assumed random as their frequencies are equal.
Our evaluation is only focussed on the dialogue-act
rankings, not the utterance rankings. When a dia-
logue act is selected in the “Suggestions” list, the
list of utterances is updated to show the relevant ut-
terances for that dialogue act.

Our support dialogue simulation program showed
that it is possible to accurately predict many utter-
ances using dialogue acts; 61% of utterances were
correctly predicated within the top three ranked di-
alogues: 22% were in the first rank and 27% in the
second.
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1 Introduction

Should probability play a role in linguistics?
Whereas Chomsky (1957: 16–17) influentially re-
jected probability in syntactic theory, “[i]n phono-
logical theory, probability has not so much been
rejected as disregarded” (Coleman, 2003: 89).
Disregard has, however, given way to a growing
literature on the use of probability across the vari-
ous linguistic sub-disciplines (see, e.g., Bod et al.,
2003; Coleman, 2003).

This paper is a case-study of probability in
phonology, both as it applies to an improved de-
scription of Hawaiian stress-assignment, and as
this description, in turn, reflects back on the prob-
ability question, above.

2 Grammars

By formalizing two strongly equivalent analy-
ses, where one is a non-probabilistic Context-
Free Grammar (CFG) and the other is a Stochas-
tic Context-Free Grammar (SCFG) (Booth, 1969;
Suppes, 1970), we can put the probability ques-
tion to a test. For a given data set, if the SCFG
does not outperform its strongly equivalent CFG,
then parsimony should compel us to reject, rather
than disregard, the added probabilities.

On the other hand, should the SCFG outperform
its strongly equivalent, non-probabilistic CFG,
then we ought, at least, to accept some role for
probability in phonology; this would support the
growing literature mentioned above.

Let our data set be Hawaiian. Schütz (1978,
1981) argues that Hawaiian stress-assignment
is not 100% predictable, based on words like
/ma.­ku.a."hi.ne/ ‘mother’ and /­Pe.le.ma."ku.le/
‘old man’. It might help to illustrate this argument
by developing Schütz’s analysis into a CFG.
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Figure 1: /ma.­ku.a."hi.ne/ parse-tree.

The crucial parse-trees for ‘mother’ and ‘old
man’ are in Figures 1–4. Note that the terminal
symbols are phonemes. The non-terminal symbols
are syllables (Syll), metrical-feet (Ft), prosodic
words (PrWd), and the start symbol (S). Also note
that the leftmost syllable in each metrical-foot is
stressed. The rightmost stress in a word is pri-
mary. Finally, let us ignore the labeled branches
for the moment, as they do not apply to the non-
probabilistic CFG.

The argument follows. The correct parse for
‘mother’ (Figure 1) is paralleled by an incorrect
parse for ‘old man’ (Figure 2); except for their ter-
minal expansions, these parse-trees have the same
structure. Thus, the correct parse for ‘mother’ im-
plies an incorrect parse for ‘old man’. Moreover,
the correct parse for ‘old man’ (Figure 3) implies
an incorrect parse for ‘mother’ (Figure 4). There-
fore, no matter how we order the CFG rules, a
procedural interpretation will get either ‘mother’
or ‘old man’ wrong. Hence, Hawaiian stress-
assignment is not 100% predictable.

Although this conclusion might be true (and
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Figure 2: */Pe.­le.ma."ku.le/ parse-tree.

there is nothing here to disprove it), the SCFG
turns out to be better than its strongly equivalent
CFG at predicting stress-assignment in Hawaiian.
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Figure 3: /­Pe.le.ma."ku.le/ parse-tree.

In Figures 1–4, each labeled branch expresses
the base-10 log probability for some SCFG rule,
where the probabilities were obtained by train-
ing the grammar on data from a Hawaiian dic-
tionary (Pūku‘i and Elbert, 1986). The proba-
bility of a parse-tree is just the sum probability
of its rules, so Figure 2’s probability is −11.29.
By contrast, Figure 3’s probability is −10.09.
The SCFG correctly picks /­Pe.le.ma."ku.le/ over
*/Pe.­le.ma."ku.le/, since a log probability of
−10.09 is higher than a log probability of
−11.29. Moreover, the SCFG correctly picks
/ma.­ku.a."hi.ne/ over */­ma.ku.a."hi.ne/, since the
log probability of −9.59 is higher than that of
−9.95. In both examples, the SCFG correctly dis-
ambiguates the parses.
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Figure 4: */­ma.ku.a."hi.ne/ parse-tree.

3 Evaluation

In a computational evaluation of 16,900 Hawai-
ian words, the CFG correctly parsed 84.6%. How-
ever, the SCFG correctly parsed 97.38%. These
results demonstrate that probabilities improve
stress-prediction in a CFG of Hawaiian phonol-
ogy; there is a role for probability in phonology.
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Abstract 

Search engine interfaces come in a range of 

variations from the familiar text-based approach 

to the more experimental graphical systems. It is 

rare however that psychological or human factors 
research is undertaken to properly evaluate or 

optimize the systems, and to the extent this has 

been done the results have tended to contradict 

some of the assumptions that have driven search 

engine design. Our research is focussed on a 

model in which at least 100 hits are selected 

from a corpus of documents based on a set of 

query words and displayed graphically.  

Matrix manipulation techniques in the 
SVD/LSA family are used to identify significant 

dimensions and display documents according to 

a subset of these dimensions. The research 
questions we are investigating in this context 

relate to the computational methods (how to 

rescale the data), the linguistic information (how 
to characterize a document), and the visual 

attributes (which linguistic dimensions to display 

using which attributes). 

1 Introduction 

Any search engine must make two kinds of 

fundamental decisions: how to use 

keywords/query words and what documents to 

show and how. Similarly every search engine 

user must decide what query words to use and 

then be able to interact with and vet the 

displayed documents. Again every web page 
author or designer makes decisions about what 

keywords, headings and link descriptions to use 

to describe documents or sections of documents. 

This paper presents one set of experiments 

targeted at the choice of keywords as descriptive 
query words (nWords1) and a second set of 

experiments targeted at explaining the 

effectiveness of the graphical options available to 
display and interact with the search results.  

2 Term relevance and Cognitive Load  

There is considerable literature on 

visualisation techniques and a number of 

experimental and deployed search engines that 

offer a visualisation interface e.g. kartoo.com 

and clusty.com. However, there is little research 

to establish the effectiveness of such techniques 
or to evaluate or optimise the interface. This is 

surprising given the many theories and studies 

that target memory and processing limitations 
and information channel capacity, including 

many that build on and extend the empirical 

results summarized in George Miller’s famous 
Magical Number Seven paper (1956). It seems 

likely that for any search task visualization to 

realize optimal use of channel capacity, it should 

permit users to draw on their powerful and innate 

ability of pattern recognition.  

Another important aspect that has never been 

properly evaluated relates to the question of 

“which words do people use to describe a 

document?” Techniques like TFIDF are used in 
an attempt to automatically weight words 

according to how important they are in 

characterizing a document, but their cognitive 
relevance remains unexplored. 

                                                           
1
 nWords is available at 

http://dweb.infoeng.flinders.edu.au 
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Our work will enhance the document search 
process by improving the quality of the data the 

user filters while reducing machine processing 

overheads and the time required to complete a 
search task. It will also provide fundamental 

insight into the way humans summarise and 

compress information. The primary objective of 

this part of our research is to quantify the number 

of words a broad spectrum of people use to 

describe different blocks of text and hence the 
number of dimensions needed later to present 

this information visually. Our secondary 

objective is to enhance our understanding of the 
approaches taking by users during completion of 

search tasks. A third objective is to understand 

the choices a user makes in selecting keywords 
or phrases to describe or search for a document. 

2.1 nWords Results 

Results for the nWords experiments explaining 
use of terms as descriptors or queries using a 

web based scenario are presented in Table 1 

(with standard deviations). It is not only 
instructive to compare the results across task 

conditions (with/without access to the text, 

with/without restricting terms to occur in text), 

but the difference between the sub conditions 

where subjects were asked for keywords that 

described the document (D) versus search query 

terms (Q) they would use. 
 

Descriptor & Query Term Usage Task1 Task2 Task3

Number of  D's Used 3.79 ± 3.34 4.02 ± 2.39 4.98 ± 3.35

Total Distinct  Stems Used in Ds 8.22 ± 7.40 7.27 ± 4.71 11.80 ± 10.63

Average Distinct Stems per D 2.40 ± 1.83 2.14 ± 1.64 3.02 ± 3.46

Distinct D Stems  in Top 10 TFIDF 1.79 ± 1.62 1.85 ± 1.52 2.62 ± 1.91

Total Distinct Q Stems Used in Qs 3.28 ± 1.78 3.81 ± 1.99 3.85 ± 1.89

Distinct Q Stems  in Top 10 TFIDF 0.98 ± 0.95 1.19 ± 1.02 1.38 ± 0.99

Q Stem / D Stem Intersections 1.83 ± 1.58 2.52 ± 1.69 2.70 ± 1.59  
 

Table 1: Statistics for nWords survey tasks (± 

standard deviation). Descriptors (D), query terms 

(Q). Task 1 Access to text, Task 2 No access, Task 

3 Term must be in text. 

 

From the results of Table 1 we can see that 

TFIDF is poor at ranking keywords and query 

words. For the full data pool, only 2.11 ± 1.74 of 

the top ten TFIDF terms are used in description 

which best describes a text, whilst only 1.19 ± 

0.99 are used in the query building task.  

3 Graphical Representations 

Little research on perceptual discrimination of 
dynamic encodings can be found, but a few 

empirical studies have investigated the human 

visual system’s ability to detect movement. 
Motion is a visual feature that is processed pre-

attentively. Motion cues can be detected easily 

and quickly. Overall dynamic encodings 
outperform static encodings for attracting 

attention.  

3.1 Preliminary Results 

Our Miller inspired experiments using web 

based applets varied properties of icons either 

statically or dynamically as show in figure 1. In 

general our preliminary results indicate that 

dynamic icons yield slower performances in 

relation to static vs. dynamic variation of any 

attribute other than size (see error bars in figure 

1). Intuition tells us that some aspect of the 

performance slow down is due to the fact that a 
dynamically encoded feature requires longer 

identification time since the encoding is time 

based. However, we also report that a high 
degree of volatility or variance was observed in 

all dynamic conditions. Significant differences 

were observed between static encodings and their 
dynamic equivalents in all cases except feature 

size (and hue - we do not report a flashing hue 

condition currently). 

0

20

40

60

80

100

120

Static

Size

Dyn.

Grow

Static

Hue

Static

Saturat.

Dyn.

Flash

Saturat.

Static

Bright.

Dyn.

Flash

Bright.

Static

Angle

Dyn.

Rotate

 
Figure 1 Aggregated subject response times 

(seconds) across 9 static and dynamic conditions. 

  
An analysis over repeated sessions did not 

reveal any learning trend. However, we do note 

that significant outliers were regularly 
encountered at the beginning of all experiments 

indicating that first timers took a while to learn 

how to use the experiment software. Possible 

outliers in trials midway through the duration of 

some experiments may indicate that the subject 

was distracted during the search task. 
Experiment subjects. This is possible given that 

subjects administered the test in their own time. 
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Abstract

XML information retrieval (XML-IR) sys-
tems respond to user queries with results
more specific than documents. XML-IR
queries contain both content and struc-
tural requirements traditionally expressed
in a formal language. However, an intu-
itive alternative is natural language queries
(NLQs). Here, we discuss three ap-
proaches for handling NLQs in an XML-
IR system that are comparable to, and even
outperform formal language queries.

1 Introduction

Information retrieval (IR) systems respond to user
queries with a ranked list of relevant documents,
even though only parts of the documents are rel-
evant. In contrast, XML-IR systems are able to
exploit the separation of structure and content in
XML documents by returning relevant portions
of documents. To interact with XML-IR sys-
tems users must specify both their content and
structural requirements in structured queries. Cur-
rently, formal languages are used to specify struc-
tured queries, however, they have proven problem-
atic since they are too difficult to use and are too
tightly bound to the collection.

A promising alternative to formal queries are
natural language queries (NLQs). Here, we
present justifications for NLQs in XML-IR, and
describe three approaches that translate NLQs to
an existing formal language (NEXI). When used
in with an XML-IR system the approaches per-
form strongly, at times outperforming a baseline
consisting of manually constructed NEXI expres-
sions. These results show that NLQs are poten-
tially a viable alternative to XML-IR systems.

2 Motivation

There are two major problems with formal query
languages for XML-IR that could be rectified with
NLQs. First, expressing a structural information
need in a formal language is too difficult for many
users. O’Keefe and Trotman (2004) investigated
five structured query languages and concluded that
all of them were too complicated to use. In prac-
tice, 63% of the expert-built queries queries in the
2003 INEX campaign had major semantic or syn-
tactic errors, requiring up to 12 rounds of correc-
tions. In contrast, users should be able to express
their need in NLQs intuitively.

Second, formal query languages require an inti-
mate knowledge of a document’s structure. So, in
order to retrieve information from abstracts, sec-
tions or bibliographic items, users need to know
their corresponding tags. While this information
is contained in the DTD/ Schema, it may not be
publicly available, and is too much information
to remember (INEX, for instance has 192 nodes).
The problem extrapolates in a heterogenous col-
lection since a single retrieval unit could be ex-
pressed in multiple tags. In contrast, since struc-
tures in NLQs are formulated at the conceptional
level users do not have to know their actual tag
names.

3 The Approaches

Here, we present three techniques used to translate
NLQs to NEXI in INEX 2004 and 2005. The three
approaches are called Hassler, Tannier (Tannier,
2005) and Woodley (Woodley and Geva, 2005)
after their authors. While each of the approaches
is different, they all contain four main stages.
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Detecting Structural and Content Con-
straints. The first stage is to detect a query’s
structural and content constraints. Hassler uses
template matching based on words and parts-of-
speech. Links between structure and content are
not linguistically motivated, and it is assumed that
content is the last element. Woodley adds shallow
syntactic parsing before applying the same kind of
template matching. Tannier uses deep syntactic
analysis, complemented by some specific seman-
tic rules concerning query structure.

Structure Analysis. The second stage is to map
structural constraints to corresponding XML tags.
This requires lexical knowledge about the docu-
ments’ structure, since the tags in the XML doc-
uments are rarely "real" words or phrases, but ab-
breviations, acronyms or an amalgamation of two.
Furthermore, a single tag can be referred to by dif-
ferent names. Tannier uses grammatical knowl-
edge to recognise some frequent linguistic con-
structions that imply structure.

Content Analysis. The third stage is to de-
rive users’ content requirements, as either terms
or phrases. Noun phrases are particularly useful in
information retrieval. They are identified as spe-
cific sequences of parts-of-speech. Tannier is also
able to use content terms to set up a contextual
search along the entire structure of the documents.

NEXI Query Formulation. The final stage
of translation is the formulation of NEXI queries.
Following NEXI format, content terms are delim-
itated by spaces, with phrases surrounded by quo-
tation marks.

4 Results

Here, we present the ep-gr scores from the 2005
INEX NLQ2NEXI Track. The results correspond
to different relevance quantisation and interpre-
tations of structural constraints - a thorough de-
scription of which is provided in (Kazai and Lal-
mas, 2005). The results compare the retrieval
performance of a XML-IR system (Geva, 2005)
when the 3 natural language approaches and a
fourth "baseline" system, which used manually
constructed NEXIs queries, were used as input.
The results show that the NLP approaches perform
comparably - and even outperform - the baseline.

Baseline Hassler Tannier Woodley
Strict 0.0770 0.0740 0.0775 0.0755
Gen 0.1324 0.1531 0.1064 0.1051

Table 1: SSCAS ep-gr scores

Baseline Hassler Tannier Woodley
Strict 0.0274 0.0267 0.0304 0.0267
Gen 0.0272 0.0287 0.0298 0.0311

Table 2: SVCAS ep-gr scores

Baseline Hassler Tannier Woodley
Strict 0.0383 0.0338 0.0363 0.0340
Gen 0.0608 0.0641 0.0682 0.0632

Table 3: VSCAS ep-gr scores

Baseline Hassler Tannier Woodley
Strict 0.0454 0.0372 0.0418 0.0483
Gen 0.0694 0.0740 0.0799 0.0742

Table 4: VVCAS ep-gr scores

5 Conclusion

While the application of NLP XML-IR is in its in-
fancy, it has already produced promising results.
But if it is to process to an operational environ-
ment it requires an intuitive interface. Here, we
describe and presented the performance of three
approaches for handling NLQs. The results show
that NLQs are potentially a viable alternative to
formal query languages and the integration of NLP
and XML-IR can be mutually beneficial.
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Abstract

This research aims to extract detailed clin-
ical profiles, such as signs and symptoms,
and important laboratory test results of the
patient from descriptions of the diagnostic
and treatment procedures in journal arti-
cles. This paper proposes a novel mark-up
tag set to cover a wide variety of semantics
in the description of clinical case studies in
the clinical literature. A manually anno-
tated corpus which consists of 75 clinical
reports with 5,117 sentences has been cre-
ated and a sentence classification system is
reported as the preliminary attempt to ex-
ploit the fast growing online repositories
of clinical case reports.

1 Corpus and Mark-up Tags

This paper proposes a mark-up scheme aimed at
recovering key semantics of clinical case reports
in journal articles. The development of this mark-
up tag set is the result of analysing information
needs of clinicians for building a better health in-
formation system. During the development of this
tag set, domain experts were constantly consulted
for their input and advice.

1.1 The Mark-up Tag Set

• Sign is a signal that indicates the existence
or nonexistence of a disease as observed by
clinicians during the diagnostic and treatment
procedure. Typical signs of a patient include
the appearance of the patient, readings or
analytical results of laboratory tests, or re-
sponses to a medical treatment.

• Symptom is also an indication of disorder or
disease but is noted by patients rather than by

clinicians. For instance, a patient can expe-
rience weakness, fatigue, or pain during the
illness.

• Medical test is a specific type of sign in
which a quantifiable or specific value has
been identified by a medical testing proce-
dure, such as blood pressure or white blood
cell count.

• Diagnostic test gives analytical results for di-
agnosis purposes as observed by clinicians in
a medical testing procedure. It differs from
a medical test in that it generally returns no
quantifiable value or reading as its result. The
expertise of clinicians is required to read and
analyse the result of a diagnostic test, such as
interpreting an X-ray image.

• Diagnosis identifies conditions that are diag-
nosed by clinicians.

• Treatment is the therapy or medication that
patients received.

• Referral specifies another unit or department
to which patients are referred for further ex-
amination or treatment.

• Patient health profile identifies characteris-
tics of patient health histories, including so-
cial behaviors.

• Patient demographics outlines the details
and backgrounds of a patient.

• Causation is a speculation about the cause
of a particular abnormal condition, circum-
stance or case.

• Exceptionality states the importance and
merits of the reported case.
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Total articles 75
Total sentences 5,117
Total sentences with tag 2,319
Total tokens 112,382
Total tokens with tag 48,394

Table 1: Statistics of the Corpus

• Case recommendations marks the advice
for clinicians or other readers of the report.

• Exclusion rules out a particular causation or
phenomenon in a report.

1.2 The Corpus

The corpus described in this paper is a collection
of recent research articles that report clinical find-
ings by medical researchers. To make the data rep-
resentative of the clinical domain, a wide variety
of topics have been covered in the corpus, such as
cancers, gene-related diseases, viral and bacteria
infections, and sports injuries. The articles were
randomly selected and downloaded from BioMed
Central1. During the selection stage, those reports
that describe a group of patients are removed. As
a result, this corpus is confined to clinical reports
on individual patients. A single human annotator
(first author) has manually tagged all the articles
in the corpus. The statistical profile of the corpus
is shown in Table 1.

2 The Sentence Classification Task

The patient case studies corpus provides a promis-
ing source for automatically extracting knowledge
from clinical records. As a preliminary experi-
ment, an information extraction task has been con-
ducted to assign each sentence in the corpus with
appropriate tags. Among the total of 2,319 sen-
tences that have tags, there are 544 (23.5%) sen-
tences assigned more than one tag. This overlap-
ping feature of the tag assignment makes a sin-
gle multi-class classifier approach not appropriate
for the task. Instead, each tag has been given a
separate machine-learned classifier capable of as-
signing a binary ’Yes’ or ’No’ label for a sentence
according to whether or not the sentence includes
the targeted information as defined by the tag set.
Meanwhile, a supervised-learning approach was
adopted in this experiment.

1http://www.biomedcentral.com/

Tag Precision Recall F1

Diagnostic
test

66.6 46.8 55.0

Medical
test

80.4 51.6 62.9

Treatment 67.6 44.7 53.8
Diagnosis 62.5 33.8 43.8
Sign 61.2 50.5 55.4
Symptom 67.8 45.8 54.7
Patient
demo-
graphics

91.6 73.1 81.3

Patient
health
profile

53.0 24.1 33.2

Table 2: Sentence Classification Result for Some
Semantic Tags

A Maximum Entropy (MaxEnt) classifier2 and
a SVM classifier (SVM-light) with tree ker-
nel (Moschitti, 2004; Joachims, 1999) were used
in the experiment. The SVM classifier used two
different kernels in the experiment: a linear kernel
(SVM t=1), and a combination of sub-tree kernel
and linear kernel (SVM t=6). The introduction of
the tree kernel was an attempt to evaluate the ef-
fectiveness of incorporating syntactic clues for the
task. The feature set used in the experiment con-
sists of unigrams, bigrams, and title of the current
section. The experiment results for selected mark-
up tags are shown in Table 2.
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