Combining Confidence Scores with Contextual Features for
Robust Multi-Device Dialogue*

Lawrence Cavedon

National ICT Australia, Victoria Research Lab
Cordura Hall, 210 Panama St. Stanford

and CS&IT, RMIT University
Melbourne VIC, Australia

lawrence.cavedon@nicta.com.au

Abstract

We present an approach to multi-device dia-
logue that evaluates and selects amongst candi-
date dialogue moves based on features at mul-
tiple levels. Multiple sources of information
can be combined, multiple speech recognition
and parsing hypotheses tested, and multiple de-
vices and moves considered to choose the high-
est scoring hypothesis overall. The approach
has the added benefit of potentially re-ordering
n-best lists of inputs, effectively correcting er-
rors in speech recognition or parsing. A current
application includes conversational interaction
with a collection of in-car devices.

1 Introduction

In this paper, we describe recent enhancements
to the CSLI Dialogue Manager (CDM) infras-
tructure to increase robustness, in particular
in (but not exclusive to) multi-device settings.
Dialogue contributions may be processed using
multiple information sources (e.g. deep syn-
tactic parsing and shallow topic classification),
scored at multiple levels (e.g. acoustic, seman-
tic and context-based), and bid for by multiple
agents, with the overall highest-confidence bid
chosen.

The CDM provides a multi-device infrastruc-
ture, with customization to new applications
and addition of plug-and-play devices eased by
a declarative dialogue-move scripting language
(Mirkovic and Cavedon, 2005). However, decid-
ing which device an utterance is directed at is
not always straightforward. One of our current
application areas is a conversational interface to
in-car devices, including entertainment, restau-
rant recommendation, navigation and telematic
systems (Weng et al., 2004); in such an envi-
ronment, a request such as “Play X” might be

* This work was performed while all the authors were
employed at CSLI, Stanford University, and was par-
tially supported by the US government’s NIST Advanced
Technology Program.

Matthew Purver, Florin Ratiu
CSLI, Stanford University

CA 94305, USA
{mpurver,fratiu}@stanford.edu

directed at an MP3 player or a DVD player.
Eye-gaze (useful in multi-human dialogue) is
not available, and we cannot rely on explicit
device naming. One option is to use the reso-
lution of NP arguments as disambiguating in-
formation (in our “Play X” example, whether
X is a song or a movie). However, the NP-
resolution process itself is often device-specific
(see below), preventing NPs from being prop-
erly resolved until device has been determined.

Our proposed solution, inspired by ap-
proaches to multi-agent task allocation such
as Contract Net (Smith, 1980), is to allow
all devices to perform shallow processing of
the incoming utterance, each producing multi-
ple possible candidate dialogue moves. Poten-
tial device-move combinations are then scored
against a number of features, including speech-
recognition and parse confidence, discourse con-
text, current device-under-discussion, and NP
argument analysis. The device associated with
the highest-scoring dialogue move is given first
option to process the utterance. A disambigua-
tion question may be generated if no device is
a clear winner, or a confirmation question if the
winning bid is not scored high enough.

Device choice, move choice, and selection of
best ASR/parser hypothesis are thereby made
simultaneously, rather than being treated as in-
dependent processes. As well as allowing for
principled device identification, this has the
benefit of scoring hypotheses on the basis of
multiple information sources, including context.
The highest scoring result overall may not cor-
respond to the highest-confidence result from
the ASR or parser n-best list alone, but n-best
lists are effectively re-ordered based on device
and dialogue context, allowing parsing errors
such as incorrect PP-attachment to be automat-
ically corrected. Confirmation and clarification
behaviour can also be governed not only by ASR
or parse confidence, but by the overall score.

Proceedings of the Australasian Language Technology Workshop 2005, pages 233-240,
Sydney, Australia, December 2005.

233

Related Approaches Rayner et al. (1994)
combine speech recognition confidence scores
with various intra-utterance linguistic features
to re-order n-best hypotheses; Chotimongkol
and Rudnicky (2001) also include move bigram
statistics. Walker et al. (2000) use similar fea-
ture combination to identify misrecognised ut-
terances. More recently, Gabsdil and Lemon
(2004) also include pragmatic information such
as NP resolution, and simultaneously choose
from an n-best list while identifying misrecogni-
tion. They also divide misrecognised utterances
into two overall confidence ranges, one for out-
right rejection and one for confirmation/clarifi-
cation. Similarly Gabsdil and Bos (2003) com-
bine acoustic confidences with semantic infor-
mation, and Schlangen (2004) with bridging ref-
erence resolution, in order to allow clarification
on an integrated basis. All of these approaches
assume a single-device setting and hence no
ambiguity of move type once the correct word
string or parse has been identified. Here we
extend these approaches to allow a principled
choice of move/device pairing.

2 Background
2.1 Dialogue Manager Architecture

Our focus is on activity-oriented dialogue, dis-
cussing tasks or activities that are jointly per-
formed by a human and one or more intelligent
devices or agents. By “joint activity”, we mean
that the human participates in specifying the
activity, clarifying requests, interpreting obser-
vations, and otherwise supporting the agent in
the performance of the activity. Systems en-
gaging in such dialogue characteristically re-
quire deep knowledge about the task domain
and the devices/agents they provide access to,
in order to know what information is critical
to the tasks, and know what information about
task performance is appropriate to provide to
the user. CSLI has been developing activity-
oriented dialogue systems for a number of years,
for applications such as multimodal control of
robotic devices (Lemon et al., 2002), speech-
enabled tutoring systems (Fry et al., 2001), and
conversational interaction with in-car devices
(Weng et al., 2004).

The dialogue system architecture (Figure 1)
centers around the CSLI Dialogue Manager,
which can be used with various different exter-
nal components: speech-recognizer, NL parser,
NL generation, speech-synthesizer, as well
as connections to external application-specific

234

components such as ontologies or knowledge
bases, and the dialogue-enabled devices them-
selves. Clean interfaces and representation-
neutral processes enable the CDM to be used
relatively seamlessly with different NL compo-
nents, while interaction with external devices is
mediated by Activity Models, declarative spec-
ifications of device capabilities and their rela-
tionships to linguistic processes.

The CDM uses the information-state update
(ISU) approach to dialogue management (Lars-
son and Traum, 2000). The ISU approach ex-
tends the more traditional finite-state-based ap-
proaches used for simple dialogues (in which di-
alogue context is represented as one of a finite
number of states, and each dialogue move re-
sults in a state transition), maintaining a richer
representation of information-state. This in-
cludes the dialogue context as well as e.g. de-
vice and activity status, together with a set
of update rules defining the effect of dialogue
moves on the state (e.g. adding new infor-
mation and referents for anaphora resolution,
and triggering new tasks, activities and system
responses). This approach allows more com-
plex dialogue types with advanced strategies for
context-dependent utterance interpretation (in-
cluding fragments and revisions), NP resolution,
issue tracking and improved speech-recognizer
performance (Lemon and Gruenstein, 2004).

2.2 The CSLI Dialogue Manager

Generic ISU toolkits (e.g. TrindiKit (Traum
et al., 1999), DIPPER (Bos et al., 2003)) pro-
vide general data structures for representing
state and a language for specifying update rules,
but the specific state and rules used are left
to the individual application. The CDM is
a specific implementation of an ISU dialogue-
management system, providing data structures
and processes for update specifically designed
as suitable to activity-oriented dialogue, but
adaptible to different applications and domains.

The two central components of the CDM in-
formation state are the Dialogue Move Tree
(DMT) and the Activity Tree. The DMT rep-
resents the dialogue context and history, with
each dialogue move represented as a node in
the tree, and incoming moves interpreted in
context by attachment to an appropriate open
parent node (for example, WhAnswer moves at-
tach to their corresponding WhQuestion nodes).
This tree structure specifically supports multi-
threaded, multi-topic conversations (Lemon et

Devi Device API -
—Pp Knowledge evice 4—Pp
Knowledge manager manager Activity
sources — model
h 4 Dialogue
CSLI Dialogue Move Treg Activity Tree IO o

Dialogue ﬁ NP-resolution

Manager AN \ grammar
Extensions of
DM processes

NP resolver ‘
[

Input processor

Output processor

ASR and Parser

=
+ =

NLG and TTS

Figure 1: Dialogue System Architecture

al., 2002), with branches representing topics or
threads: a dialogue move that cannot attach
itself to the most recent active node may in-
stead attach to another open branch (corre-
sponding to a resumed conversation) or open
a new branch (a new conversation thread) by
attaching itself to the root node. The DMT
also serves as context for interpreting fragments,
multi-utterance constructs, and revisions, and
provides discourse structure for tasks such as
NP-resolution. In tandem, the Activity Tree
manages the underlying activities, fully instan-
tiating new activities via their Activity Models
(e.g. resolving NP referents or spawning sub-
dialogues to fill missing arguments), editing ex-
isting ones as a result of revisions or corrections,
and monitoring their execution (possibly gen-
erating system moves notifying completion or
failure).

Other data structures that are part of the in-
formation state include: the salience list (NPs
and their referents for anaphora resolution);
multimodal input buffers (semantic interpreta-
tions of GUI events); and the system agenda
(potential system outputs scheduled by the di-
alogue manager). See (Lemon et al., 2002) for
details.

2.3 Dialogue Move Scripting

In early versions of the CDM, dialogue moves
were coded completely programmatically (in
Java). While libraries of general-purpose di-
alogue moves (e.g. Command, WhQuestion,

etc.) were re-used wherever possible, cus-
tomization to new domains generally required
significant programming effort in defining both
new dialogue moves and their effects, and pro-
cesses such as reference resolution. More re-
cently, Mirkovic and Cavedon (2005) describe
a dialogue-move scripting language designed to
expedite customization to new domains. Each
script serves a number of purposes:

1. hierarchical definition of dialogue moves,
allowing inheritance and re-use of existing
moves, while allowing customization to a
specific domain;

2. mapping of utterance representations to
appropriate dialogue moves, including ar-
gument values for devices’ activity models;

3. definition of attachment rules for
information-state update;

4. dialogue move-specific specification of out-
put to be generated, for disambiguation or
requests for required information.

Listing 1 shows the skeleton of a sample
dialogue-move script for a play Command move
for an MP3 player. The specific syntax of the
Input and Output fields can be ignored for now:
they simply match the interfaces of the parser
and generator respectively. Variables in the di-
alogue move script correspond to variables in
the Activity Model (AM) for the corresponding
device. The AM for the MP3 device contains

235

User Command:play { // inherits from generic Command dialogue move
Description "play something"
Input { // templates for matching parser output
// full parse match: ‘‘play/start X’~°
1.0 SYN{ s(features(mood(imperative)), predicate (#play/vb|#start/vb),
?arglist (obj:_playable-object,?sbj:*)) }

// full parse match: ‘‘I want to play
1.0 SYN{ s(features(mood(indirect)
7arglist (obj:_playable-ob
// topic classifier match
0.1 TOPIC{ play_item }
// topic classifier match with argume
0.25 AND{ TOPIC{ play_item }, SYN{
R
Producing { // templates for syste
System WHQuestion:disambiguate
System WHQuestion:fill:play:_playable
Output {avs (el / play :question (
}
.} // templates for syste
CloseOn System Report:play:playing
Output {avs (el / play :patient
}
.3

/hear X7’
), predicate (#play/vb|#hear/vb),
ject ,?7sbj:*)) }

nt
arglist (obj:_playable-object ,*) } }

m output: questions

-object {
ql / what) :agent I)
m output: reports

{

(pl / [songl) :aspect continuous)

Listing 1: Sample dialogue move script for a play Command for an MP3 device

a play operation with a (required) playable-
object argument. When an incoming utterance
matches an Input template from Listing 1, the
playable-object variable is filled by unification,
and resolved to an object from the device’s do-
main which then fills the corresponding slot
in the activity. For details, see (Mirkovic and
Cavedon, 2005).

2.4 Multi-Device Dialogue

The CDM has also been extended to multi-
device dialogue, with the scripting approach
allowing easy dynamic plug-and-play specifica-
tion of new “dialogue-enabled” devices. Note
that this does not constitute multi-party dia-
logue: interaction is still mediated by a single
dialogue manager, between a user and a De-
vice Manager with which devices register them-
selves. However, the plug-and-play requirement
(necessitated by the in-car application (Weng et
al., 2004)) has resulted in important extensions
to the dialogue management infrastructure.

Mirkovic and Cavedon (2005) describe a
framework for encapsulating devices with in-
formation required to “dialogue-enable” them.
Each device has associated with it the following
components:

1. a set of dialogue-move scripts;

2. an Activity Model describing any device
functionality accessible by dialogue;

236

3. a device-specific ontology and knowledge
base (KB);

4. rules for device-specific NP-resolution.

Any significantly different forms of interac-
tion requiring device-specific dialogue manage-
ment processes must still be specified as new
Java classes (referred to as DM process exten-
sions in Figure 1), but in general the above four
components contain the device-specific informa-
tion required for dialogue-enabling new devices.

Note that NP resolution rules are included
in the device definition; while pronoun resolu-
tion tends to be domain-independent, resolving
definite descriptions and demonstratives is of-
ten device-dependent, and resolving named ref-
erents often requires constructing appropriate
queries to a device-specific knowledge-base.

Devices can now be added dynamically to the
DMT, registering themselves with the Device
Manager and becoming associated with their
own nodes to which new conversation threads
can attach; “current device” becomes part of
the information-state and interpreting incoming
utterances is performed in this context.

In this context, device selection—determining
which device an utterance is associated with—
becomes a further complication: an utterance
may (on the surface) be potentially applicable
to multiple devices: e.g. “Play X’ could be
applicable to either an MP3 player or a DVD

player. Our original proposal was to create a
dialogue move consistent with each such device
and then score its applicability based on other
factors, e.g. ability to resolve the object ref-
erence (the MP3 player would resolve a song-
name, the DVD player a movie name). The
rest of the paper generalises this approach to
a wider range of possible disambiguities, involv-
ing a greater number of scoring features, and re-
sults in more interesting behaviours than simple
device-disambiguation.

3 Multiple Interpretation Methods

The first new extension to the CDM described
here is the use of multiple information sources
in parallel to classify dialogue move type and
produce an activity-specific representation. In
most systems (and previous incarnations of the
CDM) a single interpretation mechanism is cho-
sen which is best suited to the application
at hand, be it e.g. an open-domain statisti-
cal parser, a domain-specific constraint-based
grammar, or keyword-spotting techniques. We
extend this approach here to allow arbitrary
multiple interpretation mechanisms, each pro-
ducing its own (independent) interpretation hy-
pothesis and associated confidence. In the cur-
rent application, we use both a statistical parser
producing relatively deep dependency struc-
tures, and a shallow maximum-entropy-based
topic classifier.

Dialogue move scripts, such as the one
sketched in Listing 1, are used to construct in-
stantiations of candidate dialogue moves for a
device, based on incoming user utterances (and
planned system outputs, although we focus on
the former here). This is governed by the Input
field for each move type, which specifies a set
of patterns: when an utterance representation
matches an Input pattern, a candidate node of
the appropriate type can be created. As List-
ing 1 shows, patterns can now be defined in
terms of interpretation method as well as the
interpreted form itself: SYN patterns match the
output of the statistical parser, TOPIC patterns
match the output of the topic classifier, while
AND patterns match combinations of the two.
Further general pattern types are available (e.g.
LF for semantic logical forms, STRING for sur-
face string keyword-matching) but are not used
in the current application.

Each pattern is associated with a weight, used
in the overall move scoring function described
in Section 4 below. This allows moves cre-

237

ated from matches against deep structure to be
scored highly (e.g. SYN patterns in which pred-
icate and arguments are specified and matched
against), shallow matches to be scored low (e.g.
simple TOPIC matches), and combined matches
to have intermediate scores (e.g. a combina-
tion of an appropriate TOPIC classification with
a SYN parser output containing a suitable NP ar-
gument pattern). Depending on other elements
of the scoring function (e.g. the ASR confi-
dence associated with the hypothesised string
being tested) and on competing move hypothe-
ses, low scores may lead to clarification being re-
quired (and therefore clarification will be more
likely when only low-scoring (shallow) patterns
are matched). Behaviour can therefore be made
more robust: when deep parsing fails, a shallow
hypothesis can be used instead (clarifying/con-
firming this specific hypothesis as necessary de-
pending on its confidence) rather than resorting
to a rejection or general clarification. Scores are
currently set manually and determined by test-
ing on sample dialogues; future work will exam-
ine learning them from data.

4 Dialogue Move Selection

In the general case, multiple possible candidate
dialogue moves will be produced for a given user
utterance, for a number of reasons:

1. multiple hypotheses from ASR /parser out-
put;

2. multiple interpretation methods (deep

parsing vs. shallow classification);

3. multiple possible move types for a candi-
date interpretation;

4. multiple antecedent nodes (active dialogue
threads), including multiple devices, for a
particular move type.

These are not independent: it is important to
consider all factors simultaneously, to allow an
integrated scoring function for each candidate
and thus consider the best overall. The skele-
ton algorithm for instantiating and selecting a
dialogue move is therefore as follows:!

!Note that we will not create O x N x M candidates:
only a subset of script entries (if any) will match for each
node and n-best entry.

foreach open node O
foreach n-best list entry N
foreach matching script entry M
create candidate move
score all candidates
if (score(top) >> score(second))
then
select top candidate
else
generate question to disambiguate
if (score(selected-node) < threshold)
generate question to confirm

J

The interesting aspect of the above process
is the scoring function. Dialogue-move candi-
dates are scored using a number of weighted
features, ranging from speech-recognizer confi-
dence, through to pragmatic features such as
the “device in focus” and recency of the DMT
node the candidate would attach to. The full
list of features currently considered is shown
in Table 1. Note the inclusion of features at
many levels, from acoustic recognition confi-
dences through syntactic parse confidence to se-
mantic and pragmatic features.

4.1 Reordering n-best candidates

This integrated scoring mechanism therefore al-
lows n-best list input to be re-ordered: dialogue-
move candidates are potentially instantiated for
each n-best list entry and the highest-scoring
candidate chosen. While the n-best list rank
and confidence are factors in the overall score,
other features may outweigh them, resulting in
an initially lower-ranked n-best entry becoming
the highest-scoring dialogue move.

Evaluation so far has been limited to ini-
tial testing on a manually constructed set of
test inputs, using only a subset of the features:
those shown italicised in Table 1 are not cur-
rently available due to either implementational
issues (for full domain referent resolution and
KB queries) or lack of domain data (for move
bigram frequencies). Our test set includes 400
sentences, of which 300 have been used in train-
ing the statistical parser and 100 are unseen
variations; it currently covers only utterances
related to a single device (a restaurant recom-
mendation system) and does not include speech
recognition hypotheses (we are therefore testing
parse n-best reordering only). We are currently
working towards evaluation on a full set of fea-
tures, with user-generated multi-device speech
input.

However, even with the restricted set of fea-
tures, preliminary testing on this set shows

238

encouraging results: the percentage of sen-
tences for which the correct parse is chosen
increases from 90% to 94%, a 41% reduction
in error with several common parse errors be-
ing corrected. Ome example is incorrect PP-
attachment (a notoriously difficult challenge for
statistical parsers). The example below (from
a restaurant recommendation scenario), shows
the top two n-best list entries for a sentence as
produced by our statistical parser:

1. how about [a restaurant

[in Grant]] [on Mayfield]
2. how about [a restaurant

[in Grant] [on Mayfield]]

Here, the second is lower-ranked but correct,
taking both PPs as modifying restaurant, while
the first treats only one as modifying restau-
rant, one as a sentential modifier. As the sec-
ond allows two database-query constraints to
be filled (city and street name), and the first
just one, this boosts its overall score enough to
overcome its lower parse confidence, and it is
selected and used in DMT attachment. Similar
improvements are gained with nominal modi-
fiers:

1. how about [a

[[cheap] chinese] restaurant]
2. how about [a

[cheap] [chinese] restaurant]
3. how about [a

[cheap chinese] restaurant]

Here the second is correct, treating cheap
and chinese as both independently modifying
restaurant; the first takes cheap as modifying
chinese, and the third takes cheap chinese as a
single multi-word unit. Again, as the second fills
two database-query constraints (price level and
cuisine type), its overall score becomes highest.
Evaluation of the improvement achieved is cur-
rently in progress.

4.2 Move type comparison

The scoring function for feature combination is
currently manually defined. When comparing
between candidate moves of the same type, this
is relatively straightforward, although hardly
trivial and inherently done to a high extent
by subjective expertise. However, it becomes
much less straightforward when comparing can-
didates of different types, as some move types
and some DMT attachment contexts will allow
only a subset of the features to have meaning-
ful values. However, comparison between move
types is essential, as two ASR hypotheses with

Recognition features:

recognition and parse probabilities;
recognition and parse n-best ranks;

Semantic features:

topic classification for the parse (with score);
for dialogue moves spawning activities:
- number of slots filled by input pattern;
- number of resolved/unresolved slots after NP resolution;
- number of ambiguously resolved slots after NP resolution;
for queries about database objects:
- set of constraints sent to the knowledge base;
- cardinality of the set of knowledge base query results;

Contextual features:

current most active node;
current activity;
position and recency of the parent node in the active node list;
bi-gram frequencies of the dialogue moves:
- DMT attachments - pairs of child and parent node types;
- pairs of chronologically consecutive user nodes.

Table 1: Move Scoring Features

similar recognition scores may have very differ-
ent possible move types:

1. Command: “Play a rock song by Cher”
2. Query: “What rock songs are there?”

We are therefore currently investigating the
use of machine learning techniques to improve
on our current manual definitions. With an-
notated data the optimal weights of a scoring
function that combines all the features can be
automatically learned (see (Gabsdil and Lemon,
2004)).

4.3 Dialogue-move disambiguation

In order for a winning bid to be unambigu-
ously accepted, its score must exceed the next
highest score by more than a predefined thresh-
old. If not, we take the choice of winning bid
to be within our margin of error, and the dia-
logue manager asks a disambiguating clarifica-
tion question. For example, if the pair of sen-
tences in the previous section result in hypothe-
sis dialogue moves with scores within the margin
of error, then the dialogue manager generates a
question of the form:

“Did you want to play a rock song
by Cher or did you ask about rock
songs?”

Alternatively, in some cases there may be a
clear highest-scoring bid (i.e. one of high rel-
ative confidence) which is itself of low absolute
confidence. In such cases, rather than act on the
move unconditionally we ask the user for clarifi-
cation. If the score is below a certain confidence

239

threshold 77 we treat the highest bid as a rea-
sonable hypothesis, but ask for confirmation of
the intended move; following the previous ex-
ample, this would result in a question such as:

“I'm not sure I understood that. Did
you want to play a rock song by Cher?”

If the score is below a second critical minimum
threshold T» we take this as a failure in interpre-
tation, and prompt for general clarification. As
even the best hypothesised move is likely to be
incorrect in this case (being of such low confi-
dence), asking for specific confirmation is likely
to be counter-productive or annoying (see e.g.
(San-Segundo et al., 2001)).

Threshold values are currently specified as
part of dialogue-move definitions; a future di-
rection is to automatically learn optimal values
for the thresholds.

5 Discussion and Conclusions

We have described a number of strategies im-
plemented in the CSLI Dialogue Manager to
more robustly handle ambiguous or misunder-
stood utterances, and low-confidence interpre-
tations. Features from multiple sources of ev-
idence are combined to rate the possible di-
alogue move candidates as interpretations of
a user utterance. Features include confidence
scores from ASR and parser, as well as seman-
tic and pragmatic criteria, and measures related
to the dialogue context itself. As well as se-
lecting dialogue move, in our multi-device set-
ting the approach has the benefit of selecting
the device being addressed. Although we have
not yet performed a full evaluation of the ef-

ficacy of this approach, we have observed sev-
eral examples of the n-best list of inputs be-
ing (correctly) re-ordered—i.e. after misclas-
sification by the statistical parser, the candi-
date dialogue-move corresponding to the correct
(though lower-confidence) parse can still be se-
lected. We are currently gathering data in order
to provide a concrete evaluation.

Confidence thresholds (upper and lower
bounds) set by the dialogue designer specify the
levels at which a candidate move is rejected, re-
quires explicit confirmation by the user, or sim-
ply accepted. Future work includes automati-
cally learning optimal values for these thresh-
olds and optimal weights on the features for
scoring candidate dialogue-moves, applying the
techniques of e.g. Gabsdil and Lemon (2004) to
our multi-device setting.

References

J. Bos, E. Klein, O. Lemon, and T. Oka. 2003.
DIPPER: Description and formalization of an
information-state update dialogue system ar-
chitecture. In Proceedings of the 4th SIGdial
Workshop on Discourse and Dialogue.

A. Chotimongkol and A. Rudnicky. 2001. N-
best speech hypotheses reordering using lin-
ear regression. In Proceedings of the 7th Eu-
ropean Conference on Speech Commumnication
and Technology (EUROSPEECH).

J. Fry, M. Ginzton, S. Peters, B. Clark, and
H. Pon-Barry. 2001. Automated tutoring di-
alogues for training in shipboard damage con-
trol. In Proc. 2nd SIGdial Workshop on Dis-
course and Dialogue.

M. Gabsdil and J. Bos. 2003. Combining acous-
tic confidence scores with deep semantic anal-
ysis for clarification dialogues. In Proc. 5th
International Workshop on Computational
Semantics (IWCS-5).

M. Gabsdil and O. Lemon. 2004. Combining
acoustic and pragmatic features to predict
recognition performance in spoken dialogue
systems. In Proc. 42nd Annual Meeting of the
ACL.

S. Larsson and D. Traum. 2000. Informa-
tion state and dialogue management in the
TRINDI dialogue move engine toolkit. Natu-
ral Language Engineering, 6.

O. Lemon and A. Gruenstein. 2004. Multi-
threaded context for robust conversational in-
terfaces: Context-sensitive speech recognition
and interpretation of corrective fragments.

240

ACM Transactions on Computer-Human In-
teraction, 11(3).

O. Lemon, A. Gruenstein, and S. Peters. 2002.
Collaborative activities and multi-tasking in
dialogue systems. Traitement Automatique
des Langues, 43(2).

D. Mirkovic and L. Cavedon. 2005. Practical
plug-and-play dialogue management. In Pro-
ceedings of the Annual Meeting of the Pa-
cific Association of Computational Linguis-
tics (PACLING).

M. Rayner, D. Carter, V. Digalakis, and
P. Price. 1994. Combining knowledge sources
to reorder n-best speech hypothesis lists. In
Proceedings of the ARPA Human Language
Technology Workshop.

R. San-Segundo, J. M. Montero, J. Ferreiros,
R. Cérdoba, and J. M. Pardo. 2001. Design-
ing confirmation mechanisms and error re-
cover techniques in a railway information sys-
tem for spanish. In Proc. 2nd SIGdial Work-
shop on Discourse and Dialogue.

D. Schlangen. 2004. Causes and strategies for
requesting clarification in dialogue. In Proc.
oth SIGdial Workshop on Discourse and Di-
alogue.

R. G. Smith. 1980. The contract net protocol:
High level communication and control in a
distributed problem solver. IEEE Transac-
tions on Computers, C-29(12):1104-1113.

D. Traum, J. Bos, R. Cooper, S. Larsson,
I. Lewin, C. Matheson, and M. Poesio. 1999.
A model of dialogue moves and information
state revision. In Task Oriented Instructional
Dialogue (TRINDI): Deliverable 2.1. Univer-
sity of Gothenburg.

M. Walker, J. Wright, and I. Langkilde. 2000.
Using natural language processing and dis-
course features to identify understanding er-
rors in a spoken dialogue system. In Proceed-
ings of the 17th International Conference on
Machine Learning.

F. Weng, L. Cavedon, B. Raghunathan,
D. Mirkovic, H. Cheng, H. Schmidt, H. Bratt,
R. Mishra, S. Peters, L. Zhao, S. Upson,
E. Shriberg, and C. Bergmann. 2004. A
conversational dialogue system for cognitively
overloaded users. In Proc. 8th International
Conference on Spoken Language Processing
(INTERSPEECH,).

	Design and Development of a Speech-driven Control for a In-car Personal Navigation System

