Efficient Grapheme-phoneme Alignment for Japanese

Lars Yencken and Timothy Baldwin

Dept. of Computer Science and Software Engineering NICTA Victoria Research Lab

University of Melbourne
Victoria 3010 Australia

University of Melbourne
Victoria 3010 Australia

{lars,tim}@csse.unimelb.edu.au

Abstract

Current approaches to the grapheme-phoneme
alignment problem for Japanese achieve good
accuracy, but are extremely computationally
expensive. In this paper we evaluate various
modifications to previous algorithms for both
the alignment and okurigana detection sub-
tasks. The best algorithm achieved accuracy of
96.2% for the combined task on a limited data
set, and was significantly more efficient than
previous approaches.

1 Introduction

Alignment is the task of, for two streams of
data which represent alternate construals of the
same basic information content, identifying cor-
responding segments within the two streams. A
common alignment task in computational lin-
guistics is word alignment, whereby given an
English sentence and its French translation, say,
each English word n-gram is aligned with its
French translation (Brown et al., 1993; Man-
ning and Schiitze, 2000). The combined set of
such alignments derived from a parallel corpus is
generally used to train the translation model in
statistical machine translation systems. Other
alignment tasks in computational linguistics in-
clude sentence alignment, structural alignment
(e.g. as a means of grammar inference), and
grapheme-phoneme alignment.

The grapheme-phoneme (“GP”) alignment
task aims to mazimally segment the ortho-
graphic form of an utterance into morpho-
phonemic units, and align these units to a pho-
netic transcription of the utterance. Maxi-
mal indicates the desire to segment grapheme
strings into the smallest meaningful units pos-
sible. Taking the English example word battle-
ship and its phonetic transcription /betlfip/,
one possible alignment is:

b
b

sh
I

i
I

le
1

tt
t

a
X

p
p

Note that alignment in general is many-to-
many. In the example above, t¢ aligns to /t/,
le aligns to /1/ and sh aligns to /[/. Equally it
might be possible for some letters to align to an
empty string. This task is challenging for any
language without a one-to-one correspondence
between individual graphemes and phonemes,
as is the case with English (Zhang et al., 1999),
Japanese (considering graphemes as kanji char-
acters), and indeed most languages with a pre-
existing writing system.

GP alignment is a prerequisite for many ap-
plications. For example, the alignment pro-
cess, and the resulting aligned GP tuples, are
a precursor to achieving automated grapheme-
to-phoneme mappings for several text-to-speech
systems (Allen et al., 1987; Sejnowski and
Rosenberg, 1987; Sloat, 1996; Black et al.,
1998). Further uses include accented lexicon
compression (Pagel et al., 1998), identification
of cognates (Kondrak, 2003), Japanese-English
back-transliteration (Knight and Graehl, 1998;
Bilac and Tanaka, 2005a, 2005b) and finally the
FOKS dictionary system for Japanese learners
(Bilac, 2002; Bilac et al., 2002), which provides
the context for our work.

There are several successful approaches to
Japanese GP alignment, notably the itera-
tive rule-based approach taken by Bilac et al.
(1999), later followed by an unsupervised statis-
tical model based on TF-IDF by Baldwin and
Tanaka (1999a, 1999b). Although these models
were found to have high accuracy, their itera-
tive approach had a high computational cost,
making them impractical for many real-world
applications. For the statistical models, this
is partially a consequence of their strongly un-
supervised nature. We thus explore the use
of the Edict and Kanjidic electronic dictionar-
ies (Breen, 1995) as means of constraining the
alignment search space and reducing computa-
tional complexity.

The goal of this paper is to compare sev-

Proceedings of the Australasian Language Technology Workshop 2005, pages 143-151,
Sydney, Australia, December 2005.

143

eral different GP alignment methods in order
to achieve equivalent or better alignment accu-
racy to that for existing methods, at a much
lower computational cost. To achieve this goal,
we split the task of GP alignment into a pure
alignment subtask and an okurigana detection
subtask, and compare algorithm variants of pre-
existing approaches for both. As our base
model, we use the top performing statistical
model from Baldwin and Tanaka (2000).

The remainder of this paper is structured as
follows. First, we discuss the FOKS system, an
important motivator for this work (Section 2).
We then discuss the GP-alignment problem for
Japanese in greater depth (Section 3), before
giving details of the baseline statistical model
and our modifications to it (Section 4). Finally,
we discuss our results on a manually aligned test
data set (Section 5).

2 FOKS dictionary system

GP alignment is an important step in the
pipeline that drives the FOKS (“Forgiving On-
line Kanji Search”) dictionary interface (Bilac,
2002), our particular research interest. Whereas
normal electronic dictionaries will not provide
the target word if an incorrect reading is looked
up, FOKS is able to compensate for learner
mistakes by dynamically predicting readings for
compounds, and aims to direct the user to the
correct word despite possible mistakes in the en-
tered reading.

For example, suppose the user wishes to look
up JEAE [ka-ze] “common cold”. He or she
may know the kanji i\ [ka-ze/fu-u] “wind”, and
also B [yo-ko-shi-ma/jya] “evil, wicked”, and
thus guess that the reading for &Sl is ka-ze-
yo-ko-shi-ma, one possible combination of read-
ings. However, the correct reading ka-ze is
non-compositional. Despite the incorrect guess,
FOKS still lists the target word with the correct
reading in its list of candidates for the guessed
reading.

The back-end data that drives FOKS is con-
structed as follows. Firstly, all entries in the
Edict dictionary are GP aligned. The subse-
quent GP tuples are counted to estimate the
probability P(r|k) of a given reading r for a
given grapheme segment k. Composing seg-
ment probabilities together gives the probabil-
ity P(r|s) of an entire dictionary entry s taking
reading r. Using Bayes rule, we finally calculate
P(s|r), the probability of a dictionary entry s
being the target entry given the user provided

144

i
-
%)
o
X
c
¢al

2
=i
%)
c

1
1
c
ol

| su-ru

<

v

y -

ka-n-sya-su-ru ka-n-sya | su-ru ka-n | sya | su-ru

Figure 1: A typical dictionary entry requiring
GP alignment, with two potential alignments
shown

reading r. The entries s with non-zero proba-
bilities form our list of candidates for the user’s
query, and the probabilities P(s|r) provide the
basis of the ranking (Bilac et al., 2002). GP
alignment allows us to calculate each P(r|k) and
is thus a pivotal supporting technology which
underlies the FOKS system.

3 Grapheme-phoneme alignment in
Japanese

In the context of Japanese, the GP-alignment
task has a few peculiarities. Japanese has three
scripts: kanji, hiragana, and katakana. Since
hiragana and katakana (or kana collectively)
are essentially phonetic, we can represent the
phoneme string using either of these scripts di-
rectly. Kanji on the other hand are ideographic
rather than phonetic. Each kanji may have
many readings as a single unit, and may also
form part of larger units which themselves take
on one or more readings. To emphasize the dif-
ference between scripts, we shall use romaniza-
tions for the phonetic scripts. Figure 1 gives an
example for &H 9% [ka-n-sya-su-ru] “to give
thanks, be thankful”.

Given that kana are phonetic, the main task
is then reduced to determining how the kanji
elements should be segmented, and what ele-
ments of the phoneme string they correspond
to. Below, we outline four features of Japanese
that impede this task.

3.1 Okurigana alternation

Individual kanji segments do not always corre-
spond to minimal units in language. Often a hi-
ragana suffix of some description (usually con-
jugational) is required, which we term okurig-
ana. Verb and adjective conjugation fall under
this category: for example 1T-ku [i-ku] “go” in
plain form changes to {T-ke [i-ke] in the im-
perative. Any useful segmentation should thus

include such suffixes along with their kanji stem
in order to preserve the basic morpho-phonemic
structure of the compound.

Although most cases of okurigana represent
verb and adjective conjugation, there are many
general cases such as that of the kanji HX, which
occurs in compounds almost exclusively as HX-7i
[to-ri], but also has an alternate where the suffix
ri is conflated with the kanji stem (such as in X
5Y [to-ri-bu-n] “one’s share or portion”). With
some lexemes, both alternants are possible, such
as in HX-ri-7} [to-ri-bu-n]. Tt is desirable for sys-
tems to be able to capture such alternations,
in order to achieve consistent segmentation be-
haviour and attain an accurate estimate of the
frequency with which a given kanji occurs with
a particular reading (independent of the exact
lexical form of the word).

3.2 Sequential voicing

Sequential voicing occurs when a tailing seg-
ment has its initial consonant voiced. For ex-
ample: 7K [ho-n] “book” + HH [ta-na] “shelf”
— &M [ho-n-da-na] “bookshelf”. Although se-
quential voicing is notoriously unpredictable, its
potential occurrence is constrained by Lyman’s
law, which states that sequential voicing will not
occur where there are existing voiced obstruents
in the tailing segment (Vance, 1987). It occurs
in about 75% of cases where Lyman’s law is not
violated, with some systematic irregularities for
noun-noun compounds as found in recent work
by Rosen (2003).

Alignment methods based on precedence or
frequency counts may be hindered by sequential
voicing, since aligned grapheme/phoneme pairs
may not be recognised as phonological variants
of previously seen kanji-reading pairs. Fortu-
nately, devoicing is relatively simple, so a com-
mon approach is to simply consider voiced and
devoiced grapheme/phoneme pairs to be equiv-
alent for counting or comparison.

3.3 Sound euphony

Sound euphony occurs when the last syllable
of a leading segment is modified to match the
sound of the tailing segment. This is marked
uniquely by the - kana character in Japanese.
For example: E [ko-ku] “country” + 1% [kyo-
o] “boundary” — EIR [ko-k-kyo-o] “national
border”. Unlike sequential voicing, which im-
poses a reversible transformation, it is not clear
from IR [ko-k-kyo-o] “national border” what
the original kana ending for [was (possibilities
include ko-ki, ko-ku, ko-su and ko-tsu).

145

3.4 Grapheme gapping

Occasionally a kana is omitted from the writ-
ten form of a word, but does not constitute a
component of the readings of the neighbouring
kanji. Typically the kana can also be explicitly
included in the written form of the word. For
example: [l [ya-ma] “mountain” + no [GENI-
TIVE] + F [te] “hand” can be written as either
LI or IlI-no-F, both with reading [ya-ma-no-
te].

Grapheme gapping is very rare, normally only
occurs with the particles ga or no, and tends
not to be productive, suggesting that even ap-
proaches aimed at open text are better off sim-
ply storing each case individually. The only pro-
ductive case involving a kanji is H [ma]. For
example: H [ma] “true/pure” + WER [ku-ra-
ya-mi] “darkness” — BEHGRE [ma-ku-ra-ya-mi]
“pitch dark”, or E->HW5[[ma-k-ku-ra-ya-mi] for
emphasis.

4 Multi-step alignment

In this section, we first describe the baseline al-
gorithm of Baldwin and Tanaka (1999a, 1999b),
before introducing the modifications we propose
in this research.

4.1 Overview

A high-level depiction of the unsupervised align-
ment method of Baldwin and Tanaka (1999a,
1999b) is given in Figure 2. Firstly, all poten-
tial segmentations and alignments for input en-
tries are created. Each entry will have potential
segmentations and alignments per segmentation
which number exponentially in the entry’s or-
thographic length.

Some simple linguistic constraints used as
forward constraints to reduce this number are
strictly linear alignment, a minimum of one
phoneme aligned to each grapheme, and a re-
striction that each alignment must successfully
match any kana entry in the grapheme string
with its equivalent phoneme entry. Further con-
straints used to prune entries include match-
ing okurigana to pre-clustered variants and forc-
ing script-boundaries (except kanji to hiragana
boundaries) to correspond to segment bound-
aries.

Based on the linguistic constraints, we can
reasonably expect to have uniquely determined
some number of alignments for any sufficiently
diverse data set.! The uniquely determined

!Notable exceptions to this are dictionaries of 4-kanji
proverbs, such as the 4JWORDS electronic dictionary,

raw entries

generate
alignments
ambiguous
alignments

apply linguistic
constraints

ambiguous

! unique
alignments

alignments

TF-IDF

final
alignments

Figure 2: The TF-IDF based alignment algo-
rithm

alignments and the remaining ambiguous align-
ments are both used separately to seed fre-
quency counts for the TF-IDF model.

TF-IDF is a family of models originally de-
veloped for IR tasks, combining the TF (term
frequency) and IDF (inverse document fre-
quency) heuristics (Baeza-Yates and Ribiero-
Neto, 1999). In the GP alignment task, they
mediate the tension between oversegmenting
and undersegmenting. The TF value is largest
for the most frequently occurring GP pair given
any grapheme; an oversegmented alignment
produces rarer segments with lower frequency,
penalizing the TF score. The IDF value on the
other hand is largest for segments which occur
in a wide variety of contexts, and penalises un-
dersegmenting.

4.2 TF-IDF Alignment

We use a modified version of the TF-IDF model
which takes into account the differing level of
confidence we have in our frequency counts
between solved (fregs) and ambiguous (freg,)
alignments (Baldwin and Tanaka, 2000). For

whose entries’ grapheme forms lack kana to help elimi-
nate possible alignments.

146

each alignment, we count the occurrence of
each grapheme segment (g), of each aligned
grapheme/phoneme segment pair (g,p), and of
the same pair with one additional pair of con-
text on either side (g,p, ctzt). For any fre-
quency lookup, the ws and w, constants provide
a weighting between information from solved
and ambiguous alignments:

wif () = ws X fregs(x) + wy X freqy(z) (1)

To score a potential alignment, we calculate the
tf and idf scores for each grapheme/phoneme
segment pair and multiply them together as in
Equations 2-4. The score for the whole align-
ment is the average of the scores for every pair
which contains a kanji character, since these
are the non-trivial pairs. The constant « is in-
tended as a smoothing factor for the TF and
IDF scores. It must be assigned such that
0 < a<wy, <ws.

wtf ({g,p)) — wy + &
wif ((g)) @)

tf(g,p) =

wtf ({g,p))
wtf ({g, p, ctzt)) — wy + @

idf (g, p, ctzt) = log (3)

score(g, p, ctzt) = tf(g,p) x idf (g,p, ctat) (4)

Once all potential alignments have been
scored, the highest-scoring alignment is chosen
to disambiguate its entry. Its counts are re-
moved from the unsolved pool and added to the
solved pool, and algorithm reiterates with up-
dated counts. In this way entries are iteratively
disambiguated until no more remain, and the
algorithm is complete.

Although effective, the iterative algorithm
is extremely expensive, with two main costs.
Firstly, as with any alignment task where two
strings of length [and m respectively need to be
aligned, there are 2/ possible alignments be-
fore applying constraints (Brown et al., 1993).
In our task, kanji essentially form free variables
in the alignment, whereas kana align to them-
selves, constraining the search space. Entries
with many kanji and no kana to constrain them
thus have prohibitively large numbers of possi-
ble alignments. These cases bloat the number of
potential alignments to be rescored on each it-
eration so much that including them makes our
main algorithm infeasibly expensive.

The second bottleneck is in the average case.
Suppose there are n alignments pairs, each with
p possible alignments. Then the cost of the it-
erative rescoring loop is O((np)?). Even hav-
ing removed the problem cases above, if p is
still high on average, the problem will prove in-
tractable for suitably large n. As a comparison,
the evaluation set we use has 5000 elements, yet
the Edict dictionary has over 110,000 entries,
representing a near 500 fold expected increase
in computation time. Although this could be
mitigated by simply breaking the input down
into smaller subsets for processing, it is desir-
able to process all the data in the same itera-
tive loop, since this gives greatest consistency
of alignment.

Strategies to reduce the average case for p and
to eliminate the worst case for p thus form the
basis for our attempts at modifying the algo-
rithm.

4.3 Modified algorithm

The modified algorithm diverges from the un-
supervised algorithm in three main respects.
Firstly, we separate out okurigana handling into
a separate step after alignment, benefiting both
efficiency and error measurement. Secondly, a
reading model is introduced based on the Kan-
jidic electronic dictionary? and is used to dis-
ambiguate the majority of remaining cases be-
fore the TF-IDF model is reached. Thirdly,
we provide a maximum alighment size cutoff
above which we use a simplified non-iterative
alignment algorithm which meets resource con-
straints for problem cases. We discuss these
changes below.

4.3.1

The okurigana handling in the original algo-
rithm involves pre-clustering okurigana alter-
nates, and attempting to restrict alignments
to match these alternates wherever possible.
Whilst this constraint does help reduce poten-
tial alignments, it also limits the application
of the stronger constraint that script bound-
aries in the grapheme string must correspond
to segment boundaries (i.e. every occurrence
of a kanji-hiragana script boundary must be
considered as a potential okurigana site). If
okurigana detection is left as a post-processing
task, we can strengthen this constraint to in-
clude all script boundaries, instead of omitting

Separating okurigana handling

*http://www.csse.monash.edu.au/"~ jwb/kanjidic.
html

147

kanji-to-hiragana boundaries. This in turn pro-
vides a larger gain than the original okurigana
constraint, since more entries are fully disam-
biguated.

The GP-alignment task is then split into two
parts: a pure alignment task, which can be car-
ried out as per the original algorithm, and a sep-
arate okurigana detection task. This redesign
also allows us to separately evaluate the error in-
troduced during alignment, and that introduced
during okurigana detection, and thus allows us
to experiment more freely with possible models.

4.3.2 Short and long entries

Ultimately, any method which considers all pos-
sible alignments for a long entry will not scale
well, since potential alignhments increase expo-
nentially with input length. We can however
extend the applicability of the algorithms con-
sidered by simply disambiguating long entries
in a non-iterative manner.

The number of potential alignments for an en-
try can be estimated directly from the number
of consecutive kanji. Our approach is to sim-
ply to count the number of consecutive kanji in
the grapheme string. If this number is above
a given threshold, we delay alignment until all
the short entries have been aligned. We then
use the richer statistical model to align all the
long entries in a single pass, without holding
their potential alignments in memory.

Although long entries were not an issue in
our evaluation set, a threshold set experimen-
tally to 5 consecutive kanji worked well using
the Edict dictionary as input, where such en-
tries can prove difficult.

4.3.3 Reading model

For the pure alignment task, we added an addi-
tional reading model which disambiguates en-
tries by eliminating alignments whose single
kanji readings do not correspond to those in
the Kanjidic and KANJD212 electronic dictio-
naries. These dictionaries list common read-
ings for all kanji in the JIS X 0208-1990 and
JIS X 0212-1990 standards respectively, cover-
ing 12154 kanji in total. Effectively, we are ap-
plying the closed world assumption and allow-
ing only those alignment candidates for which
each grapheme unit is associated with a known
reading. Only in the instance of over-constraint,
i.e. every GP alignment containing at least one
unattested reading for a grapheme unit, do we
relax this constraint over the overall alignment
candidate space for the given grapheme string.

Potential alignments

— | 7
i| chi-ryo-u

— |
i-chi | ryo-u

— | —T
i-chi-ryo | u i-chi-ryo-u

— ! i-chi, i-tsu, hi-to

M : ryo-u, te-ru, fu-ta-tsu

Kanjidic readings

__

Figure 3: Disambiguation using the reading
model

A simple example of disambiguation using the
reading model is that of —ij [i-chi-ryo-u] “one
vehicle” as shown in Figure 3. Since only one
of the potential alignments is compatible with
the known readings, we then select it as the cor-
rect alignment. As an indication of the effective-
ness of the reading model, our initial constraints
uniquely determine 31.1% of the entries in the
Edict dictionary.® The reading model disam-
biguates a further 60.6% of entries, effectively
decreasing the input to the iterative alignment
algorithm by an order of magnitude, to the re-
maining 8.3%.

4.3.4 Heuristic variants

We could continue to use the original TF-IDF
model over the residue which is not disam-
biguated by the reading model, although the
type of input has changed considerably after
passing through the reading model. Since the
reading model is likely to fully disambiguate any
entry containing only single kanji segments, the
only remaining ambiguous models are likely to
be those with solutions containing multi-kanji
segments (which do not occur in either Kan-
jidic or KANJD212); an instance of a multi-
kanji segment is our earlier example JEff [ka-ze]
“common cold”. With this in mind, we compare
the original TF-IDF model (our baseline) with
similar models using TF only, IDF only, or ran-
dom selection to choose which entry/alignment
to disambiguate next.

3http://www.csse.monash.edu.au/~ jwb/edict.
html

148

4.3.5 Okurigana detection

We similarly wish to determine what form of
okurigana detection and realignment model is
most appropriate. Since the majority of entries
in the Edict dictionary (our main experimen-
tal data set) which contain potential okurigana
sites (i.e. kanji followed by hiragana) do contain
okurigana in some form, we use as our baseline
the simple assumption that every such site is an
instance of okurigana. In this manner, the base-
line simply removes every kanji-to-kana segment
boundary. As a small enhancement, the bound-
ary is not removed if the tailing kana segment is
one of the hiragana particles no, ga or ni, which
frequently occur alone.

We consider three alternative okurigana mod-
els to compare to our baseline, of increasing
complexity and expected coverage. Firstly, the
Kanjidic dictionary contains common okurigana
suffixes for some kanji with conjugating entries.
Thus our first model uses these suffixes ver-
batim for okurigana detection. The coverage
of okurigana suffixes in Kanjidic is somewhat
patchy, so in our second model, in addition to
Kanjidic suffixes, we also perform a frequency
count over all potential okurigana sites in the
Edict dictionary, and include any occurrences
above a set threshold as okurigana.

Finally, most instances of okurigana are due
to verb conjugation. As well as taking straight
suffixes from the previous models, this final
model harvests verbs from Edict. Most verb en-
tries in Edict have a tag marking them as ichi-
dan, godan or suru verbs.* The verb type and
stem allow us to conjugate regular verbs vari-
ously, giving us a large number of new okurig-
ana suffixes not present in the previous models.
In order to improve accuracy, all three methods
fall back to the baseline method if they do not
detect any okurigana.

5 Evaluation

Having teased apart the alignment and okurig-
ana detection algorithms, we are in a position to
separately evaluate their performance. Our test
set for the combined task consists of 5000 ran-
domly chosen and manually aligned examples
from Edict, from which we then separated out
an individual evaluation set for each subtask.
Since we are also interested in efficiency, we

“The tagset for Edict verbs is larger than this, but the
additional tags largely mark subclasses and exceptions of
the three main classes, which we ignore for the sake of
simplicity.

provide execution time as measured by elapsed
time on a standard Pentium 4 desktop PC. Our
emphasis however is on the relative time taken
by different algorithms rather than the exact
time as measured.

In the following section we first evaluate
alignment and okurigana detection separately,
then we evaluate okurigana detection, and fi-
nally we assess performance over the combined
task.

5.1 Alignment

We first compare the accuracy of the various
alignment algorithm variants, as given in Ta-
ble 1. After some experimentation, parameter
values of 0.05 for «, and 2.5 for w,; and w, were
found to yield the best results, and were hence
used to generate the results we discuss here.

For each of the non-random heuristics, we
expect that the iterative version will achieve
higher accuracy than the non-iterative version,
since the statistical model is rebuilt each itera-
tion adding the best example from the last. As
such, this represents a time/accuracy trade-off,
a fact confirmed by our data (see Table 2). The
gain — 2% in the case of TF-IDF, 4% for IDF
alone — comes at the cost of an order of magni-
tude larger execution time, which also increases
exponentially with the number of input entries.

In contrast, the Kanjidic model consistently
achieves a very high accuracy regardless of the
heuristic chosen. A large number of entries
are immediately disambiguated by the Kanjidic
model, thus initially improving accuracy and
then facilitating use of more accurate statis-
tics in the iterative algorithm without signifi-
cant penalty to efficiency. We also expect the
Kanjidic model’s execution time to scale more
moderately with the number of input entries
than the original iterative algorithm, since a far
lesser proportion of the entries require iterative
disambiguation.

Comparing the individual heuristics at this
stage, a surprise is that the IDF heuristic attains
equivalent results to the TF-IDF heuristic, sug-
gesting that broad occurrence of (g,p) pairs is
a good indicator of their alignment probability.
The TF heuristic in comparison performs worse
than simply choosing randomly, suggesting that
the proportion of times a grapheme occurs as
the current (g, p) pair is a very poor indication
of its alignment probability.

149

Model Accuracy
Simple 98.1%
Kanjidic 98.3%
Co-occurrence 97.7%
Verb conjugation 97.7%

Table 3: Okurigana detection accuracy across
models

5.2 Okurigana detection

We now compare the performance of our okurig-
ana detection algorithms. All the algorithms we
compare are linear in the size of the input and
thus run in much less time than the alignment
phase, thus efficiency is not a significant criteria
in choosing between them. The accuracy found
by each model is shown in Table 3.

Interestingly, the simple model which as-
sumes that every potential case of okurigana is
okurigana performs extremely well, beaten only
by the addition of the Kanjidic common okuri-
gana stems. Adding more information to the
model about valid okurigana occurrences even
reduces the accuracy slightly over our test data.

Rather than indicating blanket properties of
these models, the results suggest properties of
our testing data. Since it consists entirely of dic-
tionary entries without the common hiragana
particles which would occur in open text, this
greedy approach is very suitable, and suffers few
of the shortcomings which it would normally
face.

In open text, we would consistently expect
additional language features between lexical
items which would break the assumptions made
by our simple model, and thus reduce its ac-
curacy dramatically. In contrast, the full verb
conjugation model would then be expected to
perform best, since it has the most information
to accurately detect cases of okurigana even in
the presence of other features.

5.3 Combined task

Selecting the two models which performed best
on our test data, we can now evaluate the pair
on the combined task. For the alignment sub-
task, the IDF heuristic with Kanjidic was used.
For the okurigana detection subtask, the sim-
ple algorithm is used. The results are shown in
Table 4.

A final accuracy of 96.2% was achieved, with
the errors caused mostly in the alignment sub-
task. As predicted, grapheme gapping was a

| AccURACY (%) | Random TF IDF TF-IDF
Iterative 47.8 23.7 94.7 93.4
Single-pass 47.3 23.6 90.5 90.8
Kanjidic 94.4 92.9 98.0 97.9

Table 1: Alignment accuracy across models

| TIME (M:s) [Random TF IDF TF-IDF
Iterative 0:10 24:10 22:47 21:54
Single-pass 0:10 0:11 0:09 0:10
Kanjidic 0:12 0:27 0:24 0:24

Table 2: Alignment execution time across models

Status Count Percentage
Correct 4809 96.2%
Incorrect 191 3.8%
— Gapping 6 0.1%
— Alignment 163 3.3%
— Okurigana 22 0.4%

Table 4: Best model accuracy for the combined
task

source of errors only in a small percentage of
cases, justifying its exclusion from our model.
This level of accuracy if equivalent to that of
earlier models, yet it has been achieved with
a much lower computational cost. Examples of
incorrect alignment are given in Figure 4 below.

a. || Output | BH | ma-s | sa-ka-ri
Correct | B | B ma-(s) | sa-ka-ri
“full bloom”
b. || Output | K[B | chi ha-sa [mi-u [chi
Correct | 1% | B | chi ha-sa-mi | u | chi
“pincer attack”
c. || Output | 7x-n | h a-ka-n | bo-u
Correct | 7% | n | £f a-ka | n | bo-u
“ba‘by”

Figure 4: Examples of incorrect alignment in
the combined task

Example (a) shows a grapheme gapping er-
ror, where the output, although correctly seg-
mented and aligned, attributes the additional
s sound to the E kanji instead of detecting it
as a gapped grapheme. In example (b) we see
a typical alignment error, where one kanji has
been attributed part of the reading of another.
Finally, example (c) gives an error in okurig-

150

ana detection, where the n kana is erroneously
detected as an okurigana suffix of the 7% kanji.

6 Extensions

Although current work is suitable for use with
the FOKS system, it is still untested on open
text. The lack of suitable aligned data is the
main obstacle to creating a system with wider
applicability. Of the two subtasks, alignment
should remain relatively unchanged in the move
to open text, and we expect the IDF algorithm
with Kanjidic to continue to perform well.

Okurigana detection remains the harder
problem, for tasks which require it. The verb-
conjugation model, despite its relatively poor
performance for dictionary entries, suggests it-
self as the most fruitful approach to accurate
detection for open text, and could easily be ex-
tended. In particular, the addition of conju-
gation suffixes of high-frequency irregular verbs
would be a straightforward way to boost accu-
racy.

7 Conclusion

We have decomposed the GP alignment task
into an alignment subtask and an okurigana
detection subtask, and explored various algo-
rithm variants for use in both. In particular,
the iterative IDF heuristic with a Kanjidic read-
ing model provided the best accuracy in signif-
icantly less time than the original algorithm.
For the okurigana detection subtask, a simple
model outperformed more complicated models
of conjugation due to peculiarities of dictionary
entries as input to alignment.

References

Jonathan Allen, Sheri Hunnicut, and Dennis Klatt.
1987. From Text To Speech, The MITTALK Sys-

tem. Cambridge University Press, Cambridge,
UK.

Ricardo Baeza-Yates and Berthier Ribiero-Neto.
1999. Modern Information Retrieval. Addison
Wesley / ACM press.

Timothy Baldwin and Hozumi Tanaka. 1999a. The
applications of unsupervised learning to Japanese
grapheme-phoneme alignment. In Proc. ACL
Workshop on Unsupervised Learning in Natural
Language, College Park, USA.

Timothy Baldwin and Hozumi Tanaka. 1999b. Au-
tomated Japanese grapheme-phoneme alignment.
In Proc. International Conference on Cognitive
Science, pages 349-354, Tokyo, Japan.

Timothy Baldwin and Hozumi Tanaka. 2000. A
comparative study of unsupervised grapheme-
phoneme alignment methods. In Proc. 22nd An-
nual Meeting of the Cognitive ScienceSociety,
pages 597-602, Philadelphia, USA.

Slaven Bilac and Hozumi Tanaka. 2005a. Direct
combination of spelling and pronunciation infor-
mation for robust back-transliteration. In Alexan-
der Gelbukh, editor, Computational Linguistics
and Intelligent Text Processing, pages 413-424.
January.

Slaven Bilac and Hozumi Tanaka. 2005b. Improv-
ing back-transliteration by combining information
sources. In Keh-Yih Su, Junichi Tsujii, Jong-
Hyeok Lee, and Oi Yee Kwong, editors, Proc. 1st
International Joint Conference on Natural Lan-
guage Processing, pages 216-223, January.

Slaven Bilac, Timothy Baldwin, and Hozumi
Tanaka. 1999. Incremental Japanese grapheme-
phoneme alignment. In Information Processing
Society of Japan SIG Notes, volume 99-NL-209,
pages 47-54.

Slaven Bilac, Timothy Baldwin, and Hozumi
Tanaka. 2002. Bringing the dictionary to the
user: the FOKS system. In Proc. 19th Interna-
tional Conference on Computational Linguistics,
pages 85-91, Taipei, Taiwan.

Slaven Bilac. 2002. Intelligent dictionary interface
for learners of Japanese. Master’s thesis, Tokyo
Institute of Technology.

Alan W. Black, Kevin A. Lenzo, and Vincent Pagel.
1998. Issues in building general letter to sound
rules. In Proc. 3rd ESCA Workshop on Speech
Synthesis, pages 77-80, Jenolan Caves, Australia.

Jim Breen. 1995. Building an electronic
Japanese-English dictionary. Japanese Stud-
ies Association of Australia Conference

(http://www.csse.monash.edu.au/"jwb/
jsaa_paper/hpaper.html).

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation:
Parameter estimation. Computational Linguis-
tics, 19(2):263-311.

Kevin Knight and Jonathan Graehl. 1998. Ma-

151

chine transliteration. Computational Linguistics,
24(4):599-612.

Grzegorz Kondrak. 2003. Identifying complex
sound correspondences in bilingual wordlists. In
Alexander Gelbukh, editor, Proc. 4th Interna-
tional Conference on Computational Linguistics
and Intelligent Text Processing, pages 432-443,
Berlin. Springer-Verlag.

Christopher D. Manning and Hinrich Schiitze. 2000.
Foundations of Statistical Natural Language Pro-
cessing. MIT Press, Cambridge, Massachusetts.

V. Pagel, K. Lenzo, and A.W. Black. 1998. Letter
to sound rules for accented lexicon compression.
In Proc. 5th International Conference on Spoken
Language Processsing, pages 252-255.

Eric Rosen. 2003. Systematic irregularity in
Japanese rendaku: How the grammarmediates
patterned lexical exceptions. Canadian Journal
of Linguistics, (48):1-37.

T. Sejnowski and C. Rosenberg. 1987. Parallel net-
works that learn to pronounce English text. Com-
plex Systems, 1:145-168.

Richard Sloat. 1996. Multilingual text analysis for
text-to-speech synthesis. Natural Language Engi-
neering, 4(2).

Timothy J. Vance. 1987. An Introduction to
Japanese Phonology. SUNY Press, New York.
Jianna Jian Zhang, Howard J. Hamilton, and Nick J.
Cercone. 1999. Learning english grapheme seg-
mentation using the iterated version space algo-
rithm. In Andrzej Skowron and Zbigniew W. Ras,
editors, Proc. 11th International Symposium on
Methodologies for Intelligent Systems, Warsaw,

Poland. Springer-Verlag.

	Evaluating the Utility of Appraisal Hierarchies as a Method for Sentiment Classification

