
Proceedings of the Australasian Language Technology Workshop 2005, pages 96–104,
Sydney, Australia, December 2005.

Formal Grammars for Linguistic Treebank Queries

Mark Dras
Centre for Language Technology

Macquarie University
madras@ics.mq.edu.au

Steve Cassidy
Centre for Language Technology

Macquarie University
Steve.Cassidy@mq.edu.au

Abstract

There has been recent interest in looking at what

is required for a tree query language for linguis-

tic corpora. One approach is to start from exist-

ing formal machinery, such as tree grammars and

automata, to see what kind of machine is an ap-

propriate underlying one for the query language.

The goal of the paper is then to examine what is

an appropriate machine for a linguistic tree query

language, with a view to future work defining a

query language based on it. In this paper we

review work relating XPath to regular tree gram-

mars, and as the paper’s first contribution show

how regular tree grammars can also be a basis for

extensions proposed for XPath for common lin-

guistic corpus querying. As the paper’s second

contribution we demonstrate that, on the other

hand, regular tree grammars cannot describe a

number of structures of interest; we then show

that, instead, a slightly more powerful machine

is appropriate, and indicate how linguistic tree

query languages might be augmented to include

this extra power.

1 Introduction

There has been recent interest in looking
at what is required for a query language
for annotated linguistic corpora (Lai and
Bird, 2004). These corpora are used in a
range of areas of natural language processing
(NLP)—parsing, machine translation, and so
on—where they form the basis of training
data for statistical methods; and also in lin-
guistics, where they are used to extract ex-
amples of particular phenomena for analy-
sis and testing of hypotheses. As noted by
Lai and Bird, the prototypical hierarchical
linguistic annotation is the syntax tree, and

consequently the type of query language that
is of interest is a tree query language.

One approach to deciding what is required in
a tree query language, taken by Lai and Bird
(2004), is to examine and compare a range
of existing ones: for example, TGrep2 (Ro-
hde, 2001), TIGERSearch (König and Lez-
ius, 2001), or Emu (Cassidy and Harrington,
2001). One of their goals is to understand
better the formal properties required of query
languages.

It has been noted in a number of places
that treebank querying is in essence a spec-
ification of a tree pattern, which matches
against the desired trees in the treebank cor-
pus (Abiteboul, 1997). These tree patterns
can be described by existing formal machin-
ery such as tree grammars and automata.
An approach complementary to the one men-
tioned above is thus to examine the extent
to which this formal machinery is adequate
for describing tree patterns relevant for the
sorts of queries of interest in NLP or linguis-
tics, and then to link this to a query lan-
guage. A reason for being interested in this
link between tree query languages and for-
mal machinery is that standard results are
available for these latter. For example, an
algorithm for recognition exists that is linear
in the number of nodes in the tree and the
size of the automaton; it is decidable whether
the set of matches will be empty; and so on
(Comon et al., 1997). Further, there is the
promise of the availability of standard tools
and efficient techniques that could be used by
a tree query language. This is the case for
formal machines over strings (for example,
the library of finite-state string transducers

96

of Mohri (1997)), although not yet for trees.

A number of researchers have looked at this
complementary approach. One alternative is
to design from scratch a tree query language
derived from a tree grammar or automaton;
this is taken by, for example, Chidlovskii
(2000). Another is to relate an existing query
language to a formal machine: Murata et al.
(2000) present a taxonomy of XML schema
languages using formal language theory.

In this paper, we follow the second of these
alternatives. Existing work, mostly focussed
on XML, has looked only at regular tree
grammars and automata for modelling query
languages; we examine the extent to which
this is the case for linguistic treebanks, and
what other machinery might be appropriate
for a linguistic tree query language. We ar-
gue that while regular tree grammars might
be satisfactory for a querying a broad range
of phenomena, not all queries over trees rep-
resenting natural language can be based on
a regular tree grammar. This is a structural
analogue of the work of Shieber (1985), which
showed that natural language as a string lan-
guage cannot be generated by a context-free
grammar, which corresponds at the tree level
to a regular tree grammar.

In Section 2 we give the definition of regu-
lar tree grammars, along with an approach
used to relate them to XPath. In Section 3
we look at extensions to XPath that Cassidy
(2003) argues are necessary for linguistic cor-
pus querying, and show that these can be
captured by regular tree grammars. In Sec-
tion 4, however, we present some examples
from Dutch from the work of Bresnan et al.
(1982) to show that not all desired queries
can be represented by regular tree grammars,
and examine the question of what strong gen-
erative capacity is necessary in a tree gram-
mar for representing natural language. Sec-
tion 5 gives the definition of a more power-
ful grammar, the context-free tree grammar,
and shows how this can describe queries re-
lated to the Dutch instance, along with what
properties a query language based on these
might have. Finally, Section 6 concludes.

2 Regular Tree Grammars

Regular tree grammars (RTGs) are in essence
those trees whose paths are defined by reg-
ular grammars. Comon et al. (1997) pro-
vide an introduction to necessary concepts
in tree grammars, along with well known
results such as that the string languages
yielded by RTG trees are the context-free
languages. In their treatment they divide
tree representations into two types: those for
ranked trees (that is, where each symbol has
a fixed number of children, with this num-
ber constituting the rank of the symbol), and
those for unranked trees. XML schema lan-
guages typically use unranked trees, so we
adopt, slightly modified, the definitions of
these from Brüggemann-Klein et al. (2001)
and Murata et al. (2000).

A regular tree grammar is a 4-tuple G =
(Σ, N, P, S) such that

• Σ is a finite set of terminal symbols;

• N is a finite set of nonterminal symbols;

• P is a finite set of productions of the
form X → a(R), where X ∈ N , a ∈ Σ,
and R is a regular expression over N∪Σ;
and

• S is the start symbol, S ∈ N .

Derivation ⇒ (with transitive closure
∗
⇒) is

defined in the usual way, with nonterminals
symbols rewritten by means of production
rules, starting from the start symbol S. ε is
the conventional null terminal symbol. The
set of trees generated by G is L(G).

Example 2.1 Let G1 = (Σ, N, P, S) such
that Σ = {a, b}, N = {S,X}, and P = {S →
a(aSa), S → a(bXb), X → b(bXb), X → b}.
A sample derivation is given in Figure 1.
L(G1) is thus the set of ternary-branching
trees over the symbols a and b, where all
nodes to a certain depth D are a nodes, and
all below are b nodes.

To relate this to a query language, we now re-
view the approach presented in Wood (2003)
to relate these regular tree grammars to

97

S
∗
⇒ a

a a

b X b

a

∗
⇒ a

a a

b b

b b b

b

a

Figure 1: Derivation for RTG G1

XPath (XPath, 1999). XPath is a lan-
guage for selecting nodes from XML docu-
ment trees, and is thus an important part of
XSLT and XQuery. Expressions in XPath in
themselves can be seen as simple queries over
trees.

An XPath expression is a mapping from a
node (the context node) to the set of all nodes
reachable by the specified path. A path ex-
pression is written as a series of steps where
each step defines the axis used to reach new
nodes and a node test used to restrict the set
of nodes reached along the axis. Axes in-
clude child, descendent, following, attribute

and self. Node tests consist of two parts: a
restriction on the element name and an op-
tional predicate expression. Other features,
such as built-in functions, are also allowed.
Notationally, a null axis stands for the child
axis, // the descendent axis, the wild card *
any node label, and [] a predicate expression.
The full XPath expression definition is fairly
complex, and can be found at XPath (1999);
here we give an example.

Example 2.2 [From Wood (2003)] The
XPath query a//b[∗/i]/g selects nodes la-
belled with g (called g-nodes for short) that
are children of b-nodes, such that the b-nodes
are both descendants of the root a node and
have an i-node as a grandchild. In the left-
hand tree in Figure 2, these would be the
nodes in bold font. (The return value of the
XPath expression would be the node g, but
here we are only concerned with the trees
that would be matched.)
The possibility of arbitary functions for node
tests means that XPath can be augmented to
be arbitrarily powerful. To investigate ques-
tions of formal power, then, only subsets of
XPath are examined. Wood’s paper notes
that, for this reason, a number of other re-

b

c a

c

b

d

i

g

d

a

...

b

*

i

g

Figure 2: Tree matching a//b[∗/i]/g, and
corresponding tree pattern

searchers have been interested in the proper-
ties of different fragments of XPath, denoted
XP{[]}, XP{[],∗} and XP{[],∗,//}, depending on
which XPath constructs are included in the
fragment. The work of Wood himself is on
the fragment XP{[],∗,//} and the question of
whether the containment problem—whether
one query is subsumed by another—under a
Document Type Definition can be decided
in the complexity class ptime. To demon-
strate that this is the case he conceives of
XPath queries as tree patterns (Abiteboul,
1997; Deutsch et al., 1999), which can be de-
scribed by regular tree grammars. For exam-
ple, the XPath query of Example 2.2 could
be pictured as the tree pattern on the right
in Figure 2, where the dotted line indicates
non-immediate dominance.

An RTG then describes all trees matching
this tree pattern. In order to define this
RTG, Wood defines some shorthand nota-
tion, which we will also adopt. For an alpha-
bet Σ = {a1 , . . . , ak}, we write n → Σ(r) for
the set of productions {n → a1 (r), . . . , n →
ak (r)}.

In order to generate an arbitrary tree over Σ,
we define a nonterminal nΣ by the shorthand
production nΣ → Σ((nΣ)∗).

Example 2.3 For the query Q = a/b over
alphabet Σ, the productions for the corre-
sponding RTG are

na → a((nΣ)∗ nb (nΣ)∗)
nb → b((nΣ)∗)

An additional shorthand is to compress the
ordering of siblings implicit in RTGs. Each
permutation of children at a node would re-
quire a separate production, so as shorthand

98

the & symbol is used: a&b represents ab and
ba (a, b ∈ Σ).

Example 2.4 The productions from the
query a[b][c] are

na → a((nΣ)∗ &nb &(nΣ)∗ &nc &(nΣ)∗)
nb → b((nΣ)∗)
nc → c((nΣ)∗)

Example 2.5 The productions for the
query a//b are

na → a((nΣ)∗ nb (nΣ)∗)
nb → b((nΣ)∗)
nb → Σ((nΣ)∗ nb (nΣ)∗)

Wood then defines the following procedure
for constructing an RTG G from a query Q,
given an alphabet Σ = {a1 , . . . , ak , ∗} and Q
in XP{[],∗,//}. First, each node in Q is num-
bered uniquely, with the root node numbered
1. Then G is given by (Σ, N, P, n1), where
N = {n1 , . . . , nm , nΣ}, and P is constructed
inductively as follows.

1. If node i in Q is a leaf, then P includes
ni → aj ((nΣ)∗) if i has label aj ∈ Σ, or
ni → Σ((nΣ)∗) if i has label *.

2. If node i in Q has child nodes j1 , . . . , jm ,
then P includes ni → al ((nΣ)∗ &nj 1 &
(nΣ)∗ & . . . &(nΣ)∗ &njm &(nΣ)∗) if i
has label al ∈ Σ, or
ni → Σ((nΣ)∗ &nj 1 &(nΣ)∗ & . . .
&(nΣ)∗ &njm &(nΣ)∗) if i has label *.

3. If node i in Q is connected to its parent
by a descendent edge, then P includes
ni → Σ((nΣ)∗ ni (nΣ)∗)

3 XPath Extensions and RTGs

Cassidy (2003) presented some extensions to
XPath, based on the requirements of typi-
cal linguistic queries. An example is that of
finding matches for a given syllable structure:
“Find sequences of any number of consonant
phonemes followed by a single vowel follow-
ing by any number of consonants”. This
would require a regular expression (C+VC+)
over the /following axis. Under the cur-
rent definition of XPath, it is not possible

to specify regular expressions over axes; nor
is it possible to specify more complex defi-
nitions of where conditions on nodes should
be applied. Cassidy consequently specifies
an extension that allows this, which has the
following components:

axis This is as for the axes in the standard
XPath definition.

step This determines how many steps
should be taken along the axis, and takes
the form of a list of positive integers or a
special value inf. A path length is allowed
if it matches one of the integers in the list;
any path length is allowed if only the value
inf is given; path lengths greater than the
highest integer are allowed if the list contains
both integers and the value inf. For exam-
ple, [2, 3, 4] allows paths only of lengths 2, 3
or 4; [1, 10, inf] allows paths of length 1 or
of length greater than 10.

condition This is a general boolean condi-
tion on nodes in the same sense as XPath.

where This specifies where on the path the
condition must hold, via a list of positive in-
tegers or the special values inf or end. An
integer in the list means that the condition
is applied to that node; inf means that the
condition must hold for all nodes in the path;
end means that the condition applies to the
final node on the path. For example, the list
[1, 2, end] would find paths where the condi-
tion was satisfied by the first, second and last
nodes on the path.

A proposed syntax for this, in keeping with
the XPath syntax, would be

/axis{step}::condition::{where}

The step and where components would de-
fault to their XPath values (1 and end re-
spectively).

Example 3.1 Cassidy gives an example
for the C+VC+ query which uses the
/following axis. An analogous example us-
ing the axes already presented in Section 2
would be one to match trees with a chain of
VP nodes followed immediately below by a
chain of NP nodes, such as the one in Fig-
ure 3. Such a query could be expressed as

99

S

NP VP

Adv VP

Adv VP

V NP

NP PP

Figure 3: Tree with sequence of VPs and NPs

/child{0,inf}::VP::{0,all}

/child{0,inf}::NP::{0,all}

The question is then, Can this extension be
represented by RTGs? The intuition is that
it can—the essence of this aspect of the ex-
tension is to allow regular expressions over
paths, which is also the essence of RTGs.
We demonstrate this below by giving a con-
struction of an RTG for each extended XPath
query. As with the construction in Sec-
tion 2, we will look at just a restricted sub-
set of this XPath extension: axis /child and
/descendent (which is in fact just an infinite
/child); step as defined above; condition

only labels on nodes, or *; and where as
above. We call this XP-ext.

Example 3.2 The query in Example 3.1
would be represented by the RTG
({VP,NP, ∗}, {nS , nV , nN }, P, nS}), where
P is the set of productions

nS → Σ((nΣ)∗ nV (nΣ)∗)
nV → VP((nΣ)∗ nV (nΣ)∗)
nV → VP((nΣ)∗ nN (nΣ)∗)
nN → NP((nΣ)∗)
nN → NP((nΣ)∗ nN (nΣ)∗)

To derive an RTG corresponding to a query
in XP-ext, we identify the corresponding tree
pattern(s). First, to allow regular expres-
sions over paths in tree patterns, we make
a further notational extension, either adding
the symbol c next to the non-immediate
dominance link in the tree pattern, to indi-
cate that the condition holds over the non-
immediate dominance link, or the symbol ∗
if it does not.

Now, we need to look at two separate cases.
The first case is the general one: in aim-
ing only to match sets of trees by tree pat-
terns, only one tree pattern is generally nec-
essary, regardless of the number of elements
specified in the step and where components.
This is because although one pattern tree
might be expected for each step value, in
fact one describing the smallest step suffices,
as it subsumes any other. For example, in
the query /child{2,4}::S::{2,4}, any tree
which matches the appropriate pattern tree
of height 4 will match the pattern tree of
height 2. Note that these different steps and
wheres are differentiated with respect to the
XPath return values; however, that is beyond
the scope of this paper, which concerns itself
only with trees matched.

The second case deals with the specific case
of where value end; the subsumption rela-
tionship does not hold here. For example,
consider the query /child{2,4}::S::{end}
over trees consisting of a single path. There
will be trees where the end of the path (step)
of length 2 (matching the label S) do not have
an S node at the end of the path of length 4,
and vice versa; that is, there is no subset re-
lation between the sets of trees specified for
steps of lengths 2 and 4.

We define these two cases below. In these
definitions, we take axis /child and condi-

tion (i.e. node label) c.

Case 1 For query Q with step

[i1 , . . . , in , inf] (i1 < . . . < in), and where

[j1 , . . . , jm , inf] (j1 < . . . < jm < inf),
we construct a tree pattern of height
ip , where ip is the smallest element of
[i1 , . . . , in , inf] with label c for each node jp

(p < m, jp < ip). If ip is inf, we label the
non-immediate dominance edge c if where

contains inf, * otherwise.

Case 2 For query Q with step

[i1 , . . . , in , inf] (i1 < . . . < in), and
where [end], we construct one tree pattern
for each element of step, with the last node
in each tree pattern labelled c, and any
non-immediate dominance edge labelled ∗.

Example 3.3 The query in XP-ext

100

*

S

*

... (S)

S

Figure 4: Pattern tree for Example 3.3

/child{inf}::S::{1,3,inf} would give
the pattern tree in Figure 4.

Our construction for an RTG is then as for
the construction in Section 2, but with part
3 replaced by with 3’:

3’ If node i in Q is connected to its par-
ent by a non-immediate dominance edge
labelled with a ∈ Σ, then P includes
ni → a((nΣ)∗ni(nΣ)∗) or if unlabelled,
then P includes ni → Σ((nΣ)∗ni(nΣ)∗)

4 Non-Regular Queries

However, some queries that are of interest to
(computational) linguists are not able to be
expressed by RTGs. There was much discus-
sion in the mid- to late-twentieth century re-
garding whether natural languages could be
described by context-free (string) grammars
(CFGs). A fairly common belief was that
they could not be, accompanied by attempts
to prove this; Pullum and Gazdar (1982) re-
futed these earlier arguments, and it was not
definitively shown that natural language as a
string language was not context-free until the
work of Shieber on Swiss German (Shieber,
1985).

Bresnan et al. (1982), in addition, made
an argument based on syntactic structure,
using the example of Dutch. We re-
present their argument, where they show
that an RTG cannot describe this kind of
structure—which obviously has some linguis-
tic interest—and hence neither can any tree
query language based on it. We then con-
sider what formal tree machine is minimally
needed for describing natural language.

Cross-serial dependencies occur when de-
pendencies in a sentence are interleaved

with each other, such that in a string
a1 a2 . . .anb1 b2 . . .bn there are dependencies
between elements ai and bi (i ∈ {1 . . . n}).
A well known example from Dutch, given in
Bresnan et al. (1982), is in Figure 5.

Pullum and Gazdar (1982) showed that it
was possible to describe the string language
using a CFG, but noted that the associated
structure would not necessarily be useful.
Bresnan et al. (1982) then comprehensively
investigated what structures would be appro-
priate on linguistic grounds. One proposal
they considered was for a flat structure of
NPs, with right-branching VPs, as in the left-
most tree of Figure 5, with evidence for the
right-branching VPs coming from possibili-
ties of conjunctions in Dutch. However, they
noted that the sequence of NPs has more con-
stituent structure than indicated in the left-
most tree of Figure 5, and conclude that the
structure in the centre of Figure 5 is the one
that is consistent with the data. They note
that this proposed structure should be un-
controversial, as it embodies only predicate-
argument relations, rather than any aspects
of syntax whose representations may be more
open to question.

They use a pumping lemma for regular tree
languages to demonstrate that sets of these
sorts of trees from Figures 5 cannot be gen-
erated by RTGs. Comon et al. (1997) give
a more precise definition, but broadly, for
any tree T of height greater than some con-
stant k in a tree language L, there is a non-
trivial segment of T that can be ‘pumped’
in a manner analogous to in the pumping
lemma for regular string grammars; and any
tree formed from T with an arbitrary num-
ber of these segments inserted appropriately
will also be in L. In the case of the centre
tree of Figure 5, there is no segment of the
tree that can be chosen to be pumped that
will maintain equal numbers of NPs and Vs
(that is, specifying the same tree language).
Roughly speaking, there cannot be counting
or matching of numbers of internal symbols
in tree patterns.

We note here that there is an additional pos-
sibility that they do not discuss that is also

101

consistent with the data, differing only in the
placement of the subtree headed with the V ′;
this is the rightmost tree in Figure 5. The
same pumping lemma shows that the set of
these trees also cannot be generated by an
RTG.

5 Context-Free Tree Grammar

What, then, can generate these sets of trees?
One possibility is a context-free tree gram-
mar (CFTG). The basic idea of these is that,
whereas trees generated by RTGs have regu-
lar paths, CTFGs have context-free paths.

CFTGs were introduced in Rounds (1970).
We do not have space for a full formal pre-
sentation of them, and we would also note
that unlike the RTGs defined above they are
defined over ranked trees. However, here is
a brief definition, along with an example.
A context-free tree grammar G is a 4-tuple
(F,Φ, P,K0) where F is a finite ranked al-
phabet; Φ = {K0 ,K1 , . . . ,Kn} is a finite
ranked alphabet of nonterminals; P is the
set of production rules, a finite set of pairs
(Ki (x1 , . . . , xm), tx), where i = 0, . . . , n,
K i ∈ F , xi are variables, and tx is a tree
over F , Φ and variables xi ; and K0 is the
initial nonterminal.

An application of a production rule to a tree
T involves choosing a nonterminal Ki with
m children, taking a rule with lefthand side
Ki (x1 , . . . , xm), identifying the m subtrees
of Ki in T with the variables x1 , . . . , xm ,
and replacing the chosen subtree of T rooted
in Ki with the righthand side of the rule
along with appropriately substituted vari-
ables x1 , . . . , xm .

No CFTG is possible for the leftmost tree
of Figure 5, as symbols are ranked, and
that tree would require an infinite number
of ranked symbols with label S to describe
the unbounded number of children NP.

A CFTG to describe the centre tree of Fig-
ure 5 would be G = (F,Φ, P,K0), where
F = {S,NP,VP,V’}, Φ = {K0 ,K1 }, and P
is the set of productions given in Figure 6.

A CFTG to describe the rightmost tree of
Figure 5 would be G′ = (F,Φ, P ′,K0), where

K0 → S

NP K1

NP VP

NP

V’

V1 V’

V2 V’

V3

K1

x1 x2 x3

→ K1

x1 VP

NP x2

V’

V x3

K1

x1 x2 x3

→ VP

x1 x2 x3

Figure 6: CFTG for cross-serial option 2

K0 → S

NP VP

K1

V’

V

K1

x1

→ VP

NP K1

V’

V x1

K1

x1

→ VP

NP VP

V’

V x1

Figure 7: CFTG for cross-serial option 3

F and Φ are as for G above, and P ′ is the
set of productions in Figure 7.

In essence, CFTGs allow ‘counting’ through-
out a tree—in the examples above, the counts
of NPs and Vs match—in the same way
as CFGs allow counting in a string. Thus
CFTGs might be a suitable backbone for a
tree query language. However, they are not
computationally very attractive. Just as the
string languages yielded by RTGs are the
context-free languages, the string languages
yielded by CFTGs are the indexed languages,
which include exponentially increasing lan-
guages such as {a2n

|n ≥ 1} that are not a
feature of any human language.

However, the sets of productions P and P ′

are actually quite different. It is straight-
forward to demonstrate that those in P ′ are
in fact spinal-formed under the definition
of Fujiyoshi and Kasai (2000). In essence,
a spinal-formed CFTG disallows duplication
of counts along different paths (as in the
duplicate counts of NPs and Vs in sepa-
rate subtrees of the centre tree of Figure 5).
Spinal-formed CFTGs form a proper sub-
set of CFTGs with much restricted power;
interestingly, their string languages have
been proved by Fujiyoshi and Kasai (2000)
to be the class of mildly context-sensitive
languages, and recent work (Fujiyoshi and
Kawaharada, 2005) has included promising

102

(1) . . . dat
. . . that

Jan
Jan

Piet
Piet

Marie
Marie

de
the

kinderen
children

zag
see-past

helpen
help-inf

laten
make-inf

zwemmen
swim-inf

. . . that Jan saw Piet help Marie make the children swim

S

NP1 NP2 . . . V’

V1 V’

V2 V’

V3 . . .

S

NP1 VP

NP2 VP

NP3 . . .

V’

V1 V’

V2 V’

V3 . . .

S

NP1 VP

NP2 VP

NP3 . . .

V’

V1 V’

V2 V’

V3 . . .

Figure 5: Proposals for cross-serial dependencies

results on recognition complexity.

This rightmost tree of Figure 5, then, estab-
lishes that a language to query trees repre-
senting the syntax of natural language re-
quires an underlying tree machine beyond
RTGs, but not necessarily beyond the power
of spinal-formed CFTGs.

An additional result of Fujiyoshi and Kasai
(2000) is the definition of a Linear Pushdown
Tree Automaton (L-PDTA) that recognises
exactly the class of trees generated by spinal-
formed CFTGs. These are similar to the au-
tomata that recognise the tree sets of RTGs,
but have a non-duplicable stack in operation
as the automaton walks a path of a tree; that
is, the stack can only be passed along a single
branch of the tree.

This suggests that a similar mechanism
might be appropriate for a tree query lan-
guage that would allow limited counting. Us-
ing the notation of Section 3, we might have
a query to find trees with (not necessarily
balanced) NPs and Vs with the structure of
the rightmost tree of Figure 5) as follows:

/child{0,inf}::VP[/child::NP]::{0,all}
/child::VP
/child{0,inf}::V[/child::V’]::{0,all}

We would then extend this so that
the number of nodes matching
/child{0,inf}::VP[/child::NP]::{0,all}
would be one less than
the number matched by
/child{0,inf}::V[/child::V’]::{0,all}

in order to match only those trees with
appropriately paired NPs and Vs.1 Nota-
tionally, this might be represented as:

/child{X=|{0,inf}|}::VP[/child::NP]::{0,all}
/child::VP
/child{X=|{0,inf}|}::V[/child::V’]::{0,all}

where X is a variable containing the count of
nodes matched by the particular components
of the query, and |Y | represents the number
of steps actually matched for list of steps Y .

To restrict this to match only those trees de-
scribable by spinal-formed CFTGs, passing
counts down through predicate expressions,
which would in effect permit stack duplica-
tion, is disallowed (e.g. VP[/child::NP]).

However, this is just an indication of the form
that an XPath-like query language based on
a spinal-formed CFTG might take, and is in-
tended only to be the starting point for fu-
ture work.

6 Conclusion

The aim of this paper has been to examine
what formal machinery is necessary for lin-
guistic tree query languages. Existing tree
query languages are typically related to reg-
ular tree grammars, although these query
languages are almost exclusively for non-
linguistic XML documents. The first con-
tribution of the paper has been to show

1The topmost NP in the tree, under the S, is not

matched by the query.

103

that regular tree grammars can be used as
the basis for a range of proposed extensions
to XPath motivated by linguistic considera-
tions, for very typical sorts of queries such
as those representing a search for a regular
expression over axes. The paper’s second
contribution has been to demonstrate that
regular tree grammars cannot, however, be
a basis for some queries of linguistic inter-
est. We have shown that machines with at
least the power of spinal-formed context-free
tree grammars, with their limited ability to
count, can describe those constructions that
are beyond RTGs, and made initial sugges-
tions on how this ability to count could be
incorporated into a query language.

There is much scope for future work in this
direction. To deal with XPath return val-
ues we are interested in transducers based
on (subtypes of) context-free tree grammars
which have not yet been defined; many of the
properties of the formal mechanisms remain
to be investigated; and, most relevant to this
paper, it is an open question as to how pre-
cisely a query language can be defined based
on this mechanism.

References

Serge Abiteboul. 1997. Querying Semi-
Structured Data. In Foto Afrati and Phokion
Kolaitis, editors, Database Theory—ICDT’97,
pages 1–18. Springer-Verlag.
Joan Bresnan, Ronald Kaplan, Stanley Peters,
and Annie Zaenen. 1982. Cross-serial Dependen-
cies in Dutch. Linguistic Inquiry, 13(4).
Anne Brüggemann-Klein, Makoto Murata, and
Derick Wood. 2001. Regular tree and regular
hedge languages over unranked alphabets. Tech-
nical Report HKUST-TCSC-2001-05, Hong Kong
University of Science and Technology.
Steve Cassidy and Jonathon Harrington. 2001.
Multi-level annotation in the Emu speech
database management system. Speech Commu-
nication, 33(1–2):61–77.
Steve Cassidy. 2003. Generalizing XPath for di-
rected graphs. In Proceedings of Extreme Markup
Languages 2003.
Boris Chidlovskii. 2000. Using Regular Tree Au-
tomata as XML schemas. In Proceedings of IEEE
Advances in Digital Libraries, pages 89–104.
H. Comon, M. Dauchet, R. Gilleron,
F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi. 1997. Tree Automata Tech-
niques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata.
Release October 1st 2002.
Alin Deutsch, Mary Fernandez, Daniela Florescu,
Alon Levy, and Dan Suciu. 1999. A Query Lan-
guage for XML. In Proceedings of the 8th Inter-
national World Wide Web Conference, pages 77–
91.
A. Fujiyoshi and T. Kasai. 2000. Spinal-Formed
Context-Free Tree Grammars. Theory of Com-
puting Systems, 33:59–83.
A. Fujiyoshi and I. Kawaharada. 2005. Deter-
ministic Recognition of Trees Accepted by a Lin-
ear Pushdown Tree Automaton. In Proceedings
of the Tenth International Conference on Imple-
mentation and Application of Automata.
Esther König and Wolfgang Lezius. 2001. The
TIGER language—a description language for
syntax graphs. Part 1: User’s guidelines. Tech-
nical report, IMS, University of Stuttgart.
Catherine Lai and Steven Bird. 2004. Query-
ing and Updating Treebanks: A Critical Sur-
vey and Requirements Analysis. In Proceedings
of the Australasian Language Technology Work-
shop 2004.
Mehryar Mohri. 1997. Finite-state transducers
in language and speech processing. Computa-
tional Linguistics, 23(2):269–311.
Makoto Murata, Dongwon Lee, and Murali Mani.
2000. Taxonomy of XML Schema Languages us-
ing Formal Language Theory. In Proceedings of
Extreme Markup Languages 2000.
Geoffrey Pullum and Gerald Gazdar. 1982. Nat-
ural languages and context-free languages. Lin-
guistics and Philosophy, 4:471–504.
Douglas Rohde, 2001. TGrep2 User Manual.
William Rounds. 1970. Mappings and Gram-
mars on Trees. Mathematical Systems Theory,
4:257–287.
Stuart Shieber. 1985. Evidence against the
context-freeness of natural language. Linguistics
and Philosophy, 8:333–343.
Peter Wood. 2003. Containment for XPath Frag-
ments under DTD Constraints. In Proceedings
of the 9th International Conference on Database
Theory, pages 300–314.
XPath. 1999. XML Path Language
(XPath), Version 1.0. Available on:
http://www.iw3.org/TR/xpath.

104

	Efficient Knowledge Acquisition for Extracting Temporal Relations

