
Querying and Updating Treebanks:
A Critical Survey and Requirements Analysis

Catherine Lai and Steven Bird
Department of Computer Science and Software Engineering

University of Melbourne, Victoria 3010, Australia
{clai,sb }@csse.unimelb.edu.au

Abstract

Language technology makes extensive use of hierarchi-
cally annotated text and speech data. These databases are
stored in flat files and manipulated using corpus-specific
query tools or special-purpose scripts. While the size of
these databases and the range of applications has grown
rapidly in recent years, neither method for managing the
data has led to reusable, scalable software. The formal
properties of the query languages are not well under-
stood. Hence established methods for indexing tree data
and optimizing tree queries cannot be employed. We
analyze a range of existing linguistic query languages,
and adduce a set of requirements for a reusable, scalable
linguistic query language.

1 Introduction

Corpora form the backbone of language technol-
ogy. However corpora usually need to be annotated
with structural information describing, for example,
syntax or phonology. Query languages are neces-
sary to extract useful information from these mas-
sive data sets. Moreover, annotated corpora require
thousands of hours of manual annotation to create,
revise and maintain. Query languages are also use-
ful during this process. For example, queries can be
used to find parse errors or to transform annotations
into different schemes.

However, the query languages currently available
for annotated corpora suffer from several problems.
Firstly, updates are not supported as query
languages focus on the needs of linguists searching
for syntactic constructions. Secondly, their
relationship to existing database query languages
is poorly understood, making it difficult to apply
standard database indexing and query optimization
techniques. As a consequence they do not scale
well. Finally, linguistic annotations have both a
sequential and a hierarchical organization. Query
languages must support queries that refer to both

of these types of structure simultaneously. Such
hybrid queries should have a concise syntax. The
interplay between these factors has resulted in a
variety of mutually-inconsistent approaches.

This paper aims to describe the query language
requirements for navigating and modifying struc-
turally annotated corpora. We focus on tree struc-
tured annotation. This entails sequential structure.

This paper is organized as follows. Section 2
surveys six linguistic tree querying languages and
where appropriate the data models they are based
on. The survey is the basis of the linguistic tree
query requirements presented in Section 3. We con-
clude in Section 4 with suggested areas for further
work.

2 Tree Models and Query Languages
The prototypical hierarchical linguistic annotation
is the syntax tree, an ordered tree where termi-
nals (leaves) contain the text of a sentence being
analyzed. Non-terminals represent syntactic cate-
gories, and the hierarchical organization represents
constituency. The leaf level is usually considered
immutable. The queries in Figure 1 have been cho-
sen to highlight the expressive capabilities of cur-
rent tree query languages.

A query language must be able to accurately
specify which subtrees to match in a corpus. This
means quantifying the existence of nodes and
succintly stating the relationships between them.
Q1 is a simple query based on the dominance
relation inherent in trees. As mentioned earlier,
however, the sequential ordering of nodes is also
an important factor. Q3 and Q4 demonstrate the
precision that is available for describing subtrees
constrained by both dominance and precedence
relations.

It is also desirable to specify subtrees by what
they do not contain. This requires some form of
negation. Q2 is a simple example of this type of

Q1. Find sentences that include the word ‘saw’.
Q2. Find sentences that do not include the word ‘saw’.
Q3. Find noun phrases whose rightmost child is a noun.
Q4. Find verb phrases that contain a verb immediately

followed by a noun phrase that is immediately fol-
lowed by a prepositional phrase.

Q5. Find the first common ancestor of sequences of a
noun phrase followed by a verb phrase.

Q6. Find a noun phrase which dominates a worddark
that is dominated by an intermediate phrase that
bears an L-tone.

Q7. Find an noun phrase dominated by a verb phrase.
Return the subtree dominated by that noun phrase
only.

Figure 1: Syntactic Queries for Comparing Tree Query
Languages

SBAR

WH-NP1

What

SQ

is NP-SBJ

Tim

VP

eating NP*T*-1

∅

Figure 2: Trace elements in Penn Treebank

query. Q5 contains an implicit negation: we need
to select the common ancestor that has no descen-
dant that is also a common ancestor of the nodes in
question. These queries also explore the interaction
between quantification and negation of nodes and
subtrees.

Linguistic query languages, in general, need to
be able to deal with heterogeneous data. Many
interesting queries fall on the interface of linguistic
fields. For example, Q6 requires both syntactic and
phonological data. This can be represented as two
trees that intersect at the word level (Cassidy and
Harrington, 2001).

Finally, trees can be large, and it is often unde-
sirable to return whole trees for which the query
tree matches a tiny fragment. Thus, we need a way
to specify what part of a query simply constrains
context, and what part should be returned. Q7 is a
simple test of a query language’s ability to control
output.

2.1 Penn Treebank and Tgrep2
Penn Treebank contains approximately 50,000
parse trees of Wall Street Journal text (Marcus et
al., 1994). Each parse is represented as an ordered
tree, and syntactic dependencies are indicated using

Q1. S << saw
Q2. S !<< saw
Q3. NP <- N
Q4 VP=vp << (V . (N >> =vp . PP >> =vp))
Q5. *=p << (NP=n .. (VP=v >> =p

!>> (* << =n >> =p)))
Q6.* Not expressible
Q7. VP << ‘NP

Figure 3: Tgrep2 Queries; Q5 is taken from (Rohde,
2001)

zero-width trace elements co-indexed with a full
noun phrase (cf. Figure 2).

Tgrep2 is a grep-like tool for this database
(Rohde, 2001), and all example queries can be
specified correctly except Q6 (cf. Figure 3).
Queries are nested expressions involving nodes and
relationships between nodes. Nodes are specified
using strings or regular expressions. Tgrep2
supports a large number of node relationships,
including immediate precedence:A immediately
precedesB (ie A . B) if the right corner of A
immediately precedes the left corner ofB in the
sentence on which the tree is built. A wildcard (*)
can be used for a node when there is no constraint
on its name. Node identifiers allow multiple
sub-expressions to refer to the same node (e.g. Q4).
Tgrep2 can specify non-inclusion or non-existence
(Q2, Q5).

Query execution uses a binary file representation
of the data, including an index on the words in the
trees. The top node in a query is first matched
and the rest of the tree is matched recursively, con-
strained by node relations. The output is a set of
human-readable subtrees. The subtree matched by
the first node mentioned in the query is returned by
default, but another return subtree can be specified
by the user as shown in Q7. This output cannot
be queried, since it must first be converted into the
binary format; i.e. Tgrep2 is not compositional.

Not all node relationships are primitive
(e.g. sibling relation ($)). However, dominates
type relations such as leftmost descendant (<<,)
cannot be derived. The depth of such a descendant
is unknown. Thus, the language could be greatly
simplified with a closure operator.

2.2 The TIGER Corpus and TIGERSearch

The TIGER corpus contains syntactically annotated
German newspaper text (Brants et al., 2002).
The syntax of German permitsdiscontinuous
constituents, which are represented in the corpus as
trees with crossing edges. TIGERSearch is a logic
and constraint programming approach to querying

Q1. #s:[cat="S"] & #l:[lex="saw"]
& #s >* #l

Q2.* #s:[cat="S"] & #l:[lex="saw"]
& #s !>* #l

Q3. #n1:[cat="NP"] & #n2:[pos="N"]
& (#n1 >* #n2) & (#n1 >@r #n3)
& (#n2 >* #n4)

Q4 #vp:[cat="VP"] & #v: [pos="V"]
& #np:[cat="NP"] & #pp:[cat="PP"]
& #vp >* #v & #vp >* #np
& #vp >* #pp & #v >@r #vr
& #np >@l #npl & #vr .1 #npl
& pp >@l ppl & npl .1 ppl

Q5.* #vp:[cat="VP"] & #np:[cat="NP"]
& (#x >* #v) & (#x >* #np)
& (#v .* #np)

Q6. Not expressible
Q7.* #vp:[cat="VP"] & #np:[cat="NP"]

$ (#vp >* #np)

Figure 4: TigerSearch Queries; (*) Queries are approxi-
mations and may not produce the correct output

these so-called “syntax graphs” (König and Lezius,
2001). Query graphs are built using two main
relations: immediate dominance (>) and immediate
precedence (.). Closures of these relations (>*
and .* respectively) and other node relations such
sibling ($) and left and right corners (>@l,>@r)
increase expressiveness. However, intersecting
hierarchies are not supported (Q6).

A precedesB (i.e. A .. B) if the left corner of
A precedes the left corner of B. Immediate prece-
dence means the distance between left corners is 1.
Queries requiring immediate precedence (e.g. Q4)
will not be correctly described using this relation.
Left and right corners can be used to define the
query we want (cf. fig 4). However, this mimics
the Tgrep2 precedence definition and may fail if the
syntax graph has crossing branches.

Nodes are implicitly existentially quantified
before the graph description. This means non-
inclusion in Q2 will fail unless the negated node
exists in the graph. The expression of Q5 is
incorrect as the non-existence of a lower common
ancestor cannot be established. The closest
approximation will include all common ancestors.
However, we can use the (somewhat unintuitive)
fact that a rightmost child of a node must dominate
the right corner of that node to formulate Q3.

The corpus of syntax graphs is indexed before
querying. This index contains inferred facts about
the corpus graphs with respect to TIGERSearch
relations and predicates. In effect, the corpus data
becomes a prolog fact database. The query proces-
sor attempts to unify elements of corpus graphs with

Q1. [Syntax=S ˆ Word=saw]
Q2.* Not expressible
Q3. end(Syntax=NP, Syntax=N)=1
Q4.* [Syntax=VP ˆ [Syntax=V ->

[Syntax=NP -> Syntax PP]]]
Q5.* [Syntax!=x ˆ [Syntax=NP -> Syntax=VP]]
Q6. [Syntax=NP ˆ

[Word=dark ˆ intermediate=L-]]
Q7.? [Syntax=VP ˆ #Syntax=NP]

Figure 5: Emu Queries

the query graph. Exhaustive search is avoided using
label based filtering and by re-ordering the query
graph traversal.

Matching syntax graphs are returned in their
entirety. This means output reduction of Q7 cannot
be done.

2.3 Emu Query Language

The Emu speech database system (Cassidy and Har-
rington, 2001) defines an annotation scheme involv-
ing temporal constraints of precedence and over-
lap. Emu annotations are stratified into levels; each
level is an interval structure, and elements on each
level overlap those on the same and on other levels.
The overlap relation is called dominance in the Emu
documentation, but it is a reflexive, symmetric and
non-transitive relation best understood as temporal
overlap. Given this approach to dominance, nodes
in an Emu structure can be “dominated” by multiple
parent nodes. Hence Emu claims to support multi-
ple intersecting hierarchies. Example Emu queries
are given in Figure 5.

Built in functionsstart() , end() , mid() and
position() allow expression of the positional
constraint in Q3. However lack of precision in
dominance and precedence relations is a problem
when dealing with syntax. Immediate dominance
is only expressible between the appropriate levels.
However, syntax trees do not easily split into such
identifiable levels. Precedence is only defined
for nodes on the same level. There is no way to
describe immediate precedence within a level.
Negated relations are not possible hence Q2 type
non-inclusion cannot be expressed either.

Each query only returns one node per match. The
target node can be specified by the user (Q7). How-
ever, this is unhelpful if structure is of interest. It
also prevents query composition. Query constraints
are tested in all possible match positions in the
structure. This is satisfactory for small data sets but
does not scale up well.

Q1. node: S
query: saw exists

Q2. node: S
query: !saw exists

Q3. node: NP
query: NP iDomsLast1 N

Q4.? node: VP
query: V iprecedes NP

and NP iprecedes PP
Q5.* Not expressible
Q6.* Not expressible
Q7. node: VP

query: exists NP
node: NP
query: exists *

Figure 6: CorpusSearch Queries

2.4 CorpusSearch

CorpusSearch was developed for the Penn-Helsinki
Parsed Corpus of Middle English, though it can
be used with any corpus annotated in the Penn
Treebank style. An interesting feature of this
language is that queries are limited in scope to
subtree rooted by a specific type of node. In Q1
exists asks that the word ‘saw’ exists in a subtree
rooted with an ‘S’. Surprisingly, the search function
(relation) dominates has been discontinued.
This means nested dominance queries cannot be
expressed. Precedence is only defined among
siblings which greatly restricts the number of
queries possible. Q4, for example, will miss many
hits.

Negation of dominance has the semantics
required for Q2. However,VP precedes !NP
will not match verb phrases that are rightmost
amongst their siblings. Search functions such
as iDomsLast exist to express this sort of
positional constraint instead. Wildcards can be
specified, however the lack of a dominance search
function means Q5 cannot be expressed. Multiple
domination, as in Q6, is not supported.

A striking feature of this language is that it
treats regular expressions over node names as
variable names. ThusA iprecedes B*|C and
B*|C iprecedes D describes a sequence of three
nodes, while A iprecedes B*|C and C|B*
iprecedes D describes two unrelated sequences,
each of two nodes.

CorpusSearch is compositional. This allows Q7
to be specified in two stages.

2.5 NiteQL

NiteQL extends the MATE workbench query
language Q4M (McKelvie et al., 2001) and has

Q1. ($s syntax) ($w word):
($w@orth=="saw") && ($s@cat=="S")

&& ($s ˆ $w)
Q2.*($s syntax) ($w word):

($w@orth=="saw") && ($s@cat=="S")
&& !($s ˆ $w)

Q3. ($np cat) ($w word) :
($np@cat=="NP") && ($w@pos=="N")

&& ($np ˆ1[-1] $w)
Q4. ($vp syntax) ($v word)

($np syntax) ($pp syntax):
($v@pos=="V") && ($np@cat=="NP")
&& ($pp@cat=="PP")
&& ($vp@cat=="VP")
&& ($v <>1 $np) && ($np <>1 $pp)
&& ($vp ˆ $v) && ($vp ˆ $np)
&& ($vp ˆ $pp)

Q5.*($vp syntax) ($np syntax) ($x syntax):
($vp@cat=="VP") && ($np@cat=="NP")
&& ($x ˆ $vp) && ($x ˆ $np)
&& ($np <> $vp)

Q6. ($s syntax) ($i intermediate)
($w word):

($s@cat=="NP") && ($i@tone=="L-")
&& ($w@orth=="dark")
&& ($s ˆ $w) && ($i ˆ $w)

Q7. (exists $vp syntax) ($np syntax):
($vp@cat=="VP") && ($np@cat=="NP")

&& ($vp ˆ $np)

Figure 7: NiteQL Queries

been released as part of the NITE XML Toolkit
(Heid et al., 2004). Queries consist of weakly typed
variable declarations followed by match conditions.
Matches are evaluated over attribute, structure and
time constraints. Precedence can be defined by the
application designer depending on the data model.

The queries in Figure 7 assume the model used
by Tgrep2. If crossing branches are permitted, and
the left corners precedence definition is used, then
NiteQL will behave like TIGERSearch instead.
Dominance and precedence relations can take
modifiers that provide more positional constraints.
In Q3, ˆ1 indicates immediate dominance and
[-1] indicates rightmost descendant. Any sibling
position at any level can be specified.

Like TIGERSearch, variables are existentially
quantified when declared so Q2 and Q5 cannot
be correctly expressed. Quantification (exists ,
forall) can be used in variable declarations.
However their main purpose is to suppress marked
in query output as used in Q7.

The NITE project encourages storage in standoff
XML. An XPath-like pointer relation enables the
formation of secondary (non-tree) edges between

Q1. /S[//_[@lex = ’saw’]]
Q2. /S[not //_[@lex = ’saw’]]
Q3. //NP{/N$}
Q4 //VP{V -> NP -> PP}
Q5.? //_{//NP --> VP}/

ancestor-or-self::*[1]
Q6.* Not expressible
Q7. //VP/NP

Figure 8: LPath Queries

nodes. These can also occur between separate hier-
archies. The final output is an XML document
listing pointers to matches in the corpus. This is
useful for searches during the annotation process.
NiteQL’s type system allows queries on intersecting
hierarchies as seen in Q6. Complex queries provide
compositionality and can be used to structure results
to some extent.

2.6 LPath

LPath is a path language for linguistic trees
extending XPath, with with an immediate
precedence and a scoping operator (Bird et
al., 2004). LPath queries can be translated into
SQL for efficient evaluation. The LPath versions
of the example queries are shown in Figure 8. The
LPath representation of Q5 follows from node set
selection in XPath. The positional predicate[1]
is applied as the ancestor axis is traversed. In
this case, only the first node inreverse document
order is selected. This is the first common ancestor
required by the query.

3 Requirements for Tree Query

Tree query languages need to be able to express
node relationships succinctly. The languages we
have surveyed needed more than dominance and
precedence relations to express the specialized rela-
tions invoked in the example queries. A reason-
able definition of immediate precedence is clearly
necessary. However, more is required than positive
descriptions. Non-inclusion queries such as Q2 and
Q5 could not be expressed in all languages.

3.1 Simple Navigation

Subtree Matching. A vital part of subtree match-
ing is accurate specification of the query tree. An
inventory of subtree description types is given in
Figure 9. Subtree description may also be facilitated
with a graphical interface that maps tree diagrams to
expressions in a query language. This is an attrac-
tive option for non-computer scientists and already
exists in tools such as TIGERSearch.

Immediate dominance:
A dominates B, A may dominate other nodes

Positional constraint:
A dominates B, and B is the first (last) child of A

Positional constraint with respect to a label:
A dominates B, and B is the last B child of A

Multiple dominance:
A dominates both B and C, but the order of B and C
is unspecified.

Sibling precedence:
A dominates both B and C, B precedes C; A domi-
nates both B and C, B immediately precedes C

Complete description:
A dominates B and C, in that order, and nothing else

Multiple copies:
A dominates B and B, and the two Bs are different
instances

Negation:
A does not dominate node with label B

Figure 9: Subtree Matching Queries

Returning subtrees. The query languages had
some capacity to constrain the output of a query as
was shown in example query Q7. However, only
NiteQL could choose specific nodes (as opposed
to subtree roots) to output. This sort of precise
reduction needs to be further supported.

Reverse navigation. Query specifications tend
to reflect top down, left to right tree navigation.
On the other hand, context can occur in any direc-
tion from a node. This is a problem for languages
such as Tgrep2 where graph description focuses on
one particular node at a time. Reverse relations,
such as ‘follows’, are implemented in Tgrep2 and
are necessary for queries such as Q5. However,
reverse relations have less value in a language like
TIGERSearch where the ordering of graph descrip-
tion is not important. In terms of expressiveness,
necessity of these relations depends on the query
structure.

However, reverse navigation is relevant for devel-
oping a matching strategy. For example, matching
an ancestor only requires nodes on the path from
the current node to the root. Strategies that allow
reduction of the search space need to be employed.

Non-tree navigation. Queries are not always
described in terms of edge traversal structure.
Queries are often specified over the sequence of
terminals (i.e. the text), regardless of hierarchical
organization. Example queries have shown that
this notion of sequential navigation needs to be
extended to non-terminal nodes, e.g. to permit
searching for sequences of one or more adjective

NP

Adj Adj N

(a) Flat Structure

NP

Adj NP

Adj N

(b) Chomsky Adjunction

Figure 10: Two Representations for Optional, Repeat-
able Constituents

S→ NP VP
VP → V NP
NP→ cats
NP→ mice
V → chase

(a) Phrase
Structure
Grammar

cats chase mice
NP chase mice
cats V mice
cats chase NP
NP V mice
NP chase NP
cats V NP
cats VP
NP VP
NP V NP
S

(b) Proper
Analyses

•
cats

NP 44

S

##

•
chase

V 44

V P

))•
dogs

NP 44 •

(c) Syntactic Chart

Figure 11: Immediate Precedence in Linguistic Trees

followed by a noun, regardless of the internal
organization of the noun phrase (cf. Figure 10).
All surveyed languages support some notion of
precedence though not all allow for immediate
precedence. Immediate precedence in a tree can be
conceived in terms of the “proper analyses” of early
generative grammar (Chomsky, 1963) or syntactic
charts, as shown in Figure 11.

3.2 Closures

The surveyed languages include closures of basic
relations such as dominance, precedence and sib-
ling precedence. These are necessary as distance
between nodes of interest can be arbitrarily large.
These are generally represented as separate rela-
tions in tree querying languages. However, closures
are required of more complicated structures that are
not handled currently.

We may wish to find parts of a corpus that fit
a particular grammatical theory. For example,
Chomsky adjunction in Figure 10 can be described
by the productions:NP → Adj NP , NP → N.
This translates to an LPath-like expression
(/NP[/Adj])*/N . Here closure is atomic and each
repetition involves a single step along some axis.
In general we would like to be able to express any
self-recursive ruleA → L1 · · · LnAR1 · · ·Rn using a
closure. In LPath this might possibly be specified
by (/A[<=Ln...<=L1, =>R1...=>Rn])+ .

Closures involving more than one step are also
required. For example, a path consisting of alter-
nating VP and S’s: (/VP/S)+ . Outside of tree
navigation we wish to find regular sequences such
as consonants and vowels:(->C->V)+ . Moreover
some structure may best be described using nested
closures, e.g.((->C)+->V)+ .

Q5 represents a class of queries that ask for the
first common ancestor of tree fragment. However,
negation semantics means this can only be speci-
fied in Tgrep2 and LPath. This problem may be
addressed more generally with the greedy matching
approach of regular expression processing. That is,
signal that we want the first match only. However,
this is not compositional.

3.3 Beyond ordered trees

Queries may need to extend beyond sentence
boundaries. For example, anaphoric arguments
may occur in previous sentences (Prasad et al.,
2004). If trees represent sentences and querying
is restricted to subtree matching this is a problem.
One solution is to include multiple sentences in
trees. However, this drastically increases the size
of trees. Query trees are generally very small (if
spread widely) so massive trees decrease filter
effectiveness during query processing and have a
bad effect on matching algorithms.

This presents a good case for querying over
ordered forests. In fact this is necessary when
querying the Verbmobil treebanks of spontaneous
speech (Hinrichs et al., 2000). Here discourse turns
are modelled to include repetitions, interjections,
disfluencies and sentence fragments. These are
represented as trees disconnected from surrounding
well-formed sentences. Trees can occur wrapped
in other trees as seen in Figure 12. VIQTORYA
(Steiner and Kallmeyer, 2002) is a query language
developed for these treebanks. However, this can be
considered a subset of the TIGERSearch language
so was not discussed in the survey.

Figure 12: Forest representation of the Verbmobil corpus
(Steiner and Kallmeyer, 2002)

There is a general need to move beyond single
tree searches and integrate different types of linguis-
tic data. Querying intersecting hierarchies has been
well motivated by the workbenches such as Emu
and the NITE project. There is also a need to query
over relational and structural data. (e.g. Switch-
board Treebank). We may want to match subtrees
depending on the attributes of a word stored else-
where (e.g. verb class in dictionary). Scope for
these types of queries needs to be included in query
language development.

Beyond this, there is a need to query non-tree
structure. For example, Penn Treebank and the
TIGER corpus includes secondary edges. It would
be useful to navigate these links to extract informa-
tion about the long range phenomena stored there.
This means a definite move from tree based models
which needs to be explored further.

3.4 Update

Curating a corpus of trees requires frequent
updates. Tree edits often describe restructuring of
constituents. For example, transforming structure to
(resp. from) a small clause representation involves
insertion (resp. deletion) of a common parent.
Changing annotation style to reflect X-bar theory
involves relabelling certainNPnodes toN’ . Another
useful transform is to reattach a phrasal adjunct
to a higher level node, which calls for a notion of
subtree movement.

Insertion, deletion and relabelling nodes are stan-
dard tree editing operations. However, linguistic
trees are more constrained than general trees. Free-
dom of movement of constituents almost always
depends on preserving the base text. Subtree dele-
tion is not allowed (except zero-width elements)
nor is re-ordering of leaves. Any subtree can only
legally move to a limited number of locations with-
out perturbing the text.

Subtree movement can be described in terms of
node insertion and deletion. However, this will be

extremely tedious for the user to specify as sub-
trees may be extremely large. Thus subtree move-
ment should appear as a basic operation. (Cotton
and Bird, 2002) present a tree edit operations all in
terms of node movement of a distinguished node.
The direction and surrounding structure determines
where the node is reattached. Further operations are
required to deal correctly with empty constituents.
All update operations should have inverses so edits
can be reversed.

Syntactically annotated corpora are often anno-
tated with respect to a particular grammar. These
grammars may be updated and annotations need to
be changed to reflect this. However, it is inefficient
to reannotate the entire corpus every time this hap-
pens. A useful update mechanism should be able
to compare grammars and then implement changes
only where necessary. The closures described pre-
viously will be useful here.

4 Conclusion

Several linguistic tree languages have been pro-
posed in earlier work, and we have investigated their
expressiveness and conciseness for a range of prac-
tical queries. Our survey has led us to propose
a number of requirements for any general-purpose
linguistic tree query language. They should permit
hierarchical and sequential navigation, including an
immediate precedence relation which cuts across
the hierarchy. They should go beyond simple sub-
tree matching to support a range of closures which
correspond to grammar fragments, and positive and
negative constraints on context. Whether as inter-
secting hierarchies or ordered forests, multiple tree
querying must also be developed further. Require-
ments for a tree update language derive from a need
to maintain the underlying text and present natural
edit operations to the user.

We have broached several topics which require
further investigation. Query languages incorporat-
ing variables, quantification, negation, and closures
need to be better understood. This can be done by
manually translating such queries to a language of
first order logic or modal logic, exploring the kinds
of nested quantification required, and consequences
for implementation. The existing, well-understood
relational and semi-structured query languages and
finite automata could play a similar role.

Query expressions which can be mapped to the
forwards and downwards subset of tree navigations
are amenable to implementation in a streaming pro-
cessor, opening the way for a true tree-grep tool
which is able to function in a pipeline mode on

unpreprocessed treebank files. Other areas of fur-
ther work include an exploration of an appropriate
typing system as used to navigate intersecting hier-
archies; investigation of boundaries for contextual
search; and the interaction of indexing and updates.

Acknowledgements

This research has been supported by an Australian
Postgraduate Award (Lai), and a US National Sci-
ence Foundation grant number 0317826Querying
Linguistic Databases, to the University of Pennsyl-
vania (Bird).

References

S. Bird, Y. Chen, S. Davidson, H. Lee, and
Y. Zheng. 2004. LPath: A path language for lin-
guistic trees. Unpublished manuscript.

S. Brants, S. Dipper, S. Hansen, W. Lezius, and
G. Smith. 2002. The TIGER Treebank. InPro-
ceedings of the Workshop on Treebanks and Lin-
guistic Theories Sozopol.

S. Cassidy and J. Harrington. 2001. Multi-level
annotation in the Emu speech database man-
agement system.Speech Communication, 33(1-
2):61–77.

N. Chomsky. 1963. Formal properties of gram-
mars. In D. Luce, R. Bush, and E. Galanter,
editors,Handbook of Mathematical Psychology,
volume 2, pages 323–418. New York: Wiley and
Sons.

S. Cotton and S. Bird. 2002. An Integrated Frame-
work for Treebanks and Multilayer Annotations.
In Proceedings of the Third International Con-
ference on Language Resources and Evaluation,
pages 1670–1677. ELRA.

U. Heid, H. Voormann, J-T Milde, U. Gut, K. Erk,
and S. Pado. 2004. Querying both time-aligned
and hierarchical corpora with nxt search. In
Fourth Language Resources and Evaluation Con-
ference, Lisbon, Portugal.

E. W. Hinrichs, J. Bartels, Y. Kawata, and V. Kor-
doni. 2000. The VERBMOBIL Treebanks. In
KONVENS 2000 Sprachkommunikation, ITG-
Fachbericht 161, pages 107–112. VDE Verlag.

E. König and W. Lezius. 2001. The TIGER lan-
guage - a description language for syntax graphs.
Part 1: User’s guidelines. Technical report, Uni-
versity of Stuttgart, Stuttgart, Germany.

M. Marcus, G. Kim, M. Marcinkiewicz, R. Mac-
Intyre, A. Bies, M. Ferguson, K. Katz, and
B. Schasberger. 1994. The Penn treebank:
Annotating predicate argument structure. In
ARPA Human Language Technology Workshop.

D. McKelvie, A. Isard, A. Mengel, M. B. Moller,
M. Gross, and M. Klein. 2001. The MATE
workbench — an annotation tool for XML coded
speech corpora.Speech Communication, 33(1-
2):97–112.

R. Prasad, E. Miltsakaki, A. Joshi, and B. Webber.
2004. Annotation and Data Mining of the Penn
Discourse TreeBank. InProceedings of the ACL
Workshop on Discourse Annotation Barcelona,
Spain.

D. Rohde. 2001. Tgrep2 user manual.
I. Steiner and L. Kallmeyer. 2002. VIQTORYA

– A Visual Query Tool for Syntactically Anno-
tated Corpora. InProceedings of the Third Inter-
national Conference on Language Resources
and Evaluation (LREC 2002), pages 1704–1711.
ELRA.

