Controlled Natural Language meets the Semantic Web

Rolf Schwitter and Marc Tilbrook
Centre for Language Technology
Macquarie University
Sydney, NSW 2109, Australia
{schwitt|marct}@ics.mq.edu.au

Abstract

In this paper we present PENG-D, a proposal
for a controlled natural language that can be
used for expressing knowledge about resources
in the Semantic Web and for specifying on-
tologies in a human-readable way. After a
brief overview of the main Semantic Web en-
abling technologies (and their deficiencies), we
will show how statements and rules written in
PENG-D are related to (a subset of) RDFS and
OWL and how this knowledge can be translated
into an expressive fragment of first-order logic.
The resulting information can then be further
processed by third-party reasoning services and
queried in PENG-D.

1 Introduction

“The Semantic Web is an extension
of the current web in which informa-
tion is given well-defined meaning, bet-
ter enabling computers and people to
work in cooperation.” (Berners-Lee et
al., 2001)

This claim falls short, since the languages —
based on RDF — that have been designed for
making statements about Web resources and
for specifying ontologies are not built for hu-
man consumption. These languages have been
developed with machine processability and au-
tomatic information exchange in mind (Manola
and Miller, 2004; Smith et al., 2004). They are
painful to read, write and understand for non-
specialists.

To overcome the disadvantages of machine-
processable formal languages based on RDF and
full natural languages that are far too expressive
for the task at hand, we will introduce PENG-
D, a controlled natural language that reconciles
rigid formality and natural familiarity.

In a nutshell, a controlled natural language
is a subset of a natural language that has been

restricted with respect to its grammar and its
lexicon. Grammatical restrictions result in less
complex and less ambiguous sentences, while
lexical restrictions reduce the size of the lexi-
con and the meaning of the lexical entries for
a particular domain (Huijsen, 1998). Using a
controlled language for knowledge representa-
tion, specification texts become easier to read
and understand for humans, and easier to pro-
cess for machines (Schwitter, 2004).

Traditionally, controlled natural languages
have been classified into two major cate-
gories: human-oriented and machine-oriented
controlled natural languages. Human-oriented
controlled natural languages have been designed
to improve the readability and understand-
ability of technical documents, particularly for
non-native speakers. An example are aircraft
maintenance documents in the aerospace indus-
try (AECMA, 2004). Machine-oriented con-
trolled natural languages have been developed
to ameliorate the quality of machine translation
for technical documents (Mitamura, 1999) and
for writing specification texts that can be easily
translated into a formal language (Fuchs et al.,
1999; Schwitter, 2002; Sowa, 2004).

Most of these machine-oriented controlled
natural languages are defined by their trans-
lation into first-order logic that automatically
restricts their expressivity to a small subset of
constructions compared to full English.

Since it is very likely that the emerging Se-
mantic Web will finally rely on a variant of
description logic as knowledge representation
formalism and since description logic is a de-
cidable fragment of first-order logic (Grosof et
al., 2003), a machine-oriented controlled natu-
ral language is required that is a compromise
between expressive power, complexity and com-
putability.

PENG-D is a proposal for such a machine-
oriented controlled natural language that fulfils
these requirements.

2 Semantic Web Enabling
Technologies

The Semantic Web aims at making Web re-
sources better accessible to automated agents
by adding information (meta-data) that de-
scribes Web content in a machine-readable way.
It is based on RDF, which relies on eXtensible
Markup Language (XML) for syntax, Uniform
Resource Identifiers (URIs) for naming, and
on the RDF Vocabulary Description Language:
RDF Schema (RDFS) for describing meaning
and relationship of terms (Manola and Miller,
2004). RDF and RDFS form the lowest layers in
the functional architecture of the envisioned Se-
mantic Web. Web ontology languages and rule
languages are expected to build the next two
layers on top of RDFS to supply richer mod-
elling primitives and reasoning support. Unfor-
tunately, the relationships between RDFS and
Web ontology languages are not clearly speci-
fied (Horrocks and Patel-Schneider, 2003).

2.1 RDF

RDF is a datamodel for representing meta-data
about Web resources. The basic RDF model
contains just the concept of a statement, and
the concept of reification - making a statement
about a statement. RDF is based on the idea of
using URI references to identify the resources
referred to in a RDF statement. RDF uses
a particular terminology for talking about the
various parts of a statement. The part that
identifies what the statement is about is called
the subject. The part that identifies the prop-
erty of the subject that the statement specifies is
called the predicate and the part that identifies
the value of that property is called the object.
In RDF, the English sentence

Nic is a human.

could be represented by a statement having
three URI references:

http://www.example.org/about-nic#nic
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.example.org/biology#Human

RDF models statements as nodes and arcs
in a graph. In this notation a statement is
represented as a node for the subject, a node
for the object, and an arc for the predicate
directed from the subject node to the object
node. RDF/XML is a graph serialisation syn-
tax and provides a machine-processable way to
record and exchange graph-based RDF state-

ments (Beckett, 2004). Here is an excerpt of an
RDF /XML document:

<?xml version=%1.0" encoding=“ISO-8859-1"7>

<rdf:RDF
xmlns:rdf=
“http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns=“http://www.example.org/about-nic#”
xmlns:bio=*“http://www.example.org/biology#”
xmlns:con=“http://www.example.org/contact#” >

<bio:Human rdf:about=#nic>
<con:title>Dr.</con:title>
<con:name>Nic Miller< /con:name>
<con:name>Nicolas Miller</con:name>
<bio:pet>
<bio:Labrador>
<con:name>Rex</con:name>
< /bio:Labrador>
< /bio:pet>
< /bio:-Human>

</rdf:RDF>

The rdf:RDF element is the root of the RDF
document and defines the XML document to be
an RDF document containing a reference to the
xmins:rdf namespace and to three other names-
paces. Qualified names such as bio:Human or
con:title are shorthands for full URI references
whereas an URI reference with an empty prefix
stands for the current document.

RDF/XML is the standard interchange for-
mat for RDF on the Semantic Web, but there
exists a non-XML serialisation alternative called
Notation3 (N3) that is generally accepted to be
easier to use and is convertible to RDF /XML
and vice versa (Berners-Lee, 2001). N3 was
designed with human-readability in mind and
was created as an experiment in optimising the
“expression of data and logic in the same lan-
guage” (Palmer, 2002). This optimisation can
be seen as a first step towards the design of a
controlled natural language. Below is the au-
tomatic translation of our RDF /XML excerpt
into N3 using CWM, a forward chaining rea-
soner that supports data conversion (Berners-
Lee, 2003):

@prefix : <http://www.example.org/biology#>.
@prefix con: <http://www.example.org/contact#>.

<#nic> a :Human;
:pet [a :Labrador; con:name “Rex”];
con:name “Nic Miller”, “Nicolas Miller”;
con:title “Dr.”.

Without doubt this representation is easier
to read, to create and to understand by hu-
mans. However, there are still a couple of nota-

tional particularities which non-specialists have
to master.

It would be much easier if a human could ex-
press this information in a well-defined subset
of natural language, for example as follows:

Nic is a human who has Dr. as title.
Nic’s name is Nic Miller and Nicolas Miller.
Nic’s pet is a labrador that has the name Rez.

Obviously the writing process would need to
be supported by an intelligent writing assistant
that tells the user which constructions are ad-
missible.

2.2 RDF Schema

So far, we have only addressed the syntax of
RDF and have not considered the meaning of
terms used in XML/RDF and N3. RDF it-
self provides no means for defining application-
specific classes and properties. Instead, such
classes and properties need to be described via
RDF Schema (RDFS), an RDF-based vocabu-
lary description language (Brickley and Guha,
2004). RDFS does not provide an application-
specific vocabulary for classes and properties
but it offers the facilities that are needed to de-
scribe such classes and properties. Basically,
RDFS provides the means for constructing a
type hierarchy for RDF.

2.2.1 Describing classes

A class in RDF'S corresponds to the generic con-
cept of a type or category. In N3 we can declare
a class such as Dog in the following way:

:Dog a rdfs:Class.

This states that Dog is a type of rdfs:Class. If
there is a hierarchical relationship between two
classes, then this can be stated, for example, as
follows:

:Labrador a rdfs:Class; rdfs:SubclassOf :Dog.

This says that Labrador is a rdfs:Class which is
a subclass (rdfs:SubclassOf) of the class Dog.

2.2.2 Describing properties
In RDFS, properties are used to declare a rela-
tionship between two things and are described
as instances of class rdf:Property:

:pet a rdfs:Property.

This states that pet is a type of rdfs:Property.
RDFS also provides vocabulary for describing
how properties and classes are intended to be
used together. For example in

:pet rdfs:domain :Human; rdfs:range :Animal.

the rdfs:domain property is used to indicate
that the values of the subject of the property pet
are instances of the class Human and the values
of the object of the same property are instances
of the class Animal.

In some respect, RDFS is a very limited
“knowledge representation” language with few
modelling primitives and more expressive power
is necessary to describe Web resources in suf-
ficient detail. Apart from this expressive re-
striction, RDFS has a non-standard and non-
fixed layer meta-modelling architecture, which
makes some elements in the model have dual
roles in the RDF'S specification. This makes it
extremely difficult to layer more expressive on-
tology and rule languages on top of RDFS (Pan
and Horrocks, 2003).

2.3 OWL

The recognition of RDFS’s limitations led to the
development of OWL. The OWL language pro-
vides three increasingly expressive sublanguages
(OWL Lite, OWL DL and OWL Full) that have
been developed as a trade-off between expressiv-
ity and efficiency. OWL Lite supports users who
need a classification hierarchy and simple con-
straint features combined with desirable compu-
tational complexity. OWL DL is closely related
to description logic (DL) and supports users
who want the maximum expressiveness without
losing computational completeness and decid-
ability. OWL Full is designed for users who
require the meta-modelling facilities of RDFS
with no computational guarantees (Smith et al.,
2004).

OWL uses the same syntax as RDF (and
RDFS) to represent ontologies and uses RDFS
resources directly whenever the required func-
tionality already exists in RDFS. For example,
OWL uses rdfs:subClassOf to assert subclass re-
lationships and specific classes and properties to
extend RDFS functionality, e.g., the equivalent-
Class axiom is used to link a class description to
another class description:

<owl:Class rdf:ID=“Man” >
<rdfs:subClassOf rdf:resource=“#Human” />
<owl:equivalentClass rdf:resource=
“#MaleAdult” />
< /owl:Class>

While syntactic layering of the these lan-
guages satisfies the design requirements of the
Semantic Web, the semantic layering is more
problematic, since OWL is largely based on

DL which is a decidable fragment of first-order
logic. The semantics of a DL is normally given
by a standard first-order model theory, while
the semantics of RDFS is given by a non-
standard model theory, because of its meta-
modelling facilities (Hayes, 2004). This incom-
patibility leads to serious problems when try-
ing to layer first-order based languages on top
of RDFS, since it is not clear how applications
would be able to reason with these languages.

3 Description Logic Programs

Instead of relying on RDFS, conventional first-
order logic (FOL) has been proposed as the
semantic underpinning of the Semantic Web.
From a theoretical point of view, it is well
known that reasoning in FOL is undecidable.
However, there are many decidable subsets of
FOL that have been extensively studied and
many reasoning systems have been developed
for FOL and its sublanguages. Although this
FOL-based approach is not immediately com-
patible with RDFS, it is compatible with a sim-
plified version of RDFS — “the FOL subset of
RDFS” (Horrocks and Patel-Schneider, 2003).

Recently, the fusion of DL ontologies and rule
languages (Horn logic) has been studied and
this effort resulted in the Description Logic Pro-
grams (DLP) paradigm (Grosof et al., 2003).
DLP is defined as the expressive intersection of
OWL Lite and Horn logic (without negation and
without function symbols) and captures a sig-
nificant part of OWL Lite. The interoperability
between OWL Lite and Horn logic is expressed
by a meaning preserving bidirectional transla-
tion of premises and inferences from the DLP
fragment of OWL Lite to Horn logic, and vice
versa from the DLP fragment of Horn logic to
OWL Lite. In this paradigm, a mapping func-
tion translates for example the DL axiom

DL: AnN3R.CC BNVYP.D

into Horn logic (HL) rules

HL: b(X) « a(X), r(X,Y), ¢(X).
d(2) — a(X), r(X,)Y), ¢(X), p(X,Z).

and vice versa (Grosof et al., 2003). Please
note that the Horn rules here correspond to defi-
nite Horn clauses (with exactly one positive lit-
eral). All variables are universally quantified
at the outer level and have scope over the en-
tire clause and only fact-form conclusions (as in
logic programs) are available.

4 PENG-D

PENG is a machine-oriented controlled natural
language that has been developed to write spec-
ifications for knowledge representation (Schwit-
ter, 2002; Schwitter et al., 2003; Schwitter,
2004). While PENG was designed for writing
specifications that are first-order equivalent, the
proposed language PENG-D has formal prop-
erties that are equivalent to DLP. Although
PENG-D is weaker than PENG, it provides a
clear computational pathway to layer more ex-
pressive constructions on top of it.

4.1 Architecture of PENG-D

The planned architecture of the PENG-D sys-
tem looks similar to the PENG system but offers
support for ontology construction. The PENG-
D system consists of four main components: a
look-ahead text editor, a controlled language
(CL) processor, an ontology component and an
inference engine.

4.2 The text editor

The text editor can be used either to construct
ontologies (TBox mode) or to assert knowledge
about a specific domain (ABox mode). The user
does not need to learn the rules of the controlled
language explicitly, since the writing process of
the user is guided by the look-ahead text editor.
The first thing that the user sees, for example,
after opening the text editor in the ABox mode,
are look-ahead categories:

[Proper Noun, Determiner, [There is a]]

After entering, for example, the name Nic,
the look-ahead editor displays further look-
ahead categories:

Nic [Verb, Relative Pronoun, [’s]]

The user can now type the word that belongs
to one of these look-ahead categories directly
into the editor or select it from a context menu.
This context menu contains entries that have
been derived from the ontology used. Name-
space definitions are handled via the editor.

4.3 The grammar of PENG-D

The grammar of PENG-D describes how sim-
ple sentences are built and provides construc-
tors to join simple sentences into complex sen-
tences. Anaphoric relations between nominal
constituents in sentences can be expressed via
definite noun phrases, proper nouns, and vari-
able names.

4.3.1 Simple sentences

Simple sentences are used for making state-
ments in the ABox. Note that the result of these
statements are always ground terms containing
no variables. In a first approximation, we can
describe the structure of simple sentences in the
following way:

sentence —

subject —
subject —

subject + predicate
nominal head

specifier

{+ pre-nominal modifier}
+ nominal head

{+ post-nominal modifier}

predicate — verbal head + complement

These rules need to be carefully restricted to be
useful for our purpose:

Specifier. There are only two approved de-
terminers that are available in the specifier po-
sition: the definite determiner the and alterna-
tively the indefinite determiner a (with a “spe-
cific reading”):

The dog Rez ...

A dog Rex ...

Apart from that, a possessive construction
such as Nic’s can be used in the specifier po-
sition, for example:

Nic’s dog Rex ...

Once a specific instance has been introduced,
we can refer to it:

The dog Rex ... The dog ... Rex ...

Pre-nominal modifier. A pre-nominal
modifier can only consist of one single adjective
in the positive form. Adjectives can be used
to give additional information about a resource
(and are interpreted intersectively):

The friendly dog Rez ...

Nominal head. The nominal head must be
realised by a proper noun, a common noun or a
relational noun. Common nouns and relational
nouns (in subject position) always need a deter-
miner. The structure of nouns can be simple or
compound like in full English:

Nicolas Miller ...

The hunting dog Rez ...
The dog Rez of ...

Post-nominal modifier. A post-nominal
modifier can be realised in form of an of
construction, a finite relative clause or a named
variable that starts with one of the four capi-
tal letter X, Y, Zor W (and is interpreted as a
proper noun):

The dog Rex of Nic ...
The dog Rexr which is a labrador ...
The dog X ...

Verbal head. Only transitive verbs, the con-
struction has ... as ... and the copula be are
available in PENG-D. Furthermore, verbs can
only be used in the simple present tense, the
active voice, the indicative mood, and the third
person singular:

Nic likes Rex.
Nic has Rex as friend.
Nic is ...

Verbs are used for property assertions, apart
from the copula be that can be used in con-
structions for class assertions and property as-
sertions. Note that the possessive construction
Nic’s dog Rex and the of-construction The dog Rex
of Nic result in the same translation as the sen-
tence Nic has Rex as dog. The editor will displays
a paraphrase for the possessive construction and
for the of-construction.

Complement. The complement position
can be realised by most of the syntactic struc-
tures that are approved for the subject position.
Additionally, it allows for the prepositional con-
struction has ... as ... and for coordinated struc-
tures:

Nic is married to Sue.
Nic has Rex as dog.
Nic has Rex as dog and Tweety as bird.

There-sentences. A special case are “sko-
lemized” there-sentences that have the following
form:

There is a dog Rex that is happy.

4.3.2 Compound sentences

Constructors join simple sentences into complex
sentences. The main constructors that are used
on this level are: if, iff, and and or, for example:

If X is a dog then X is an animal.
If X is a man then X is a male and X is an adult.

Conditional (and biconditional) sentences are
only available in the TBox for constructing on-
tologies. The nominal heads of such sentences
can be realised by variables.

4.4 From PENG-D to HL and DL

We will now show how sentences of PENG-D are
related to HL. and DL statements, explain the
function of these statements and explain which
constraints apply. We do this by first looking at
the RDFS statements that belong to the FOL

subset of RDFS and then by considering those
OWL Lite statements that extend the expres-
sivity of the FOL subset of RDFS but are still
contained within DLP, that is, the intersection
of HL and DL. Thereafter, we will discuss how
constructors in PENG-D sentences are reflected
in HL and DL and which consequences the use
of these constructors has.

4.4.1 RDFS statements

There are only two types of ABox statements
that belong to the FOL subset of RFDS: class
assertions and property assertions. The TBox
statements that belong to this subset are: sub-
class, subproperty, range and domain state-
ments.

Class assertions. Classes let us express
membership information about individuals:

CL: Nic is a human and Rex is a dog.
HL: human(nic). dog(rex).
DL: nic : Human M rex : Dog

Property assertions. Properties let us ex-
press specific facts about individuals:

CL: Nic has the title Dr.
HL: has_title(nic,doctor).
DL: <nic,doctor> : hasTitle

Subclass. Subclasses let us organise classes
into a hierarchical taxonomy. Whenever the in-
dividual being an instance X of one class, this in-
dividual will necessarily be an instance of some
other class:

CL: If X is a labrador then X is a dog.
HL: dog(X) « labrador(X).
DL: Labrador C Dog

Subproperty. Properties like classes can be
arranged in an hierarchy. We can declare a
property as a subproperty (specialisation) of an
existing property:

CL: If X has Y as dog then X has Y as animal.

HL: has_animal(X,Y) < has_dog(X,Y).
DL: hasDog C hasAnimal

Domain of a property. We can restrict
the domain of a property. In our example, the
property has as dog has a domain of human. It
relates instances of the class human to instances
of v

CL: If X has Y as dog then X is a human.
HL: human(X) < has_dog(X,Y).
DL: T C VhasDog™ .Human

Range of a property. Similarly, we can
restrict the range of a property. In our example,

the property has as dog has a range of animal and
ties instances of class animal to instances of X:

CL: If X has Y as dog then Y is an animal.
HL: animal(Y) < has_dog(X,Y).
DL: T C VhasDog.Animal

To restrict the domain and the range at the
same time, we can write:

CL: If X has Y as dog then X is a human
and Y is an animal.

4.4.2 OWL Lite statements

OWL Lite extends RDFS with additional TBox
axioms. It adds explicit statements about class
and property equivalence as well as the inverse
of a property and transitivity.

Class equivalence. It is sometimes useful to
indicate that a particular class in an ontology is
equivalent to (i.e. has the same extension as)
another class. In PENG-D, equivalence can be
expressed via two conditional sentences but — as
we will see below — this can be simplified using
a biconditional operator:

CL: If X is a man then X is a male adult.
If X is a male adult then X is a man.
HL: male(X) « man(X).
adult(X) < man(X).
man(X) « male(X), adult(X).
DL: Man = Male M Adult

The biconditional operator Iff is a shorthand
to express in one sentence that two (possible
complex) class descriptions have precisely the
same instances, for example:

CL: Iff X is a man then X is a male adult.

Property equivalence. Similar to class
equivalence, we can express that a particular
property is equivalent to another property:

CL: Iff X has Y as price then X costs Y.

HL: cost(X,Y) « has_price(X,Y).

has_price(X,Y) < cost(X,Y).
DL: cost = hasPrice

Inverse of a property. If a property is the
inverse of another property, then the variables
in the first property switch their argument po-
sition in the second property, for example:

CL: Iff X has Y as child then Y has X as parent.

HL: has_parent(Y,X) « has_child(X,Y).
has_child(X,Y) <« has_parent(Y,X).

DL: hasChild = hasParent™

Transitivity of a property. Transitivity is
a property of a binary relation such that if X and
Y are related, and Y and Z are related, then it
follows that X and Z are also related, for all X,

Y, and Z for which the relation may apply. For
example the property ancestor of is transitive:

CL: If X is an ancestor of Y and Y is an

ancestor of Z then X is an ancestor of Z.
HL: ancestor(X,Z) < ancestor(X,Y), ancestor(Y,Z).
DL: ancestor T C ancestor

4.4.3 Constructors

The use of constructors is restricted in PENG-
D, because they can not be expressed in HL or
because they only be used in a restricted form
in DL.

Conjunction. A conjunction of classes in
the antecedent of a conditional sentence can be
directly expressed in the body of a HL rule and
creates no problem for DL:

CL: If X is married and X is a woman then X is
a wife.

HL: wife(X) < married(X), woman(X).

DL: Married M Woman C Wife

Conjunction in the consequent of a condi-
tional sentence becomes a conjunction in the
head of the corresponding HL rule, however this
can be transformed into a pair of HL rules:

CL: If X is a man then X is male and X is a person.
HL: male(X) < man(X).

person(X) «— man(X).
DL: Man C Male M Person

Disjunction. Disjunction of classes in the
antecedent of a conditional sentence becomes a
disjunction in the body of the corresponding HL
rule. This again can be transformed into a pair
of HL rules:

CL: If X is a woman or X is a man then X is
a human.

HL: human(X) <« woman(X).
human(X) < man(X).

DL: Woman U Man & Human

When a disjunction of classes occurs in the
consequent of a conditional sentence, then it be-
comes a disjunction in the head of the HL rule,
but this cannot be expressed within HL.

Universal restriction. In DL, the univer-
sal quantifier can only be used in restrictions of
the form VP.C. Therefore, universal restriction

can only be expressed in the following form in
PENG-D:

CL: If X is a women and X is married to Y
then Y is a husband.

HL: husband(X) < woman(X), married_to(X,Y).

DL: Woman C VmarriedTo.Husband

Expressing universal restriction of the form in
the consequent of a conditional sentence would

require negation in the rule body of HL.

Existential restriction. In DL, the existen-
tial quantifier can only be used in existential re-
strictions of the form 3P.C. When an existential
restriction occurs in the antecedent of a condi-
tional sentence, it becomes a conjunction in the

body of HL:

CL: If X is married to Y and Y is a husband
then X is a wife.

HL: wife(X) « married_to(X,Y), husband(Y).

DL: dmarriedTo.Husband C Wife

However, if the existential restriction occurs
in the consequent of a conditional sentence, then
it becomes a conjunction in the head of corre-
sponding HL rule with a variable that is existen-
tially quantified. This cannot be handled in HL
and would require transformation and skolem-
ization in a logic program.

4.4.4 Beyond DLP

PENG-D is potentially a good starting point
for language layering. More expressive language
constructs could allow, for example, for ex-
pressing full existential quantification, instance
equivalence, enumerating members of a class
and cardinality constraints. While such descrip-
tions cannot be directly expressed in DLP, many
of them can be implemented in logic program-
ing environments. Note that recursive HL rules
such as transitivity need to be rewritten anyway
for practical applications.

4.5 The inference engine

We are currently experimenting with various
DL (and FOL) inference engines for question
answering in PENG-D. Although not optimal,
available FOL provers could provide reasoning
services for more expressive DLs.

5 Conclusions

In this paper we referred to a number of de-
ficiencies of RDFS as a “knowledge represen-
tation” language for the envisioned Semantic
Web. Layering more complex ontology and rule
languages on top of RDFS is not straightfor-
ward, because of its non-standard and non-fixed
layer meta-modelling architecture. The rela-
tively new DLP paradigm offers a promising
first-order based alternative that enables onto-
logical definitions to be combined with rules.
To make such machine-processable information
easily accessible for non-specialists, we proposed
the use of PENG-D, a machine-oriented con-
trolled natural language that has the same ex-

pressivity as DLP. We expect that PENG-D
is easy to write for non-specialists with the
help of a look-ahead text editor, easy to read
in contrast to RDF-based notations, and easy
to translated into a corresponding machine-
processable format. In brief: PENG-D has
the potential for complementing these more
machine-oriented notations.

Acknowledgments

The research reported here is supported by the
Australian Research Council (Discovery Project
DP0449928). The authors would also like to
thank two anonymous reviewers for the valuable
comments on a previous version of this paper.

References

AECMA. 2004. The European Association
of Aerospace Industries. AECMA Simplified
English, AECMA Document PSC-85-16598.
A Guide for the Preparation of Aircraft Main-
tenance Documentation in the International
Aerospace Maintenance Language. Issue 2,
January 15.

D. Beckett (ed). 2004. RDF/XML Syn-
tax Specification (Revised). W3C Recom-
mendation 10 February 2004. <http://
www.w3.org/ TR /rdf-syntax-grammar/>.

T. Berners-Lee, J. Hendler, Ora Lassila. 2001.
The Semantic Web. In: Scientific American.
May 17.

T. Berners-Lee. 2001. Notation 3. An RDF
language for the Semantic Web. <http://
www.w3.org/Designlssues/Notation3.html>.

T. Berners-Lee. 2003. Processing your data
using N3 and CWM. <http://www.w3.org/
2000/10/swap/doc/Processing>.

D. Brickley, R. V. Guha. 2004. RDF Vocabu-
lary Description Language 1.0: RDF Schema.
W3C Recommendation 10 February 2004.
<http://www.w3.org/TR /rdf-schema/>.

N. E. Fuchs, U. Schwertel, and R. Schwit-
ter. 1999. Attempto Controlled English -
Not Just Another Logic Specification Lan-
guage. Lecture Notes in Computer Science
1559, Springer, pp. 1-20.

B. N. Grosof, 1. Horrocks, R. Volz, S. Decker.
2003. Description logic programs: Combin-
ing logic programs with description logic.
In: Proceedings of the Twelfth International
World Wide Web Conference (WWW 2003),
pp- 48-57.

P. Hayes. 2004. RDF Semantics. W3C Recom-

mendation 10 February 2004. <http://www.
w3.org/TR/2004/REC-rdf-mt-20040210/>.

I. Horrocks, P. F. Patel-Schneider. 2003. Three
theses of representation in the semantic web.
In: Proceedings of the Twelfth International
World Wide Web Conference (WWW 2003),
pp. 39-47.

W. O. Huijsen. 1998. Controlled Language -
An Introduction. In: Proceedings of CLAW
1998. Pittsburgh, pp. 1-15.

F. Manola, E. Miller. 2004. RDF Primer.
W3C Recommendation 10 February 2004.
<http://www.w3.org/ TR /rdf-primer/>.

T. Mitamura. 1999. Controlled Language for
Multilingual Machine Translation. Invited
paper. In: Proceedings of Machine Transla-
tion Summit VII. Singapore, September 13-
17. <http://www.lti.cs.cmu.edu/Research/
Kant/>.

S. Palmer. 2002. A Rough Guide to Notation3.
<http://infomesh.net /2002 /notation3/>.

J.Z. Pan, I. Horrocks. 2003. RDFS(FA): A DL-
ised Sub-language of RDFS. : In Proceedings
of the 2003 Description Logic Workshop (DL
2003), volume 81 of CEUR, pp. 95-102.

R. Schwitter. 2002. English as a Formal
Specification Language. In: Proceedings of
the Thirdteenth International Workshop on
Database and Expert Systems Applications
(DEXA 2002). Aix-en-Provence, pp. 228-
232.

R. Schwitter, A. Ljungberg, and D. Hood. 2003.
ECOLE: A Look-ahead Editor for a Con-
trolled Language. In: Proceedings of EAMT-
CLAWO03, Controlled Language Translation.
May 15-17, Dublin City University, pp. 141—
150.

R. Schwitter. 2004. Representing Knowledge in
Controlled Natrual Language: A Case Study.
In: M. G. Negoita, R. J. Howlett, L. C.
Jain (eds.), Proceedings KES2004, Part I,
Springer LNAI 3213, pp. 711-717.

M. K. Smith, C. Welty, D. L. Mc Guin-
ness. 2004. OWL Web Ontology Language.
Guide. W3C Recommendation 10 February
2004. <http://www.w3.org/TR/2004/REC-
owl-guide-20040210/>.

J. F. Sowa. 2004. Common Logic Controlled
English Draft, 24 February 2004. <http://
www.jfsowa.com/clce/specs.htm>.

