
 1 

Thin Parsing: A Balance between Wide Scale Parsing and Chunking 
Jon Patrick and Pham Hong Nguyen 

Sydney Language Technology Research Group 

School of Information Technologies 

University of Sydney 

{ ����������	
���
����
���
�� 

 

Abstract 

This work presents a type of parser that 
takes the process of chunking to the stage 
of producing full parse trees. This type of 
parser, denoted Thin Parsers (TP) in this 
work has the characteristics of: following a 
given grammar, creating full parse trees, 
producing only a limited number of full 
parse trees, parsing in linear time of 
sentence length. Performance standards on 
the Penn Tree Bank show results slightly 
under that of stochastic parsers but faster 
performance. Various types of Thin 
Parsers are presented. 

1 Introduction 

Bottom-up and Top-down methods of 
parsing, invented in 1950s, can parse in time 
which is an exponential function of the length n 
of an input sentence O(cn). Tabular parsing 
methods such as the CYK (Cocke-Younger-
Kasami) and Earley can parse context free 
languages in polynomial time O(n3), a significant 
improvement compared with the previous 
parsers. These methods are usually called 
“ traditional methods” . However these methods 
are relatively slow, as they produce the complete 
parse trees. Also they use exhaustive search to 
find all possible parse trees, subsequently leading 
to the problem of needing to select an optimal 
parse from a very large set of solutions. Hence, 
researchers have tried to find other parsing 
methods and/or other formalisms for natural 
languages. For example, some researchers have 
tried to convert natural languages into regular 
languages to parse them by finite state automata 
(Black 1989, Pereira 2003). Some others work 
with parsers based on LL or LR 

grammars/parsers. However, they still have been 
unable to gain anything but small improvements. 

Recently, with the creation of large 
annotated corpora such as the Penn Tree Bank, 
probabilistic parsing methods based on their 
manifest grammars appear to be a useful solution 
for the parsing problem. In this situation, the 
induction of probabilistic context free grammars 
(PCFG) derived from the annotated corpora has 
become a new objective and many researchers 
have quickly developed improved performance 
(Ratnaparkhi 1994, Collins 1996).  

A different use of tree bank corpora is 
made by the chunking or shallow parsing process 
(Abney 1991, Brants 1999, Tjong Kim Sang 
2000).The main idea behind this parsing strategy 
is that both human and machine usually do not 
require full information of the parsing processes. 
These parsers usually produce only partial parse 
trees instead of full trees, which can be a 
disadvantage, but, the trade off is that the parse 
time becomes linear with the length of input 
sentences O(n). These parsers are called shallow 
parsers and the inference of probabilistic 
grammar rule sets is one of their useful 
characteristics. 

Unfortunately, shallow parsers cannot be 
used in applications in which full parse trees are 
required. Under these circumstances there is a 
need to use traditional parsers or improve 
shallow parsers to produce full parse trees. The 
challenge here is to solve the problems created 
by inferring a parser from a corpus. The strategy 
used in this research is to give attention to 
improving the parser without recourse to 
comprehensive generative probabilistic models 
of the tree bank but rather by developing fast 



 2 

algorithms with accuracies rivaling that of 
probabilistic models. 

Justification for giving dominant attention 
to speed performance in the context of an 
inductive inference strategy is well supported by 
some established heuristics and by certain 
utilitarian values. As well, a search of the 
literature has failed to reveal any substantial 
attempt to analyse, on the basis of computability 
and speed performance, the advantages of an 
inductive inference approach to constructing a 
language parser from tree banks. 

Well recognized heuristics that have been 
established and support the motivation for this 
work are that language is predictable. It is well 
recognized that there is significant redundancy in 
language at the lexicogrammar and semantic 
levels and that corpus analysis has demonstrated 
there are reasonable predictors for subsequent 
phenomena from a given point in a sentence.  

Furthermore, Memory Based Learning has 
established the principle that “ forgetting is 
harmful”  to performance (Daelemans, van den 
Bosch & Zavrel 1999) and so remembering is 
helpful. 

Functional motivations include: large scale 
grammars can be better utilized by developing 
parser from their outputs; applications exist that 
don’ t need wide coverage grammars but rather 
high speed. Current research in speech 
recognition is moving into a phase of exploiting 
lexicogrammar to improve performance (Lemon, 
2004).  

This paper promotes and develops a 
specific class of parsing methods, Thin Parsers 
(TP). Like traditional parsers, this method 
considers natural languages as context free 
languages and/or probabilistic context free 
languages. The aims of Thin Parsers are to 
overcome some weak points of both traditional 
(full) and shallow parsers. In comparison to full 
parsers, the Thin Parsers should work faster in 
practice and produce one or a few parse trees 
instead of large number. The main advantage of 
TPs over shallow parsers is that they can build 
full parse trees instead of partial trees, however, 
thin parsers do not have the ability to infer new 
grammar rules as shallow parsers do. Thus Thin 
Parsers could be considered closer to full parsers 

than shallow parsers. The Thin parser can be 
considered as a balance between the issues of the 
language class, parser speed and accuracy, and 
the need for full parse information. Hence, in this 
research the focus is on building performance 
models which are potentially useful in real 
situations rather than to build competence 
models. 

2 Pre-processing of the PTB 

The TPs in this research are developed 
from the Penn Tree Bank (PTB). As with other 
corpora, the PTB has some errors. Some of them 
can be corrected automatically by program 
whereas the others require manual reviews and 
corrections.  

As this research deals with CFGs, which 
lack the ability to smooth errors, better data for 
establishing a “gold standard”  for both training 
and testing models is needed. From many authors 
working with the PTB, it appears that only Bod’s 
(1995) research is based on cleaned data as is this 
study. 

Each sentence of the PTB corpus is 
presented in three different formats: raw 
sentences, sentences with part-of-speech 
annotation, and skeletal syntactic bracketed 
sentences each in a separate file1.  Correct 
matching of these triples across the three files is 
needed to build up the full parse trees. However, 
due to errors in the data, the numbers of 
sentences are quite different in each file, making 
the work of extracting triples much harder and 
requiring human intervention. 

From the development of suitable 
software, around 22,000 triples or only half of 
the data were extracted automatically. After 
correcting the data manually, this has been 
increased to 34,000 triples. This data set is 
denoted as the “Large set” . From these triples, a 
subset of 6,700 triples was constructed, denoted 
the “Clean set”  by deleting any triples having 
null elements and/or having incorrect parse trees 
(the trees that have none or more than one S node 
at the top of tree). This set is used in this 
research. The new set is quite small, compared 
with the original data, but still enough for 
experimentation as it is much larger than the sets 

                                                 
1 Raw sentences are not used in this work. 



 3 

used in other research of a similar nature, for 
example Bod (1995) only used 500 sentences. 

3 Finite State Automata (FSA) 

The starting point for our modeling of the 
PTB is the inductive inference of FSAs for both 
the POS tag sequences and the phrasal tag 
sequences (see Fig. 1). Two tests using POS and 
Phrasal tags were run using 2 data sets (Large 
and Clean) to create a baseline for further work 
(Table 1). The results are quite similar with the 
Sekine’s (1997) although they are slightly worse. 
The reasons appear to be: i) a smaller training set 
is used here (30,600 sentences compared with 
47,219 sentences); ii) The training and testing 
here is on different sets.  

The results for Phrasal tags are 
significantly better than POS tags (19.19 % 
compared with 4.22%). The main reasons are: i) 
the average length of sentences (14.71) is shorter 
(21.23), creating the potential for repeated 
structures to be more frequent; ii) the annotation 
set for POS (36 POS tags + 12 other tags) is 
much larger than in Phrasals (14 syntactic tags + 
4 null elements) (Marcus 1993). These results are 
used as a base line for our research. However, 
they are still far from that of a good probabilistic 
parser (with over 70%).  

VPNP ADVP VP VP !

NP
!ADVP

VP VP !

ADVP
!

NP

NP

NP VP !

NP

VP

ADVP

 
Figure 1. Inferred FSA for phrasal tag 
sequences in the PTB. 

The Clean data set obviously brings some 
improvements. In the case of phrasal tags the 
FSA can parse successfully more than 44% of 
the phrasal test sentences. One of the reasons is 
that the average length of sentences is shorter. 
The POS tag results worsen between the Large 
and the Clean data sets compared to the phrasal 
tags. From these tests, it is evident that the 

lengths of sentences can affect the recognition 
results, the shorter the sentences, the better the 
result.  

 POS Phrasal 

Large 4.22% 19.19% 

Clean 3.66% 44.87% 

Table 1. Coverage attained by inferred FSAs of 
PTB data sets. 

In Charniak’s (1996) work he ignored all 
sentences of length greater than 40 in the test 
data to avoid high parsing costs. An examination 
of the Big data set confirms his assessment that 
only a small sample are excluded. There are 
29,462 sentences out of the 30,600 training set 
(96.28%) with a length of 40 words or under.  

Our tests to identify relationships between 
the tag length and coverage show for POS tag 
sequences the FSA parser begins to show 
deterioration for lengths higher than 11 tags and 
for Phrasal tags about 14 tags. 

3.1 Combination of POS and Phrasal FSAs  

The POS tag FSA is useful in practice 
however, the main limitation is the low coverage. 
In contrast, the Phrasal tag FSA is not of much 
use even though it has a much higher coverage. 
To overcome the disadvantage of the first FSA 
and take the advantage of the second, they are 
merged into a new parser that works with inputs 
of POS  and achieves a better coverage. 

This new model can be viewed as two 
components, one is a simple FSA for recognizing 
phrasal tag sequences. The other part is a 
converter to convert sequences of part-of-speech 
tags into sequences of phrasal tags for input into 
the FSA. The Converter creates the mapping of 
the POS tags to phrasal tags. The Phrasal FSA 
after recognizing a string of phrasal tags 
identifies the tree top of a legal tree top in the 
training set to complete the full parse tree (see 
Fig 2). 

3.1.1 Phrasal rules 

The rule sets for converting POS tags 
into phrasal tags are extracted from the PTB. 
For example, from the tree in Figure 3, some 
phrasal rules as follows can be extracted: 



 4 

NP→DT JJ NN NNS; VP→VBP; NP→NN; 
ADVP→RB; VP→VBG; QP→RB IN CD  

From the 6700 sentences in the Clean 
dataset around 1200 phrasal rules were 
automatically extracted. This rule set is only a 
small subset of the PTB grammar, which has at 
least 10,000 rules as mentioned in Charniak 
(1996). 

 

Figure 2. Combination of POS and Phrasal tag 
FSAs. 

3.1.2 L imitations on a Conver ter   

For parsing an unseen sentence a 
Converter is needed to perform an exhaustive 
search algorithm. That is it has to try every 
combination of POS tags to phrasal tag 
conversion for the set of POS tags in the sentence 
until the string of phrasal tags is recognized by 
the main FSA. However, this approach has 
exponential explosion even for a small rule set 
and short sentence. 

3.1.3 Recursive Transition Network Induction 
– model TP1 

In the first attempt to create an efficient 
Converter, the two kinds of FSA are combined 
by using Recursive Transition Networks (RTN) 
(Woods, 1970) because this model can help 
reduce the exponential time problem.  

The two kinds of FSA are, one for part of 
speech tags and one for phrasal tags. The second 
one is the same FSA used in the initial tests 
above. The first one (type 1) uses a string of tags 
taken from the right side of phrasal rules instead 
of POS sentences. All rules which have the same 
left side are used to build one FSA. Thus there 

are many different FSA corresponding to a 
phrasal tag. 

 

 

Figure 3. Combination of two types of FSA into 
an  RTN.  

3.2   Results and Analysis 

The results of parsing by an RTN are 
shown in Table 2. The 6700 sentences of the 
Clean data set were used with 10 fold cross-
validation. There is no restriction on sentence 
length for the first test, however, in the second 
test, like Charniak (1996), all the sentences with 
length in excess of 40 tags were removed. The 
RTN method has a very high coverage (98.32%) 
but the accuracy (R= 19%, P=23%, F=21%) are 
below the base line.  

Theoretically, parsing by an RTN method 
is not as fast as using an FSA. Woods (1970) has 
shown that the time is about O(cn). However, in 
this work the RTN performs much faster, the 
average parse time per sentence is 0.0176 
second2 and slightly better 0.0156 if the 
sentences which are longer than 40 tags are 
ignored because: 

• the phrasal FSA has only a depth of one 

• there are no recursive loops 

• the first level is recognized as a chunk, not only 
a tag, thus, the number of elements at the first 
level is reduced significantly 

                                                 
2 All tests are done on a computer P4, 1.6 Ghz, 1 GB 
Ram. The time includes time for parsing, extracting 
parse trees and measuring accuracy. 



 5 

• the number of phrasal rules is around 1400 – 
much smaller than the total number of grammar 
rules of the PTB3 

• this model stops parsing after finding a solution. 

In the worst case, the maximum parse time for all 
data is 1.603 seconds and for <41 data is only 
0.911 seconds4. 

The results in Table 2 of the RTN show a very 
high proportion of coverage – 98%. The high 
coverage and fast parse time of this model could 
well be useful for some applications. 

N C’age R P F Time 

all 98.32 19.74 23.92 21.83 0.0176 

<41 98.48 19.18 23.3 21.24 0.0156 

Table 2. Performance percentages of RTNs on 
the Clean data (10-fold cross-validation). 

 

4 Shallow Parsers for  building Parse Trees  

To establish an understanding of the base 
performance of shallow parsers when used to 
build full parse trees we developed a method 
based on Abney (1991). The first experiment 
showed the coverage of the system is only 0.5% 
(only 3 of 600 test sentences).  

With the aim of producing a better 
assessment of coverage, the accuracy of the base 
sub-trees (lower parts of trees) which are created 
by the shallow parser is computed by an 
alternative method, that is the tag S is added to 
every incomplete parse tree. This produced the 
results of P=36.65%, R=15.03%. These results 
can be considered as another baseline. 
Comparisons of these results to the works of 
other authors are not possible as they have only 
reported the accuracy of chunkers. 

                                                 
3 An Earley parser (with parse time O(n3)) was built 
and tested using a reduced set of 9000 rules of the 
PTB, in general this parser takes from 30 seconds / 
short sentence to some days for long ones (around 30 
words). When using a much smaller and manually 
compacted rule set of 3000 the parser still takes 
several hours for a long sentence. 
4 The parse time is computed here to demonstrate how 
fast the model TP1 is in practice but not the fastest 
speed of this model.  

5 Constructing Thin Parsers from Shallow 
Parsers – TP2  

In this section, some improvements to the 
shallow parser model to extract the full parse 
trees are developed. These improvements can 
also be viewed as mixing models, that is a 
shallow parser and a finite state automaton 
(FSA), a shallow parser and a data-oriented 
parser (DOP), and the adaptation of a shallow 
parser with some non-deterministic components. 
The framework objective behind this blending is 
to reduce the number of levels needed in parse 
trees, reduce the number of elements of the parse 
trees, use of more stored pre-computed 
information, and to use non-deterministic 
mechanisms.  

The large number of levels of the parse 
tree for the shallow parser is one of the major 
reasons for the poor coverage in extracting full 
parse trees. With each new level, the parser has 
more chance of being trapped and/or creating 
errors which will propagate to higher levels, that 
is the coverage and accuracy are affected 
seriously by the number of levels. Hence, the 
idea of improvement here is to let the parser 
work for the first level or at the most the few first 
levels only, which can work well. Then another 
process adds the top parts of trees to complete 
the full trees.  

The tree tops that will be used to complete 
the parsing are pre-computed from the training 
corpus and saved into a database. One extra 
advantage of this method is that even though at 
the lower levels the trees are variable and large in 
number, at the higher levels the multiple forms 
decrease sharply. This means the number of tree 
tops is small, and easy to collect and to save to a 
database. Hence in testing the system has two 
parts. The first part works like a shallow parser 
and the second part is a search mechanism 
retrieving from this database.  

After creating the base sub-trees of a parse 
tree (by working for only one or the first few 
levels), the shallow parser passes the result to the 
next process “Find and Join” . This process 
retrieves from a database a saved tree top 
matching the tag configuration of these base sub-
trees. If a suitable tree top is found, this function 
will attach it to the lower sub-trees to create a full 
parse tree. The condition to match the two parts 



 6 

is straightforward: the top sequence of tags of the 
base sub-trees must be matched with the bottom 
sequence of the tree top.  

Although four methods can be considered 
for assessment (Pham, 2004), the test results are 
shown here with a weaker measure, adjusted 
crossover brackets, to enable comparison with 
other authors. The data for training and testing is 
the Clean data set (6000 sentences for training 
and 600 for testing). After chunking k levels 
(column Level/k) the system gets the results 
sequence which is recognized by an FSA. 
Column Succ shows the numbers of parsed 
sentences.  

Model TP2 can parse successfully a range 
from 21.67% to 55.83% of input sentences with 
accuracies (F) from 76.61% to 91.68% (Table 3). 
The accuracies are highest when the shallow 
parser works for only the first level (level 0). The 
coverage, unlike accuracy, increases by level and 
reaches the highest proportion at level 7 
(55.83%) before decreasing slightly. As 
previously discussed, with the higher levels the 
variety of tree tops decreases sharply, helping the 
system match these tops more successfully. The 
model TP2 can parse successfully over 46% of 
total sentences with high accuracy of over 76% at 
k>=5. 

Level/
k 

Suc
c.  

Cover
age % 

P % R 
% 

F 
% 

1 239 39.8 92.3 91.1 91.7 

2 130 21.7 90.4 89.7 90.0 

3 219 36.5 82.3 83.1 82.7 

4 248 41.3 79.9 80.5 80.2 

5 277 46.2 78.5 79.3 78.9 

6 304 50.7 78.8 79.4 79.1 

7 335 55.8 77.3 78.1 77.7 

8 307 51.2 76.5 76.7 76.6 

9 316 52.7 76.6 77.1 76.8 

Table 3. Results of model TP2 chunking, 
measures of the accuracy of nodes with adjusting 
crossover brackets. 

 

6   Reduction of the number  of tree elements - 
TP3 

The number of grammar rules available for 
use in a parse tree is usually large. For each extra 
rule that is used in a parse the tree has more 
variation at higher levels. This provides more 
opportunities for the parse to be trapped or to 
propagate more errors. Furthermore, if two rules 
have the same right hand side, then the one with 
the highest frequency is used for building the 
tree. However this selection process of removing 
a less frequent rule is the main reason for shallow 
parsers not being able to build up a full parse.  

Another idea for improvement of model 
TP2 is to reduce the number of grammar rules 
per parse tree by using the tree fragments which 
could be larger than these rules. By such a 
mechanism, the parser has more chance to use 
maximally frequent fragments, that is 
combinations of grammar rules, rather than 
grammar rules alone, thus avoiding the omission 
of less frequent grammar rules. Another 
advantage is that the number of levels can be 
reduced and so gain the benefit of getting higher 
coverage as well as faster execution time.  

This idea is partly similar to Bod’s (1995) 
model of DOP for using tree fragments, however 
in detail, there are differences in the ways tree 
fragments are collected and the method of 
parsing.  

6.1 Collection of fragments 

In the DOP model, Bod collects all 
possible tree fragments. However, this has the 
disadvantage that the number of fragments grows 
exponentially with size of grammar.  

In the case of the TP2 model, tree 
fragments are collected based on the data set 
prepared for the shallow parsing experiments, 
that is the filled trees, that is all branches have 
nodes at each lower level. The conditions for 
collecting a sub-tree as a real fragment are that 
all leaves at the end of the tree start on the same 
level, as the tree is filled, and, it has a height of 2 
levels or more. 

For example, Figure 4 shows a sub-tree of 
a parse tree. The DOP model will collect a total 
of 32 fragments from this sub tree. In the TP3 
model, firstly this sub tree is converted into a 



 7 

filled tree as shown in Figure 5.a. From this data 
only two fragments are collected as in Figures 
5.b and 5.c, hence an exponential increase of 
fragments is prevented. 

6.2 Results 

All data for training and testing model TP3 
is reported for both shallow parsing (chunking, 
Table 4) and parsing (Table 5). 

 

Figure 4.  An example of a sub-tree from a 
parse tree.  

 Figure 5.  The parse sub-tree from Fig. 4 
converted into filled sub-tree (a).  From (a) in 

training only two fragments (b) and (c) are 
collected in model TP3. 

Table 4 shows the results of chunking the 
Clean data set. This is quite similar to Table 5.3 
text chunking except: the maximum level is only 
1, and, the accuracy of the two highest levels 

appears to be exceptional because the number of 
sentences is quite small (844 and 586 
respectively), compared with whole learning set 
(6000 sentence). 

As the levels increase the number of 
sentences available for both training and testing 
decreases as there is a variable range of tree 
heights across the corpus. 

Level Precision Recall F 

0  84.2 83.7 83.9 

1  72.5 64.1 68.1 

2  75.4 59.0 66.2 

3  68.8 53.1 59.9 

4  68.1 52.8 59.5 

5  72.1 65.4 68.6 

6  79.9 68.3 73.6 

7  91.1 85.4 88.2 

≥8 100.0 100.0 100.0 

Table 4. Text chunking results using the Clean 
data set for model TP3. 

Table 5 shows the results of the parse of 
600 sentences from the Clean data set. The 
coverage of TP3 in the best case is over 61% (at 
level 5), better than the best coverage 55% of 
TP2. However, the accuracies in general are a 
little worse than the accuracies of TP2. Both TP2 
and TP3 reach the highest accuracies at level 1 
and reduce at higher levels. 

Level Succ. Coverage P R F 

1 230 38.4 84.8 85.5 85.2 

2 135 22.5 64.8 73.7 69.2 

3 184 30.7 63.8 74.7 69.3 

4 351 58.6 64.7 74.8 69.8 

5 368 61.4 69.3 76.8 73.1 

6 183 30.6 70.7 79.2 75.00 

7 62 10.4 68.7 75.7 72.2 

≥8 1 0.17 73.5 83.3 78.4 

Table 5. Parsing results using the Clean data set 
with model TP3. 



 8 

7    Non-Deterministic models –TP4, TP5 

Two approaches have been investigated in an 
attempt to produce concurrent solutions to 
improving coverage and accuracy. Whilst the 
methods will be reported elsewhere the 
results are relevant to this study and show 
great promise. The first method, model TP4, 
uses the idea of a non-deterministic chunker 
with a deterministic attacher. The second 
model, TP5, uses a deterministic chunker 
with a non-deterministic attacher. By 
exploitation of the learning process of 
creating a tree tops database and using 
algorithms to match the database entries 
against the candidate parse trees rather than 
the other way the practical implementation 
requires linear time to parse. The 
performance of the two systems is presented 
in Table 6.  
 
Model Coverage P R F 
TP4 63.7% 83.0 84.6 83.8 
TP5 82.2% 88.3 88.0 88.1 

Table 6. Performance statistics of models TP4 
& TP5. 

8 Conclusions 

Some improvements to building a thin 
parser from a shallow parser have been presented 
in the form of models TP2 and TP3, TP4 and 
TP5. They all include in the first stage a shallow 
parser. In general, these models can solve to 
some degree some problems of shallow parsing 
when extracting full parse trees. The problems 
are: deterministic mechanisms are not adequate 
enough for dealing with the ambiguities of 
natural language; the configuration of 
connections between layers make any error that 
occurs in the lower levels propagate to higher 
levels and worsen the performance; the Chunker 
and Attacher need to work with some limitations, 
such as using only the most probable rules; and 
not attach chunks with a size of 1. The results of 
these models are quite good: the coverage (from 
0.5% of original shallow parser) has improved to 
more than 82%, and the accuracy has improved 
from 20% to over 88%. 

9 References 

Abney S. 1991. Parsing By Chunks. In: R. Berwick, S. 
Abney & C. Tenny (eds.), Principle-Based Parsing. Kluwer 
Academic Publishers, Dordrecht. 

Black, A. (1989). Finite State Machines from Feature 
Grammars, International Workshop on Parsing 
Technologies, Carnegie-Mellon University, Pittsburgh, PA. 

Bod R. 1995. Enriching Linguistics with Statistics: 
Performance Models of Natural Language, Academische 
Pers, The Netherlands. 143 pp. (Ph.D. thesis). 

Brants T. 1999. Cascaded Markov Models. In Proc of 9th 
Conf. of the Euro. Chapt of the ACL, EACL-99, Norway.  

Charniak E. 1996. Tree-bank grammars, Tech Report CS-
96-02, Dept of Computer Science, Brown University. 

Collins M. 1996. A New Statistical Parser Based on Bigram 
Lexical Dependencies. Proc of the 34th Annual Meeting of 
the ACL, Santa Cruz. 

Daelemans, W, van den Bosch, A & Zavrel, J. 1999. 
Forgetting exceptions is harmful in language learning. 
Machine Learning 

Lemon, O. 2004. Context sensitive speech recognition in 
ISU dialogue systems: Results for the grammar switching 
approach. Proc. 8th Workshop on the Semantics and 
Pragmatics of Dialogue, CATALOG'04. 

Marcus M., Santorini, B.  Marcinkiewicz, M. 1993. 
Building a large annotated corpus of English: the Penn 
Treebank, Jnl of Computational Linguistics, Vol. 19 No.1. 

Pham Hong Nguyen 2004. Thin Parsing, PhD Thesis, 
Univeristy of Sydney. 

Tjong Kim Sang E. F. and Buchholz, S. 2000. Introduction 
to the CoNLL-2000 Shared Task: Chunking. In Proc of 
CoNLL-2000, Lisbon, Portugal. 

Sekine S., Grishman R., 1995, A Corpus-based Probabilistic 
Grammar with Only Two Non-terminals. Fourth 
International Workshop on Parsing Technology; Prague. 

Sekine S. 1998. Corpus-based Parsing and Sublanguage 
Studies, Ph.D. Thesis, New York University.  

Sha F. Pereira F., 2003. Shallow parsing with conditional 
random fields. In Proc of HLT-NAACL. ACL. 

Tjong Kim Sang, E. F. 2000. Text Chunking by System 
Combination. In Proc of CoNLL-2000, Lisbon, Portugal. 

Ratnaparkhi A., Reynar J., and Roukos S., 1994. A 
Maximum Entropy Model for Prepositional Phrase 
Attachment. In Proc of the ARPA Human Language 
Technology Workshop. 

Woods W. A. 1970. Transition Network Grammars for 
Natural Language Analysis, Comm of the ACM,  13, 10. 

 


