AnswerFinder — Question Answering by Combining Lexical,
Syntactic and Semantic Information

Diego Molla and Mary Gardiner
Centre for Language Technology
Division of Information and Communication Sciences
Macquarie University
Sydney, Australia
diego@ics.mqg.edu.au and gardiner@ics.mq.edu.au

Abstract

We present a question answering system that
combines information at the lexical, syntactic,
and semantic levels, in the process to find and
rank the candidate answer sentences. The can-
didate exact answers are extracted from the
candidate answer sentences by means of a com-
bination of information-extraction techniques
(named entity recognition) and patterns based
on logical forms. The system participated in the
question answering track of TREC 2004.

1 Introduction

Question answering is an area that is becom-
ing increasingly active in research and is cur-
rently being deployed into practical applica-
tions. Research in question answering has re-
cently been fostered by large-scale programs
like AQUAINT! and evaluation frameworks like
TREC?, NTCIR?, and CLEF?. Such research
and the current need to cope with large vol-
umes of text has led various companies to pro-
duce practical question answering systems. For
example, research groups from Microsoft, IBM,
NTT, Oracle, and Sun have participated in the
question answering track of TREC. In addition,
there are several attempts to provide question-
answering extensions to the current Web search
engines, with demos available by MIT®, LCCS,
and BrainBoost”, among others.

AnswerFinder is an open-domain question an-
swering system that combines information at
the lexical, syntactic, and semantic levels in
various stages to find the exact answer to the
user question. This paper describes the An-
swerFinder system as it stood at the time of the

!www.ic-arda.org/InfoExploit /aquaint /index.html

2trec.nist.gov
3research.nii.ac.jp/ntcir/index-en.html
4clef.jei.pi.cnr.it
Swww.ai.mit.edu/projects/infolab/
www.languagecomputer.com/

6
"www.brainboost.com/

TREC 2004 question answering track. Section 2
introduces TREC and the question answering
track. Section 3 describes the architecture of
the system. Section 4 details the function of
each module within the AnswerFinder system.
Section 5 gives the system performance on the
TREC 2003 question set. Section 6 mentions re-
lated work and Section 7 lists problems with the
AnswerFinder system that should be addressed
in the near future.

2 The TREC 2004 Question
Answering Track

The Text REtrieval Conference (TREC) started
in 1992 as part of the TIPSTER text program.
A fundamental goal of the conference is to pro-
vide an evaluation framework for the compar-
ison of the results of independent information
retrieval systems. The concept of information
retrieval is to be understood in a broad sense,
and this conference has developed various tracks
that focus on specific areas of information re-
trieval, such as ad-hoc (the name given to docu-
ment retrieval), routing, speech, cross-language,
web, video, and very large corpora (Voorhees,
2003).

The question answering track started in 1999
and ever since its creation it has been the most
popular track. Every year the complexity and
difficulty of the task increases. Thus, in 1999
the competing systems were asked to retrieve
small snippets of text containing the answer.
The questions were designed by the participants
and the answer was guaranteed to be in the text
corpus. In the 2004 competition, in contrast,
the questions were extracted from logs of real
questions, the answer is not guaranteed to be
in the corpus, and the systems were asked to
find the exact answers of factoid questions and
list questions. The questions were grouped into
targets, each target containing fact-based ques-
tions and list questions (explicitly marked as
such), plus a question asking to find any other

information relevant to the target. The ques-
tions were encoded in XML as shown in Fig-
ure 1. In this example, the target is Fred Durst,
so question with ID number 2.2 in the figure
is asking What record company is Fred Durst
with?.

<target id = "2" text = "Fred Durst">

<qa>
<q id = "2.1" type="FACTOID">
What is the name of Durst’s group?
</q>
</qa>

<qa>

<q id = "2.2" type="FACTOID">
What record company is he with?
</q>

</qa>

<ga>
<q id = "2.3" type="LIST">
What are titles of the group’s releases?
</q>
</qa>

<ga>

<q id = "2.4" type="FACTOID">
Where was Durst born?

</q>

</qa>

<ga>

<q id = "2.5" type="OTHER">
Other

</q>

</qa>

</target>

Figure 1: A hand-made example of a group of
questions using the TREC 2004 format

The corpus of supporting text was the
AQUAINT corpus, which comprises over 1 mil-
lion news articles taken from the New York
Times, the Associated Press, and the Xin-
hua News Agency newswires. This corpus is
not large in comparison with the terabites of
text available via the Internet, but it is still
large enough to require the need to resort to
shallow-processing preselection methods before
performing a real attempt to find the answer.

3 System Overview

The question answering procedure used by An-
swerFinder follows a pipeline structure that is

typical of rule-based question answering sys-
tems. The process is outlined in Figure 2 and is
as follows:

1. All questions are normalised, so that What
record company is he with? in Figure 1 be-
comes What record company is Fred Durst
with?

2. The questions are classified into types
based upon their expected answer. So the
question How far is it from Mars to Earth?
would be classified as a “Number” question
as it expects a numeric value in response.

3. 100 candidate answer sentences are ex-
tracted from the corpus.

4. The 100 sentences are re-scored based upon
their word overlap, grammatical relations
overlap, and flat logical form overlap with
the question text.

5. Exact answers —fragments like 416 million
miles— are extracted from the candidate
answer sentences.

6. The exact answer list is sorted, re-scored
and filtered for duplicate exact answers.

7. A number of exact answers from the top
of the list are selected, depending on the
question type.

AnswerFinder uses the following knowledge
sources to analyse the question and to select
from among possible answers:

Named entity data generated by the GATE
system (Gaizauskas et al., 1996), marking
pieces of text in the AQUAINT corpus as
one of the types Date, Location, Money,
Organization, and Person. These data are
generated off-line before any question is
processed. GATE’s analysis was extended
with a simple set of regular expressions that
detect numbers as well.

The list of preselected documents
provided by the US National Insti-
tute of Standards and Technology (NIST),
containing for each target entity, the 1,000
top scoring documents for that entity.
NIST co-sponsors the TREC conferences
and it obtained the list of preselected
documents by running the target query
through the PRISE (Harman and Candela,
1990) document retrieval system.

Text
Find Named

—> - —> NIST
Entitl
e Named preselected
entities documents
| v I
L 4
QUEStion) Normalise Process Preselect) Rescore Extract) Rescore) Select Answe)r(s)
AN A .
Question Question [l Candidate Sentences _) Exact Exact Answer(s)
Sentences Answers Answers
Figure 2: System overview
4 Modules AnswerFinder normalises questions in the

4.1 Question Normalisation

AnswerFinder relies heavily on the common in-
formation found between a question and the
candidate answer sentence. Therefore questions
like What record company is he with? need to
undertake an anaphora resolution process to de-
termine that he in fact refers to Fred Durst.

Questions in the TREC 2004 competition co-
referred with previous questions or with their
target in a number of ways.

Questions might co-refer with their target
pronominally:

Target: Fred Durst
Q: What record company is he with?

Questions might co-refer with their target us-
ing a definite noun phrase:

Target: Club Med

Q: How many Club Med vacation spots
are there worldwide?

Questions might co-refer with another ques-
tion:
Target: Fred Durst

Qo.1: What is the name of Durst’s
group?

Qo.3: What are titles of the group’s re-
leases?

Finally, questions may relate to their target
associatively, that is, there may not be a direct
co-reference:

Target: Heaven’s Gate

Q: When did the mass suicide occur?

first case, where the question co-refers with the
target pronominally. It performs a simple re-
placing of pronouns in the question with the
target text, forming a regular plural and pos-
sessive where necessary, as shown in Table 1.

Finally, “other” type questions, which were
of the generic form other, were transformed into
What is TARGET? so that question 2.5 in Fig-
ure 1 is transformed into What is Fred Durst?
This was a crude attempt at doing something
useful with the “other” type questions. Clearly
a more detailed processing of these questions is
required.

4.2 Question Classification

Particular question words signal particular
named entity types required as a response. The
example below requires a person’s name in re-
sponse to the question:

Who founded the Black Panthers orga-
nization?

AnswerFinder uses a set of 29 regular expres-
sions to determine what named entity type a
question requires in its response from the list
person, date, location, money, number, city, or-
ganization, percent, country, state, river, name,
unknown. The regular expressions were devel-
oped with the question set from TREC 2002,
and they produced an accuracy of 78.6% correct
classifications. This figure is lower than the one
reported by other systems like the ones by Pasgca
and Harabagiu (2001) or Zhang and Lee (2003),
each of which reported an accuracy of 90% or
over. The question classification module clearly
needs further refinement, but an evaluation with
the question set from TREC 2003 showed an ac-
curacy of 77%, thus indicating that the regular
expressions generalise well.

What record company is he with? —

How many of its members committed —
suicide?
In what countries are they found? —

What record company is Fred Durst
with?

How many of Heaven’s Gate’s mem-
bers committed suicide?

In what countries are agoutis found?

Table 1: Examples of pronoun resolution performed by AnswerFinder

4.3 Candidate Sentence Extraction

Given the set of AQUAINT documents prese-
lected by the NIST document retrieval system,
AnswerFinder selects 100 sentences from these
documents as candidate answer sentences.

Candidate sentences are selected in the fol-
lowing way:

1. The 1,000 preselected documents provided
by NIST for each target are split into sen-
tences by means of a simple sentence split-
ting process.

2. Each sentence is assigned a numeric score:
1 point for each distinct non-stopword over-
lapping with the question string, and 10
points for the presence of one or more
named entities of the right type. This way
we reward heavily the presence of a string
of the expected answer type.

3. The 100 top scoring sentences are returned
as candidate answer sentences.

As an example of the scoring mechanism, con-
sider this question/sentence pair:

Q: How far is it from Mars to
Earth?

A: According to evidence from the
SNC meteorite, which fell from Mars
to Earth in ancient times, the water
concentration in Martian mantle is es-
timated to be 40 ppm, far less than
the terrestrial equivalents.

The question and sentence have 2 shared non-
stopwords: Mars and Farth. Further, this sen-
tence has a named entity of the required type
(Number): 40 ppm, making the total score for
this sentence 12 points.

4.4 Sentence Re-Scoring

The goal of all the above modules is to reduce
the corpus of text to a list of the 100 sentences
with highest likelihood to contain an answer.

The sentence re-scoring module uses a combi-
nation of lexical, syntactic, and semantic infor-
mation to perform a more detailed analysis of
these sentences:

lexical: The combined word overlap and
named entity score.

syntactic: The grammatical relation overlap
score.

semantic: Overlaps with flat logical form pat-
terns.

We have seen the use of lexical information in
Section 4.3. Below we will see the use of gram-
matical relations and flat logical form patterns,
and the final combinations used in TREC 2004.

4.4.1 Grammatical Relation Overlap

Score

The grammatical relations were initially devised
by Carroll et al. (1998) as a means to normalise
the output of parsers for their comparative eval-
uation. The set of grammatical relations repre-
sent some of the common relations that exist
between the words in a sentence, a selection of
which is shown in Table 2. To build the gram-
matical relations of questions and answer can-
didate sentences, AnswerFinder processes the
output of the Connexor Dependency Functional
Grammar, which is a dependency-based robust
parser with a wide-coverage grammar of English
(Tapanainen and Jarvinen, 1997). Below is an
example of the grammatical relations of a ques-
tion and an answer candidate sentence.

Q: How far is it from Mars to Earth?
(subj be it _)

(xcomp from be mars)

(ncmod - be far)

(ncmod _ far how)

(ncmod earth from to)

A: It is 416 million miles from Mars
to Earth.

(ncmod earth from to)

(subj be it _)

(ncmod from be mars)

Relation Description
CONJ(type,head+) Conjunction
MOD(type,head,dependent) Modifier

CMOD(type,head,dependent)

Clausal modifier

NCMOD(type,head,dependent)

Non-clausal modifier

DETMOD(type,head,dependent) | Determiner
SUBJ(head,dependent,initial_gr) | Subject
OBJ(head,dependent,initial_gr) Object

DOBJ(head,dependent,initial _gr)

Direct object

XCOMP (head,dependent)

Clausal complement without an overt subject

Table 2: Grammatical relations used in this paper

(xcomp _ be mile)
(ncmod _ million 416)
(ncmod - mile million)

The score is the number of relations shared
between question and sentence. In the example
above, the overlap between the grammatical re-
lations of question and candidate sentence is 2,
corresponding to the two grammatical relations
marked in boldface.

4.4.2 Flat Logical Form Patterns

In previous research we have developed a flat
notation for the logical forms of sentences and
a method to produce the logical forms from ar-
bitrary sentences by traversing their syntactic
structures (Molld, 2001; Molld and Hutchinson,
2002). These flat logical forms have been used
to determine the likelihood that a sentence con-
tains the answer by checking the semantic sim-
ilarity of the question with the sentence. In a
similar fashion to grammatical relations, the se-
mantic similarity of two sentences is the number
of logical terms shared between them. Thus if
we have the following logical forms:

Q: What is the population of Iceland?
object(iceland, 06, [x6])
object(population, o4, [x1])
object(what, ol, [x1])

prop(of, p5, [x1, x6])

A: Iceland has a population of 270000
dep(270000, d6, [x6])
object(population,o4,[x4])
object(iceland,ol,[x1])
evt(have,e2,[x1,x4])
prop(of,p5,[x4,x6])

The semantic similarity between the two sen-
tences is 2, as the number of overlaps between

the logical form of question and answer is 2
(overlap shown in boldface). Note that the com-
putation of the overlap is complicated by the
fact that logical terms include variables and it
is necessary to keep the relation between the
variables in the overlapping terms. Thus, in the
example above, the variable x1 in the question
terms corresponds with x4 in the answer candi-
date sentence and therefore whenever x1 is used
in the question, x4 must be used in the answer.
A simple process of Prolog unification suffices
to match the variables of the question terms
with those of the sentence terms, by convert-
ing the question term variables into real Prolog
variables.

Since there are several ways to answer a ques-
tion, for TREC 2004 we have developed a set of
patterns to capture the expected logical form of
sentences that contain the answer to questions.
Below is the matching pattern associated with
the template that we labelled as “what2” and
one of its replacement patterns:

Template “what2” :
Pattern:
object(ObjX,VobjX,[VeX]),
object(what,_,[VeWHAT]),
object(ObjY,VobjY,[VeWHAT)),
prop(of,_,[Vexist WHAT, VeX])

Replacement 1:
dep(ANSWER,ANSW,[VeANSW]),
prop(of,_,[VeY,VeANSW]),
object(ObjX,VobjX,[VeX]),
evt(have,_,[VeX,VeWHAT]),
object(ObjY,VobjY,[VeY])

Borrowing the notation of Prolog variables,
the above template uses forms in uppercase or
“” to express the slots that can unify with log-
ical form components. As the logical form of
What is the population of Iceland? matches the

pattern above (we use standard Prolog unifica-
tion to perform the matching), then its logical
form is transformed into:

Q: What is the population of Iceland?
dep(ANSWER,ANSW,[VeANSW]),
prop(of,_,[VeY,VeANSW]),
object(iceland,06,[x6]),
evt(have,_,[x6,x1]),
object(population,o4,[VeY])

The semantic similarity between this logical
form and the one of Iceland has a population
of 270000 is now 5, since all five terms of the
modified question logical form can be found in
the logical form of the answer and all variables
unify.

In addition to returning the overlap between
a candidate sentence and a matching answer
pattern, AnswerFinder uses the instantiation of
the ANSWER variable to determine the answer:
“270000” in the case of our example.

The introduction of flat logical form patterns
parallels the use of patterns based on regular
expressions, but using the logical level of a sen-
tence instead of the surface level. This way
it is hoped that less patterns are required to
cover a broader range of sentences. In practice,
however, the difficulty to read logical forms by
humans slows down the production of patterns
and replacements. As a result, a small set of 10
patterns were developed for our experiments in
TREC 2004. As we can see in Table 3, most of
the questions from the TREC 2004 test set were
covered by only 4 template patterns and there
was an important number of questions that did
not trigger any pattern.

Template ID | Num. || Template ID | Num.
howmany1 0 how1 1
howmany?2 0 who_generic | 39
what2 3 what_generic | 116
what3 0 what_noun 69
what6 1 no match 78
whenl 47

Table 3: Number of questions triggering each
template; a question may trigger several tem-
plates

The patterns that were triggered most fre-
quently were generic patterns that were intro-
duced to maximise the coverage of the pattern
set. For example, the most frequent pattern,

“what_generic”, is defined so as to allow any
noun to replace the word what:

Template “what_generic” :
Pattern:
object(’what’,_,[XWho))
Replacement:
object(-,ANSWER,[XWho))

4.5 Exact Answer Extraction, Filtering
and Scoring

Having selected and re-ranked the 100 top-
scoring candidate sentences, AnswerFinder then
selects exact answer strings from within them.
AnswerFinder combines the use of named enti-
ties with that of logical form patterns:

1. For each candidate sentence, extract all
named entities that match the question
classification.

2. For each candidate sentence, extract AN-
SWER values from any matching flat logi-
cal form pattern.

Exact answers are scored as follows:

1. If the exact answer is a named entity, its
score is the score of the candidate sentence
it is found in.

2. If the exact answer is an ANSWER value
from a flat logical form pattern, its score
is the score of the candidate sentence it is
found in.

3. If the exact answer is both a named entity
and an ANSWER value from a flat logical
form answer pattern, its score is twice the
score of the candidate sentence it is found
in.

If the same string is extracted from two an-
swer sentences the score becomes the sum of the
scores of the duplicate answers. This way an-
swer redundancy is rewarded.

4.6 Exact Answer Selection

AnswerFinder selects the answers depending on
the type of question:

Factoid questions requiring exactly one an-
swer: return the top scoring answer; or if
there are no answers with a score more than
0, return “NIL” indicating that there were
no answers.

List questions and “other” questions
requiring a number of answers: return all
exact answers within a threshold difference
in score with the top score. If there are no
exact answers with a score of more than 0,
return the top scoring candidate sentence.

5 Performance

After testing several combinations of lexical,
syntactic, and semantic information (see the
work by Molla (2003) for the sort of analy-
sis that we performed), AnswerFinder used two
combinations of scores for the runs submitted
to TREC 2004:

3gro+lfo 3 times the grammatical relation
overlap score added to the flat logical form
pattern overlap score. This combination
was chosen because it gave the best results
in our preliminary experiments with ques-
tion sets taken from past TREC QA con-
ferences.

Ifo The flat logical form pattern overlap score.

Although not explicitly expressed in the
above combinations, lexical information is used
implicitly because the scoring is based on the
output of a preselection module that did use
solely lexical information (word overlap and
named entities), as we have seen in Section 4.3.

In a preliminary analysis of the system we
used the answer patterns provided by Ken
Litkowsky via NIST. These answer patterns
cover all the answers found by the systems par-
ticipating in TREC 2003. We tested our system
with the TREC 2003 questions and checked the
output of the sentence re-scoring module and
the final output of the system. We found that
the re-scoring module gave the highest score to
a sentence containing the answer about 20% of
times. In contrast, the final system returned a
correct and exact answer about 5% of times.

The results of our participation in TREC
2004 are significantly better. In all runs, the
accuracy of the factoid questions is 10%, the
F-score of the list questions is 0.08, and the F-
score of the “other” questions is 0.09. Since the
system was not fine-tuned for the list or “other”
questions only the results of the factoid ques-
tions need to be considered. We believe that
the reason for the better results of the factoid
question with respect to our preliminary anal-
ysis is that Litkowsky’s patterns that we used
did not cover all cases of good answers. In fact,

we tried the patterns on the answers submitted
to TREC 2004 and we obtained an accuracy of
8.59%, which is between the accuracy given by
our preliminary experiments and the one given
by the TREC human assessors. Comparatively
with the other systems participating in TREC
2004, the results are below the median of the
results returned by all the systems (which was
17%). Also, surprisingly, all of our runs had vir-
tually the same results. These unusual results
led us to suspect that a chain of bugs may have
made the system ignore the information pro-
vided by the logical form patterns. Currently
we are analysing the results.

6 Related Work

AnswerFinder as it stood in TREC 2004 differs
from previous versions in several aspects. First
of all, now AnswerFinder uses the Named En-
tity data that has been pre-calculated on the
entire AQUAINT corpus. This way the system
does not need to spend precious time during the
on-line stage when the user is waiting for the an-
swer of the question. Also, in contrast with An-
swerFinder’s participation in TREC 2003 where
it focused on the extraction of passages contain-
ing the answer, now AnswerFinder extracts ex-
act answers and attempts to answer list and def-
inition questions. In the process, AnswerFinder
uses a set of templates based on patterns of log-
ical forms.

The overall architecture of AnswerFinder is
similar to that of other question answering sys-
tems. The aim is to gradually reduce the
amount of text to process through several levels
of increasing complexity. We use an informa-
tion retrieval system to preselect the documents
and information from named entities and the
expected answer type obtained from the ques-
tion to reward the sentences that may contain
the answer. One difference that sets our sys-
tem apart from the majority is the use of log-
ical forms in the process to further scope the
sentences that are most likely to contain the an-
swer. Other question answering systems use log-
ical forms (Harabagiu et al., 2001, for example)
that were developed independently from our re-
search.

But the main difference with respect to other
systems is the use of patterns derived from log-
ical forms to determine the exact answer. A
baseline method that would return the text
tagged by the named entity recogniser has been
used by various systems. Adding further com-

plexity, systems like the one developed by Echi-
habi et al. (2004) use patterns based on named
entities and parts of speech. However, we are
not aware of any other system besides An-
swerFinder that tries to use logical form pat-
terns.

7 Conclusions and Further Work

AnswerFinder is a question answering system
that uses a combination of lexical, syntactic,
and semantic information to find the answer to
the user question. An early version of this sys-
tem participated in the passages section of the
2003 TREC question answering track. After the
equivalent of only 55 person-hours work, the
system ranked above the median of the seven
participating systems. For TREC 2004 we have
included a named entity recogniser and a pro-
cess to find exact answers that uses a combi-
nation of patterns based on logical forms and
named entities.

Current and future work focuses on the re-
fining of the candidate sentence scoring, exact
answer scoring, and pattern development. We
also plan to work on a more detailed processing
of list and definition questions.

For the refining of the sentence scoring, we
are exploring the use of weighted measures for
different types of terms in the flat logical forms.
We are also exploring the integration of graph-
based methods such as the ones developed by
(Montes-y-Gémez et al., 2001).

For the exact answer scoring, we are de-
veloping further logical form patterns to in-
crease their coverage. We will also explore fuzzy
matching methods so that every question will
match at least one pattern.

To facilitate the discovery and development
of logical form patterns, we are studying meth-
ods to increase the readability of the flat logical
forms by converting them into graph structures.

References

John Carroll, Ted Briscoe, and Antonio Sanfil-
ippo. 1998. Parser evaluation: a survey and
a new proposal. In Proc. LREC9S.

Abdessamad Echihabi, Ulf Hermjakob, Eduard
Hovy, Daniel Marcu, Eric Melz, and Deepak
Ravichandran. 2004. How to select an an-
swer string? In Tomek Strzalkowski and
Sanda Harabagiu, editors, Advances in Tex-
tual Question Answering. Kluwer.

Robert Gaizauskas, Hamish Cunningham,
Yorick Wilks, Peter Rodgers, and Kevin

Humphreys. 1996. GATE: an environment to
support research and development in natural
language engineering. In Proceedings of the
8th IEEE International Conference on Tools
with Artificial Intelligence, Toulouse, France.

Sanda Harabagiu, Dan Moldovan, Marius
Pasca, Mihai Surdeanu, Rada Mihalcea, Rox-
ana Girju, Vasile Rus, Finley Lacatusu,
and Razvan Bunescu. 2001. Answering
complex, list and context questions with
LCC’s question-answering server. In Ellen M.
Voorhees and Donna K. Harman, editors,
Proc. TREC 2001, number 500-250 in NIST
Special Publication. NIST.

Donna K. Harman and Gerald Candela. 1990.
Retrieving records from a gigabyte of text
on a minicomputer using statistical ranking.
Journal of the American Society for Informa-
tion Science, 41(8):581-589.

Diego Mollda and Ben Hutchinson. 2002.
Dependency-based semantic interpretation
for answer extraction. In Proc. 2002 Aus-
tralasian NLP Workshop.

Diego Molla. 2001. Ontologically promiscuous
flat logical forms for NLP. In Harry Bunt,
Ielka van der Sluis, and Elias Thijsse, edi-
tors, Proceedings of IWCS-4, pages 249-265.
Tilburg University.

Diego Molla. 2003. Towards semantic-based
overlap measures for question answering. In
Proc. ALTW03, pages 130-137, Melbourne.

Manuel Montes-y-Gémez, Alexander Gelbukh,
and Ricardo Baeza-Yates. 2001. Flexi-
ble comparison of conceptual graphs. In
Proc. DEXA-2001, number 2113 in Lecture
Notes in Computer Science, pages 102-111.
Springer-Verlag.

Marius A. Pagca and Sanda M. Harabagiu.
2001. High performance question answering.
In Proc. SIGIR’01, New Orleans, Luisiana,
USA. ACM.

Pasi Tapanainen and Timo Jarvinen. 1997. A
non-projective dependency parser. In Proc.
ANLP-97. ACL.

Ellen M. Voorhees and Lori P. Buckland, edi-
tors. 2003. The Twelfth Text REtrieval Con-
ference (TREC 2003), number 500-255 in
NIST Special Publication. NIST.

Ellen M. Voorhees. 2003. Overview of TREC
2003. In Voorhees and Buckland (Voorhees
and Buckland, 2003).

Dell Zhang and See Sun Lee. 2003. Question
classification using support vector machines.

In Proc. SIGIR 03. ACM.

