
Document Classification in Structured Military Messages

Abstract

We present new results for the DSTO
project on document classification of
military messages. We report more
specifically on the improvements to the
Part-Of-Speech (POS) tagging, a
probabilistic process that assigns a tag to
a token, and discuss the training for Date
Time Groups POS tags. A new
implementation of the rule-based
classifier is described. The results
obtained on two databases of real military
messages are encouraging and the
document classification module has now
been integrated with a query user
interface.

1 Introduction

In (Carr and Estival, 2002), we presented the first
tentative results of the Document Classification
project we have been conducting at DSTO and we
discussed the shortcomings of the approach we
were using. In this paper, we present the results we
have obtained in the continuation of that project,
after having implemented improvements in the
POS tagging component and taken a different
approach for the rule-based classifier component.
These results show that rule-based classifiers can
give reasonable results for structured textual
information, when using appropriate language
models for POS tagging.

1.1 Goals of the project

A large part of the Defence Information
Environment (DIE) used at the Deployable Joint
Force Headquarters (DJFHQ) is based on Lotus
collaborative and messaging applications. The
staff members of DJFHQ use Lotus databases to

log operational events and Lotus e-mail for actions
and administrative functions. Around 200
messages per day are entered into these Lotus
Notes log databases. Many DJFHQ staff members
have expressed difficulty in finding particular
information in their information reservoirs and our
goal is to develop a more effective query interface
between DJFHQ staff and their information
reservoirs. This work already resulted in the
development of the Query Building Interface
(QBI), which was designed to create a better
search interface to multiple log databases and to
the users e-mail database. The rule-based
Document Classifier we describe here has been
trained and evaluated on Lotus operational log
databases (OPS logs) from DJFHQ. It can now
provide a categorisation for each document from
the OPS logs and is integrated with QBI, as
described in Section 7.2.

1.2 Proposed Architecture

Fig.1 below shows how QBI and the Document
Classifier could be integrated in the existing IT
infrastructure. In this new Server Environment,
both QBI and the Document Classifier interface
with the Lotus Notes database.

Lotus Notes
Client

Lotus Databases Lotus E-mail

Speech
Synthesis

Query Building
InterfaceOPS Log

User

Document
Classifier

PC's

Server Environment
Fig.1 Proposed Architecture

In this architecture, users enter and access
documents through Lotus Notes as they do now,
and they receive notification of the document
classification. One possible scenario is to use a
Text-to-Speech module to warn of the arrival of

Oliver Carr and Dominique Estival
Human Systems Integration Group
Command and Control Division

Defence Science and Technology Organisation
{Oliver.Carr,Dominique.Estival}@dsto.defence.gov.au

some pre-specified document types, eg. NOTICAS
(Notification of Casualty) or MEDSITREP
(Medical Situation Report). For a NOTICAS, the
injured person's details could be automatically
retrieved and read out to the Commander or sent to
a different display.

1.3 Structure of the system

The Document Classifier module in Fig.1 is named
SOP-MRC (Standard Operating Procedures Rule
Based Multiclass Classifier), and as shown in
Fig.2, it consists of two main components: a Part-
Of-Speech (POS) Tagger and a Classifier.

Fig. 2 The SOP-MRC module

The POS Tagger component, described in Section
3, is a probabilistic process that assigns a tag to a
token. We also describe the training of this
component in Section 3 and present our extension
of the POS tagset for the military message data.

The Classifier component, described in Section
4, takes as input the list of pairs <token> <tag>
produced by the POS Tagger for an incoming
message and uses rules to determine the document
type (including "free text") of the message.

We present in Section 5 the results we obtained
on data from two military exercises. One database
(VP-02) contains messages used to train the POS
Tagger and to develop the classifier rules. The
second database (TT-01) contains similar
documents from another military exercise.

2 Shortcomings of the previous approach

There were two types of problems with the first
approach we took to classify the SOP documents
from the DJFHQ message database. The first one
was that the data did not conform to expectations
and the second one was that the classification rules
were too brittle. Both issues have been addressed
by the new approach to writing the classification
rules described in Section 4.2.

DJFHQ operators use formatted text in the
free text fields of their Lotus Notes operational log
databases. This formatted text is defined by
Standard Operating Procedure (SOP) documents,
and there are 88 different SOP Document Types
corresponding to different message types. Our first
approach had been to define rules based on the
definition of the SOPs, which are available to the
operators writing those messages as MS Word
documents. However, the actual messages often do
not follow the format prescribed by the SOPs and,
in addition, they often contain attachments and
other material, which makes classification more
difficult. The new rules now take into account
variations in the way operators actually write their
messages and allow more flexibility in the
classification. This is described in Section 4.

Another problem was that the POS tagset used
by our POS Tagger did not cover some token types
that are very important in military messages. In
particular, one lesson from our earlier work was
that it is necessary to recognise Date Time Group
(DTG) expressions and that we would have to
develop our own tagset to fit the military domain.
The additions we made to the POS tagset, are
discussed in more detail in Sections 3.2 and 3.5.

3 POS Tagging

3.1 QTAG

The POS tagger we chose to use is Qtag, a portable
trainable language-independent probabilistic tagger
developed by the University of Birmingham
(Mason, 2003; Tufis and Mason, 1998). There are
several training corpora available on the Internet to
train POS taggers.1 Qtag was originally trained
with the Industrial Parsing of Software Manuals
(IPSM) (Sutcliffe et al, 1996), which uses the Penn
Treebank tagset, and it comes with the
Birmingham – Lancaster Tagset and the associated
resource file trained for English.

Qtag takes free text as input and outputs
SGML, with each line containing the tag and the
token it corresponds to. An example of input from
our corpus and of the output produced by Qtag is
given in Fig. 3.

1 See e.g. the Automatic Mapping Among Lexico-
Grammatical Annotation Models (AMALGAM) project:
http://www.comp.leeds.ac.uk/amalgam/amalgam/multi-
parsed.html

Input (VP-02) Qtag Output
From HQCLSC,

HSS facilities

allocated to
CLSC as

follows, A. 34

Fd Hosp (U.K)

<w pos="IN">From</w>

<w pos="JJ">HQCLSC</w>

<w pos=",">,</w>
<w pos="NN">HSS</w>

<w pos="NNS">facilities</w>

<w pos="VBN">allocated</w>
<w pos="TO">to</w>

<w pos="NN">CLSC</w>
<w pos="CS">as</w>

<w pos="VBZ">follows</w>

<w pos=",">,</w>
<w pos="NN">A.</w>

<w pos="CD">34</w>

<w pos="NN">Fd</w>
<w pos="NN">Hosp</w>

<w pos="NN">(U.K)</w>

 Fig. 3 Output of Qtag using original tagset

To deal with the particular type of text contained in
SOP documents, 59 new POS tags (mainly
formatting tags) were added to the original tagset
of 45 tags. Fig. 4 shows the same text as Fig. 3,
tagged by Qtag using the language model
containing these additional domain specific tags.2,3

Input (VP-02) Qtag Output
From HQCLSC,
HSS facilities

allocated to

CLSC as
follows, A. 34

Fd Hosp (U.K)

<w pos="From">From</w>
<w pos="VB">HQCLSC</w>

<w pos=",">,</w>

<w pos="NN">HSS</w>
<w pos="NNS">facilities</w>

<w pos="VBN">allocated</w>
<w pos="TO">to</w>

<w pos="NN">CLSC</w>

<w pos="as">as</w>
<w pos="NPS">follows</w>

<w pos=",">,</w>

<w pos="FrmA">A.</w>
<w pos="CD">34</w>

<w pos="NN">Fd</w>
<w pos="NN">Hosp</w>

<w pos="JJ">(U.K)</w>

 Fig. 4 Output of Qtag using new tagset

3.2 Date Time Groups (DTGs)

As was described in (Carr and Estival, 2002), the
analysis of our previous results showed that they
were unsatisfactory in part because the POS
Tagger did not recognise Date Time Groups
(DTGs), which are very common in our texts, and

2 HQCLSC stands for "Headquarters Combined Logistics
Support Command". Note that the POS tags assigned to it (JJ
in Fig.3 and VB in Fig.4) are incorrect, as are several of the
other tags.
3 The tag <FrmA>, meaning a "formatted A character",
covers the strings "\nA.", "\n(A)" and "\nA)".

which play an important role in document type
recognition for SOPs. For the purpose of document
classification, a DTG is a single unit of
information, but there are 3 types of DTGs that
appear in the SOPs:
• DTG_S, with time and time zone information,
• DTG_M, with day, time and time zone

information,
• DTG_L, with day, time, time zone, month, and

year information.
Examples of these are given in (1) with their
corresponding POS tag.

(1) DTG_S 1259Z
 DTG_M 310745Z
 DTG_L 200830ZAUG02

Although the 3 different types of DTGs are not
often distinguished by the classifier rules, the POS
Tagger needs to be trained on these 3 different
DTG types, to avoid confusion with other
alphanumeric strings. (2) is an example of the
output from Qtag, where the DTG_S tag is
correctly assigned to the text "1100K".

(2) <w pos="at">AT</w>
 <w pos="DTG_S">1100K</w>
 <w pos="NN">C130</w>

As shown in Table 1, the baseline performance of
Qtag (trained on 80% of the VP-02 data and tested
on the remaining 20%) for DTGs was fairly low.
This is due to the inadequate training data for
DTGs in this corpus, which comes from one
military exercise covering a short period of time,
and thus conatining few variations for dates.

 POS Baseline

 DTG_S DTG_M DTG_L All Tags

Recall 9.68% 15.72% 24.28% 74.39%

Precision 6.90% 13.74% 14.86% 75.23%

 Table 1 Baseline Performance of Qtag

3.3 Training with additional data.

To improve recognition of DTGs, we decided to
create additional examples of DTGs to boost the
training data for Qtag. For each of the DTG types,
additional data was created in a systematic way to
obtain instances of DTGs covering a wider range
of dates and times. Table 2 shows the performance
of Qtag with additional training data for DTGs.

additional DTG_M

 DTG_S DTG_M DTG_L All Tags

Recall 100.00% 98.91% 95.65% 90.81%

Precision 80.52% 98.91% 95.65% 85.94%

 additional DTG_S

 DTG_S DTG_M DTG_L All Tags

Recall 100.00% 98.91% 95.65% 92.75%

Precision 80.52% 98.91% 95.65% 87.77%

 additional DTG_L

 DTG_S DTG_M DTG_L All Tags

Recall 100.00% 98.91% 95.65% 90.95%

Precision 80.52% 98.91% 59.46% 85.94%

Table 2 Additional training data for DTGs

Since the worst performing category had been
DTG_M, we first added 482 additional instances of
DTG_M to the training file for Qtag. The same
process was repeated for DTG_S and DTG_L, with
158 and 8,063 additional instances respectively.

3.4 Overtraining

Table 2 shows that the performance of Qtag
improved when the DTG_M data was first added
but decreased significantly after DTG_L data was
added (additional DTG_S training data did not
make any significant difference). The decrease in
performance after the DTG_L data was added is
due to overtraining of Qtag. Using the same
recursive algorithm, adding year information leads
to the creation of many more instances of DTG_L
than DTG_M and DTG_S and skews the training
data, resulting in many false positives for that
category. Since the training text with the added
DTG_M and DTG_S gave the best performance,
this is what we used to create the Qtag language
model.

3.5 New POS tags for measure units

Table 3 shows examples of DTG tokens that were
miscategorised by Qtag. We can see that most of
these are in fact genuine DTGs, which is good
news since the classifier rules are not concerned
with the type of DTG (DTG_S, DTG_M, or
DTG_L) but only with the occurrence of a DTG.

Number Example Tag Correct Tag(s)

1 030/02OF170015ZMAY02 NN DTG_L

1 2100S DTG_S LAT_LONG_S

2 4000FT, DTG_S DST

8 4000L DTG_S WGT

5 171659Z NN DTG_M

13 WEST req NN

8 5000M DTG_S DST

32 (2)AT NN Frm2 at

7 (0.5-0.7 NN CD

1 A.151206KMAR02 NN FrmA DTG_L

2 PD:130800K NN Pd DTG_M

1 C.LAND NN FrmC VB

Table 3 Errors in POS tagging for DTGs

Further analysis of the miscategorisations shown in
Table 3 suggests ways in which the performance of
the POS Tagger can be improved:
§ add additional training data for DTGs with

different minute information than 0 or 5;
§ add POS tags for measure units, such as

<WGT> for weights, <DST> for distances,
<SPD> for speeds,

§ add POS tags for the various different types
of Latitude and Longitude information or
Grid reference.

Some examples are given in (3).

(3) <w pos= "WGT">2500KG</w>
 <w pos ="DST">500NM</w>
 <w pos = LATLONG>15.35S/151.20E </w>

In the end, 71 extra tags were added to the tagset,
giving a total of 116 POS tags.2 The new Qtag
language model was trained on 80% of the POS
tags from the VP-02 data. The remaining 20%
(36862 tags from 430 messages from VP-02) were
used to test the performance of the POS Tagger.
Table 4 shows the results obtained for the DTG_S,
DTG_M and DTG_L tags, after Qtag was trained
with the additional training data for the new
measure units POS tags.

New Tags Recall Precision

DTG_S 100.00% 91.18%

DTG_M 98.91% 99.27%

DTG_L 97.34% 100.00%

Table 4 DTGs with new language model

2 There were 57 tags for formatting, 3 for DTGs, 3 for
measure units and 6 for Lat/Long/Grid. Only 111 out of the
116 different POS tags appear in our test data.

Table 5 shows the overall results for Qtag using
the macroaverage and microaverage statistics as
described in (Sebastiani, 2001). Almost half of the
POS tags in the test data were <NN>. We believe
using the microaverage result without <NN> gives
a better indication of performance.

 Recall and Precision Averages Recall Precision

Macroaverage 89.69% 95.65%

Microaverage 97.84% 97.08%

Microaverage (no NN) 92.67% 94.75%

Table 5 Overall Performance of Qtag

4 Rule-based Classifier

Unlike most work on document classification (see
Jackson and Moulinier, 2002, or Manning and
Schütze, 1999), we do not rely on the semantic
content of the documents to classify our
documents, but take advantage of the very highly
constrained structure of the documents. This is an
example of Category-Pivoted Text Classification
where the classifier is given a classification and
must find which messages should be assigned to a
given class, as opposed to Document-Pivoted Text
Classification, which tries to determine the
appropriate classifications for a set of documents
(Sebastiani, 2002).

Quoting from (Jackson and Moulinier, 2002),
there are two views of NLP: "Symbolic NLP tends
to work top-down by imposing known grammatical
patterns and meaning associations upon texts.
Empirical NLP tends to work bottom-up from the
texts themselves, looking for patterns and
associations to model, some of which may not
correspond to purely syntactic or semantic
relationships." Empirical NLP has been widely
used since the early 1990's while Symbolic NLP
has been viewed less favourably. The system we
describe here is in the tradition of Symbolic NLP,
as the categories we use have been pre-defined and
do not emerge from the data. However, at this
point, classification is mainly performed on the
basis of formatting structures, not on linguistic
constructs.

Our first rule-based classifier used an "if, else"
structure to parse the tags returned from Qtag one
at a time. The document type was determined
solely on the basis of the previous tag and the

current tag, and only <Start> tags and the last one
or two <End> tags were used to classify a
message. A large amount of code (in Python) was
written to implement this method, which turned out
to be neither efficient nor successful.

Our first approach was too optimistic and too
reliant on the document structure given in the
SOPs, and our rules did not perform well. Our
second implementation of a rule-based classifier
uses regular expressions to state the rules. Regular
expressions allow us to define more detailed rules
and they also allow for more flexibility.

4.1 Regular Expressions as rules

As discussed in (Carr and Estival, 2002), the
discrepancy between the format prescribed by the
SOPs and the real text input by the operators was
one of the main causes of errors. The use of regular
expressions as rules allows flexibility in rule
definition and result in shorter and more effective
code. Several rules can be written to recognise one
SOP document type.

The output of Qtag is read into a string. This
string contains the list of POS tags for a message.
Each rule recognises the tags for one SOP
document type and allows any number of other
tags in between. Only those POS tags required by
the classifier rules are read into the Classifier.
Having all the POS tags in a string also allows
message headers and multiple SOPs to be pruned
off or recognised differently very easily.

We give in (4) an example of a classifier rule
for document type "P", where there can be any
number of tags before <Frm1> and at least one
instance of the separator or more tags before
<Frm2>. In (5), we give an example of a message
containing a document of type "P".

(4) P = ([a-za-z]|[A-Za-za-z0-9]|[A-ZA-Z]|[DTG_S]|[
DTG_M]|[DTG_L]|[a-za-za-za-za-za-za-z]|[A-Za-za-za-z]|[
]]){0,}Frm1([a-za-z]|[A-Za-za-z0-9]|[A-ZA-Z]|[DTG_S]|[
DTG_M]|[DTG_L]|[a-za-za-za-za-za-za-z]|[A-Za-za-za-z]|[
]]){1,}Frm2.([a-za-z]|[A-Za-za-z0-9]| [A-ZA-Z]|[DTG_S]|[
DTG_M]|[DTG_L]|[a-za-za-za-za-za-za-z]|[A-Za-za-za-z]|[
]]){0,}

(5) CD DTG_M Frm1 CD From at Frm2 DTG_L

4.2 SOP-MRC rules

As mentioned earlier, the classifier rules were first
created following the 88 SOP document
definitions. They were later derived from a corpus

analysis and further refined after analysis of the
results on the same corpus. The rules use mostly
POS tags relating to formatting, eg. <Frm1>
("formatted 1") or <FrmB> ("formatted B"), but
also some content information, with the POS tags
for DTGs and <CD> (number). A total of 66 rules
were used to recognise the 37 document types that
appeared in the VP-02 data. Of these 66 rules, 44
rely on the POS tags for DTGs or <CD>.

One disadvantage of using regular expressions
to implement classifier rules might be that they can
be fairly long. The example in (4) is one of the
shortest rules in terms of number of elements.
However, this problem can be alleviated by the use
of named groups and the Python interpreter is
useful to test the regular expressions before they
are included into the classifier.

It is also worth noting that these handcrafted
rules were in fact written very quickly, much more
quickly than "one rule in two days" as described by
(Jackson and Moulinier, 2002).

Each message is tested against all the rules for
SOP document types. If no match is found, then
the document is assigned to the document type
"Free Text". Some rules are in fact subsets of other
rules. This defines a hierarchy of rules which can
be used to determine the correct SOP document
type, see Section 6.

5 Results

We present the results obtained by SOP-MRC on
two different message databases. The VP-02
database was used for training the POS Tagger and
to define the classifier rules. It contains 2328
messages and 37 document types. The TT-01
database contains 3131 messages and 18 document
types. The detailed results for each document type,
for both VP-02 and TT-01, are given in Appendix
1 and 2.

The first part of Table 6 shows the overall
results of SOP-MRC for VP-02. Since over 75% of
the messages are "Free Text", we also show the
microaverage result without the "Free Text"
category to give a better indication of performance.

The second part of Table 6 shows the overall
results of SOP-MRC for TT-01. In this corpus,
over 85% of the messages are "Free Text" and the
microaverage result is again given without the
"Free Text" category.

Recall and Precision Averages Recall Precision

VP-02

Macroaverage 79.99% 67.94%

Microaverage 82.49% 81.52%

Microaverage (no Free Text) 70.53% 43.41%

TT01

Macroaverage 12.72% 13.09%

Microaverage 86.77% 83.88%

Microaverage (no Free Text) 77.39% 26.81%

 Table 7 SOP-MRC for VP-02 and TT01

These results are very encouraging. Although the
macroaverage for TT-01 is not very good, this is
explained by the fact that there were a number of
False Positives for document types which do not
occur in this data (see Appendix 2). The
microaverage shows that the document types with
larger numbers of documents are giving as good
results for the new unseen data as for VP-02.

An explanation for the discrepancies between
the document types used in VP-02 and in TT-01 is
that the SOP definitions were actually developed at
DJFHQ, and that VP-02 was a military exercise
which only involved that headquarters, with all the
messages coming from DJFHQ, while TT-01 was a
four nation exercise, with messages coming from a
number of different headquarters.

Another issue concerns the "Shift Handover"
documents. The Shift Handover form is filled in by
officers "handing over" their shift to another
officer who "watches" the database for outstanding
issues, and is a summary of the past 12 or 24
hours. Although this form is essentially free text,
because the officers tend to think in terms of
formatted documents, they often write it as another
formatted document, eg. with numbered items for
new paragraphs. If we classified the Shift
Handover form as "Free Text", the accuracy would
improve. This can be seen as another example of
the well-know fact that the operator or human
element is a large factor in system success.

6 Multilabel classification

One of the lessons from our earlier work was that
we needed to use a multilabel classification rather
than a simple multiclass classification. In
multiclass classification, each message is assigned
to only one of several possible classes, while in a
multilabel classification, a message can be
assigned to one or more classes (Lewis, 2002). Our

new classifier rules now perform a type of
multilabel classification, by assigning a complex
label to each message. An example of this complex
label is shown in (6).3

(6) C:B:A:Free Text

This example shows the output of a message that
contains a document of type C. As mentioned
above, some rules are actually subsets of other
rules, thereby defining a hierarchy of document
types. In this case, the rule for document type C
includes the rule for document type B, which
includes the rule for document type A; thus A and
B are also included in the complex label, as well as
Free Text, the default classification.

In our current implementation, we choose the
label returned by the more specific rule in the
complex label, and return it as the single label, or
multiclass classification, for the message being
classified (in this case, C). Although Sebastiani
(2002) argues that a multilabel classifier cannot be
used as a single label classifier, the complex label
that is returned by our classifier component is in
fact a multilabel classification in terms of the
hierarchical structure of the classifier rules. This
hierarchy can be thought of as a set of binary
classifiers (implemented as classifier rules) listed
in order, from smallest (more general) to largest
(more specific). This set is ordered such that a
document type is a subset (in terms of structure,
not content) of the next document type.4

7 Conclusions and future work

7.1 Improvements

The expanded POS tagset provides a better
coverage for the texts in our domain, and the POS
Tagger component is now trained for the real data
found in military message databases.

The new classifier component is much cleaner
and more efficient. Python provides high-level
methods to implement regular expressions and use

3 The names of the document types have been replaced by
alphabetical labels for presentation; in the real system, the
categories have meaningful labels.
4 For example, a MEDSITREP (Medical Situation Report) is
conceptually a kind of SITREP (Situation Report), but a
SITREP is not a kind of "Free Text", even though the rules for
"SITREP" and "Free Text" are in a subset relation.

them to search strings of text, which makes it
easier to modify the classifier and to add or change
the rules.

The results on a new database of messages,
which were not used to create the classifier rules,
are encouraging and indicate that we can improve
the performance of SOP-MRC with little effort.

7.2 Integration with QBI

QBI is an improved search interface to the Lotus
Notes operational log database used at DJFHQ,
which is developed by the same DSTO team as
SOP-MRC. We aim to incorporate the output of
SOP-MRC with QBI by providing a category-
pivoted view of the documents as categorised by
SOP-MRC. An example of this view is shown in
Fig. 5.

The categorised view will allow the users of the
QBI to quickly find messages in a Lotus Notes
operational log database by using document types
to limit their search or to locate the relevant
message.

7.3 Other Improvements to SOP-MRC

The performance of the POS Tagger could be
improved by pre-processing the messages. Text
such as "10 KM" could be normalised to "10KM"
so the POS Tagger can properly tag it <DST>
rather than <CD> <NN>. This would also help
improve the classifier’s performance.

The current implementation relies on a one-to-
one correspondence between classifier rules and
document types. We are looking at another
approach, in which a classifier rule would be a
subset of a number of rules for a few document
types, in other words we would have a more
general rule for a set of document types. This
would correspond to implementing the true
multilabel classification mentioned in Section 6,
where the hierarchy of rules also correspond to the
conceptual hierarchy of document types.

Fig. 5 Screenshot of QBI with SOP-MRC

If an incoming message matches the more general
rule, it can then be tested against more specific
rules. If the message fails to match one of these,
then other methods can be used to determine the
more specific document type, but at least the more
general category can be kept, rather than defaulting
to "Free Text", as is currently the case.

Further analysis to determine the more specific
document type would involve the number of
certain POS tags, the ordering of these tags or the
absence of certain tags.

Another improvement concerns the addition of
further POS tags for our domain, for example, tags
for unit names and ranks. This information would
also be useful in further work on both document
classification and information extraction. For
instance, it would allow extracting information
about which units are involved or identify the
personnel injured from NOTICAS messages.

We are also investigating the development of a
trainable system, using approaches such as TF-
IDF, Rocchio Method, Support Vector Machines
or hybrid solutions such as Learning from Positive
and Unlabeled text documents (Jackson and
Moulinier, 2002; Joachims, 1998; Vapnik, 1995;
Lee and Lui, 2003).

References
Carr, O. and Estival, D. (2002) Text Classification of

Formatted Text Document. Proceedings of the 5th
Australasian Natural Language Processing
Workshop. Canberra. pp. 49-54.

Jackson, Peter and Moulinier, Isabelle (2002) Natural
Language Processing for Online Applications – Text

Retrieval, Extraction and Categorization, Vol. 5,
Natural Language Processing, John Benjamin
Publishing Company, Philadelphia.

Joachims, T. (1998) Text Categorization with Support
Vector Machines: Learning with Many Relevant
Features. Proceedings of the European Conference
on Machine Learning, Springer.

Johnson, D.E., Oles, F.J., Zhang, T., Goetz, T. (2002),
A Decision-Tree-Based Symbolic Rule Induction
System for Text Categorization, IBM Systems
Journal, Vol. 41, No. 3, IBM Corporation.

Lee, W.S. and Liu, B. (2003) Learning with Positive
and Unlabeled Examples using Weighted Logistic
Regression. Proceedings of the Twentieth
International Conference on Machine Learning
(ICML-2003), Washington, DC, USA.

Lewis, David (2002). Machine Learning for Text
Classification Applications, Tutorial. 40th Meeting
of the Association of Computational Linguistics,
University of Pennsylvania. Philadelphia, USA.

Manning, C.D. and Schütze, H. (1999). Foundations of
Statistical Natural Language Processing. MIT Press,
Cambridge, Massachusetts.

Mason, Oliver (2003). Qtag 3.1. Department of English,
School of Humanities, University of Birmingham,
http://web.bham.ac.uk/O.Mason/software/tagger/

Sebastiani, Fabrizio. (2002). Machine Learning in
Automated Text Categorization. ACM Computing
Surveys, Vol. 34, No. 1, pp. 1-47.

Sutcliffe, Richard, Koch, Heinz-Detlev and McElligott,
Anne (eds) (1996), Industrial Parsing of Software
Manuals. Amsterdam, Rodopi.

Tufis, Dan and Mason, Oliver (1998). Tagging
Romanian Texts: a Case Study for QTAG, a
Language Independent Probabilistic Tagger,
Proceedings of the First International Conference on
Language Resources & Evaluation (LREC), Granada,
Spain, 28-30 May 1998, p.589-596.

Vapnik, V. N. (1995) The Nature of Statistical Learning
Theory. Springer-Verlag, New York.

Doc Type Gold Total TP FP FN Recall Precision

A 1 2 1 1 0 100.00% 50.00%

B 1 1 1 0 0 100.00% 100.00%

C 10 6 6 0 4 60.00% 100.00%

D 2 5 1 4 1 50.00% 20.00%

E 14 10 3 7 11 21.43% 30.00%

F 1 2 1 1 0 100.00% 50.00%

G 6 5 4 1 2 66.67% 80.00%

H 1 1 1 0 0 100.00% 100.00%

I 2 2 2 0 0 100.00% 100.00%

J 1 3 1 2 0 100.00% 33.33%

K 11 18 7 11 4 63.64% 38.89%

L 33 16 9 7 24 27.27% 56.25%

Free Text 1846 1657 1625 32 221 88.03% 98.07%

M 3 2 2 0 1 66.67% 100.00%

N 19 28 8 20 11 42.11% 28.57%

O 2 4 2 2 0 100.00% 50.00%

P 164 391 131 260 33 79.88% 33.50%

Q 34 22 13 9 21 38.24% 59.09%

R 3 3 3 0 0 100.00% 100.00%

S 32 27 27 0 5 84.38% 100.00%

T 1 4 1 3 0 100.00% 25.00%

U 20 30 18 12 2 90.00% 60.00%

V 5 5 5 0 0 100.00% 100.00%

W 1 3 1 2 0 100.00% 33.33%

X 1 2 1 1 0 100.00% 50.00%

Y 5 2 2 0 3 40.00% 100.00%

Z 1 11 1 10 0 100.00% 9.09%

AA 1 1 1 0 0 100.00% 100.00%

BB 2 3 2 1 0 100.00% 66.67%

CC 1 1 1 0 0 100.00% 100.00%

DD 81 31 31 0 50 38.27% 100.00%

EE 3 4 2 2 1 66.67% 50.00%

FF 1 2 1 1 0 100.00% 50.00%

GG 1 1 1 0 0 100.00% 100.00%

HH 1 1 1 0 0 100.00% 100.00%

II 13 19 8 11 5 61.54% 42.11%

JJ 4 3 3 0 1 75.00% 100.00%

Total 2328 2328

Appendix 1 SOP-MRC on VP02

Doc Type Gold Total TP FP FN Recall Precision

A 0 1 0 1 0 0.00% 0.00%
B 0 1 0 1 0 0.00% 0.00%
C 1 0 0 0 1 0.00% 0.00%
D 2 0 0 0 2 0.00% 0.00%
E 10 11 0 11 10 0.00% 0.00%
F 0 1 0 1 0 0.00% 0.00%
G 0 1 0 1 0 0.00% 0.00%
J 0 2 0 2 0 0.00% 0.00%
K 0 14 0 14 0 0.00% 0.00%
L 26 10 4 6 22 15.38% 40.00%

Free Text 2767 2493 2471 22 296 89.30% 99.12%
M 0 1 0 1 0 0.00% 0.00%
N 5 26 3 23 2 60.00% 11.54%
O 2 2 2 0 0 100.00% 100.00%
P 176 521 167 354 9 94.89% 32.05%
Q 57 0 0 0 57 0.00% 0.00%
S 5 1 0 1 5 0.00% 0.00%
T 0 3 0 3 0 0.00% 0.00%
U 0 1 0 1 0 0.00% 0.00%
V 1 0 0 0 1 0.00% 0.00%
W 0 3 0 3 0 0.00% 0.00%
Y 0 1 0 1 0 0.00% 0.00%
Z 0 7 0 7 0 0.00% 0.00%

AA 14 0 0 0 14 0.00% 0.00%
CC 1 0 0 0 1 0.00% 0.00%
DD 50 10 1 9 49 2.00% 10.00%
EE 2 16 0 16 2 0.00% 0.00%
FF 1 0 0 0 1 0.00% 0.00%
II 3 1 0 1 3 0.00% 0.00%
JJ 5 1 1 0 4 20.00% 100.00%

Total 3128 3128

Appendix 2 SOP-MRC on TT01

