The Importance of High Quality Input for WSD:
An Application-Oriented Comparison of Part-of-Speech Taggers

Tanja Gaustad
Humanities Computing
University of Groningen
PO. Box 716
9700 AS Groningen, The Netherlands
Tel +31-(0)50-363 59 77
Fax +31-(0)50-363 68 55
T. Gaust ad@ et . rug. nl

Abstract

In this paper, we present an application-
oriented evaluation of three Part-of-
Speech (PoS) taggers in a word sense
disambiguation (WSD) system. Follow-
ing the intuition that high quality input is
likely to influence the final results of a
complex system, we test whether the more
accurate taggers also produce better re-
sults when integrated into the WSD sys-
tem. For this purpose, a stand-alone eval-
uation of the PoS taggers is used to assess
which tagger is the most accurate. The re-
sults of the WSD task, computed on the
training section of the Dutch Senseval-2
data, including the PoS information from
all three taggers show that the most ac-
curate PoS tags do indeed lead to the
best results, thereby verifying our hypoth-
esis. A surprising result, however, is the
fact that the performance of the complex
WSD system with the different PoS tags
included does not necessarily reflect the
stand-alone accuracy of the PoS taggers.

1 Introduction

Certain NLP tools are typically used as a sub-
component or a pre-processor in a more complex
system, rather than as a complete application in their
own right. A typical example of such tools are Part-
of-Speech (PoS) taggers. What is usually not taken
into account is the fact that the quality (in terms

of accuracy) of each subpart of a complex system
is likely to influence the final results considerably.
Lately, standardized evaluation of NLP resources
has gained more importance in the field of Compu-
tational Linguistics (e.g. CLEF workshops in infor-
mation retrieval, Parseval, Senseval), but a tendency
towards more application-oriented evaluation is only
beginning.

In this paper, we will proceed to an application-
oriented comparison of three PoS taggers in a word
sense disambiguation (WSD) system. We will eval-
uate to what extent differences in stand-alone PoS
accuracy influence the results obtained in the com-
plex WSD system using the acquired PoS informa-
tion. Since the Dutch data we use is not only am-
biguous with regard to meaning but also with regard
to PoS, accurate PoS information is very important
to achieve high disambiguation accuracy.

The paper is structured as follows: We will start
with a detailed description and comparison of the
three PoS taggers including a stand-alone evalua-
tion in order to compare their performance indepen-
dently of the application to the WSD task. Then fol-
lows a description of the WSD system in which (the
output of) the different PoS taggers will be incorpo-
rated and tested. This includes a presentation of the
machine learning algorithm employed for classifica-
tion (maximum entropy) and its application to WSD,
as well as a note on the data and the settings used
for the reported experiments. Next, the application-
dependent results of the three PoS taggers will be
presented and discussed. We end the paper with con-
clusions and some ideas for future work.

2 Comparison of Part-of-Speech Taggers

The PoS taggers we compare in this article are:

e a Hidden Markov Model tagger (section 2.1),
e a Memory-Based tagger (section 2.2),
e atransformation-based tagger (section 2.3).

We chose these three taggers because they were
readily available, could easily be trained for Dutch
without major changes in the architecture, and repre-
sent distinct, widely used types of existing PoS tag-
gers.

All three taggers were trained on the Dutch Eind-
hoven corpus (uit den Boogaart, 1975) using the
WOTAN tag set (Berghmans, 1994). The original
WOTAN tag set, consisting of 233 tags, was too de-
tailed for our purpose. Instead, we used the lim-
ited WOTAN tag set of 48 PoS tags developed by
(Drenth, 1997) for training and testing in the stand-
alone comparison.

In the context of our WSD application, however,
we are only interested in the main PoS categories.
Therefore, we discarded all additional information
from the assigned PoS tags in the WSD corpus.
This resulted in 12 different tags being kept: Adj
(adjective), Adv (adverb), Art (article), Conj (con-
junction), Int (interjection), Misc (miscellaneous),
N (noun), Num (numeral), Prep (preposition), Pron
(pronoun), Punc (punctuation), and V (verb).!

For the stand-alone results, 80% of the training
data was actually used for training, 10% for tuning
(setting of parameters, etc.) and the accuracy was
computed on the remaining 10%. Note that the re-
sults of the stand-alone comparison solely serve to
illustrate the difference in performance observed in-
dependently of an application in order to be able to
assess the added value of a more accurate PoS tagger
in the WSD application.

2.1 Hidden Markov Model PoS Tagger

The first PoS tagger we used is the trigram Hid-
den Markov Model (HMM) tagger (Prins and van
Noord, 2003) developed in the context of ‘Alpino’,
a natural language understanding system for Dutch
(Bouma et al., 2001; van der Beek et al., 2002).2
1See table 2 for a distribution of the main PoS tag categories

in the WSD data and the Eindhoven corpus.
2See http://www. let._rug.nl/~vannoord/alp.

In this standard trigram HMM, each state corre-
sponds to the previous two PoS tags and the proba-
bilities are directly estimated from the labeled train-
ing corpus (Manning and Schitze, 1999). There are
two types of probabilities relevant in this model, the
probability of a tag given the preceding two tags
P(t;|t;—2t;—1) as well as the probability of a word
given its tag P(w;|t;).

These probabilities are computed for each tag in-
dividually. Training the HMM with the forward-
backward algorithm, we can calculate P(¢; = t) for
all potential tags:

P(t; = t) = o4 (1) Bi(t)

where «;(t) is the total (summed) probability of
all paths through the model that end at tag ¢ at posi-
tion 4, and B;(t) is the total probability of all paths
starting at tag ¢ in position 4 continuing to the end.
Comparing all the values for P(¢t; = t), unlikely
tags are removed.

Smoothing of the trigram probabilities is achieved
through a variant of linear interpolation (Collins,
1999) where lower order models are also taken into
account and weights are assigned to each of the
models to capture their relative importance.

Since the tagger’s lexicon has been created from
the training data, the test data very likely contains
unknown words which means that no initial set of
possible tags can be assigned to these words. Two
different strategies have been incorporated in the
HMM tagger used here. First, a heuristic rule for
recognizing names has been added which assigns an
N tag to all capitalized words.3 Second, a set of au-
tomata (also created on the basis of the training data)
is used to find possible tags based on the suffixes of
unknown words (Daciuk, 2000).

2.2 Memory-Based PoS Tagger

The second tagger we have used in the experiments
reported here is the Memory-Based Tagger (MBT)
(Daelemans et al., 2002a). It is a PoS tagger based
on Memory-Based Learning, an extension of the &-

Nearest-Neighbour approach, which has proved to

3Words in sentence initial position are decapitalized before-
hand.

“Freely available for research purposes at http://ilk.
uvt.nl/software._html.

be successful for a number of languages and NLP
applications (Zavrel and Daelemans, 1999; Veenstra
et al., 2000; Hoste et al., 2002).

MBT consists of two components: a memory-
based learning component and a performance com-
ponent for similarity-based classification. During
classification, the similarity between a previously
unseen test example and the examples in memory
is computed using a similarity metric. The category
of the test example is then extrapolated based on the
most similar example(s).

Given an annotated corpus, three data structures
are automatically extracted: a lexicon, a case base
for known words, and a case base for unknown
words. During tagging, each word is looked up in
the lexicon and, if it is found, its lexical represen-
tation is retrieved and its context determined. The
resulting pattern is disambiguated using extrapola-
tion from the nearest neighbours in the known words
case base. If a word is not present in the lexicon, its
lexical representation is computed on the basis of its
form, its context is determined, and the resulting pat-
tern is disambiguated using extrapolation from near-
est neighbours in the unknown words case base. In
both cases, the output is a best guess of the category
for the word in its current context.

For the known words, the preceding two tags and
words as well as the ambiguous tag and word to
the right of the current position have been used to
construct the known words case base. Classification
was achieved using the IGTREE algorithm with one
nearest neighbour. For unknown words, the preced-
ing tag, the ambiguous tag to the right, as well as the
first and the last three letters of the ambiguous word
itself were taken into account to construct the un-
known words case base. For classification, the 1B1
algorithm with 9 nearest neighbours was used. In
both cases GainRatio feature weighting was applied.
For details on the different possible algorithms see
(Daelemans et al., 2002b).

2.3 Transformation-Based PoS Tagger

As the third member of the comparison, we used a
Brill-style transformation-based tagger (TBL) (Brill,
1995) for Dutch (Drenth, 1997). The main compo-
nents of a transformation-based tagger are a speci-
fication of admissible transformations and a learn-
ing algorithm. Interdependencies between words

| PoS Tagger | Accuracy |

TBL 94.20
HMM 95.93
MBT 96.21

Table 1: Stand-alone results (in %) for the three PoS
taggers on 10% of the Eindhoven corpus data

and tags are modeled by starting out with an imper-
fect tagging which is gradually transformed into one
with fewer errors. This is achieved by selecting and
sequencing transformation rules using the learning
algorithm.

In an initial step, each word is assigned a tag in-
dependent of context. A known word is assigned
its most likely tag determined by a maximum like-
lihood estimation from the training corpus. An un-
known word, on the other hand, is assigned a tag
based on lexical rules learned during training. All
unknown words are initially tagged N. The applica-
tion of lexical rules adapts the tag (where necessary)
based on the local properties of the unknown word,
such as its suffix.

After each word has received an initial tag, con-
textual rules are applied changing the initial PoS tag
(where necessary) based on the context of the word
to be tagged. The best contextual transformation
rules and their order of application are selected by
the learning algorithm during training.

The present implementation of the TBL PoS tag-
ger for Dutch uses around 250 lexical rules and 300
contextual rules.

2.4 Stand-Alone Results for the PoS Taggers

As we have mentioned earlier, the stand-alone re-
sults for the PoS taggers were computed using 80%
of the Eindhoven Corpus (containing a total of
760,000 words) for training and 10% for tuning. The
accuracy shown in table 1 was computed on the re-
maining 10% of the corpus.

We can clearly see that the MBT tagger is per-
forming best, followed by the HMM tagger, the least
accurate tagger being the TBL tagger.®

If the hypothesis that more accurate input to com-
plex systems will produce more accurate results is

SAll results differ significantly applying the paired sign test
with a confidence level of 95%.

correct, then these stand-alone results raise the ex-
pectation that when applying all three taggers in our
WSD system—uwith all other settings being equal—
accuracy should be highest when the MBT tagger
was used to tag the data. Performance is expected to
decrease with the use of the HMM tagger and to be
lowest for the TBL tagger.

This expectation might be falsified by the (pos-
sible) corpus dependency of the three PoS taggers:
the capacity to generalize from the training corpus
to the corpus to be tagged might be bigger in one
tagger than in another, which means that the results
obtained in the complex system can diverge from the
expectation raised by the stand-alone results.

Let us now turn to the application in which we
will use the three PoS taggers presented and evalu-
ated above.

3 Word Sense Disambiguation for Dutch

Semantic lexical ambiguity remains a major prob-
lem in natural language processing (NLP) for which
to date no satisfactory solution has been found.
Word sense disambiguation (WSD) refers to the res-
olution of lexical semantic ambiguity and its goal is
to attribute the correct sense(s) to words in a certain
context. Accurate disambiguation of word senses is
important for e.g. machine translation, information
retrieval or document extraction.

The WSD system used in these experiments is a
supervised corpus-based algorithm combining sta-
tistical classification with different kinds of linguis-
tic information. This system explores the intuition
that (high quality) linguistic information is benefi-
cial for WSD. PoS is definitely one of the more ac-
cessible sources of linguistic knowledge. The hy-
pothesis behind comparing various PoS taggers in
this application is that the quality of the PoS tags
assigned to the data can significantly influence the
accuracy obtained by our WSD system.

In contrast to the English WSD data, the Dutch
Senseval-2 WSD data is ambiguous with regard to
PoS. This means that accurate PoS information is
even more important since the WSD system is sup-
posed to do morpho-syntactic as well as semantic
disambiguation.

We will now first explain the statistical classifica-
tion algorithm used and then proceed to describe the

WSD system, its settings as well as the corpus used
to generate the comparative results.

3.1 Maximum Entropy Classification

The statistical classifier used in the experiments re-
ported here is a maximum entropy classifier (Berger
et al., 1996). Maximum entropy is a general tech-
nique for estimating probability distributions from
data. If nothing about the data is known, it in-
volves selecting the most uniform distribution where
all events have equal probability. In other words,
it means selecting the distribution which maximises
the entropy.

If data is available, labeled training data is seen
as a number of features which are used to derive a
set of constraints for the model. This set of con-
straints characterises the class-specific expectations
for the distribution. So, while the distribution should
maximise the entropy, the model should also satisfy
the constraints imposed by the labeled training data.
A maximum entropy model is thus the model with
maximum entropy of all models that satisfy the set
of constraints derived from the training data.

The maximum entropy model is built using the
following formula:

plels) = eap <Z Aifxa:,c))

where the property function f;(z,c) represents
the number of times feature 4 is used to find class
¢ for event z, and the weights); are chosen to max-
imise the likelihood of the training data and, at the
same time, maximise the entropy of p.

This means that during training the weight X; for
each feature 4 present in the training data is com-
puted and stored. During testing, the sum of the
weights A; of all features 4 found in the test instances
is computed for each class ¢ and the class with the
highest score is chosen.

The main advantage of maximum entropy mod-
eling is that the property functions, including all
the different types of (linguistic) information in the
model, take into account any information which
might be useful for disambiguation. Thus, dissimilar
types of information can be combined into a single
model for WSD and no independence assumptions
(as in e.g. a Naive Bayes algorithm) are necessary.

3.2 Corpus and System Settings

The corpus used in this evaluation is the Dutch
Senseval-2 corpus® (see (Hendrickx and van den
Bosch, 2001) for a detailed description). In the ex-
periments reported here, we only made use of the
training section of the Dutch Senseval-2 dataset,
containing approximately 120,000 tokens and 9,300
sentences.

In a first step, the corpus is lemmatized and
PoS tagged. Then, for each ambiguous word-
form/lemma’ all instances of its occurrence are ex-
tracted from the corpus. These instances are then
transformed into different feature vectors. So a
feature vector of the ambiguous wordform ‘aarde’
(earth/soil) corresponding to the model which com-
prises all possible information (incl. PoS) and uses
context words would look like this:

aarde N gat in de , zodat het aarde_grond

where the first slot represents the lemma, the sec-
ond the PoS, the third to eighth slot are the context
words (left before right) and the last slot represents
the sense or class.8 Only context words within the
same sentence as the ambiguous wordform/lemma
were taken into account. If for instance there was
no left context, it was filled with “empty” features.
Varying the information included, different feature
sets are constructed.

For the basic classifier based on ambiguous word-
forms, the feature set contains the corresponding
lemma as well as a context of three words to the left
and to the right of the ambiguous word. For the ba-
sic classifier based on ambiguous lemmas, the cor-
responding wordform and the context are included.
The context can either be composed of wordforms or
lemmas. For the classifiers including PoS tags, we
in addition include the PoS tags of the ambiguous
wordform/lemma from the various PoS taggers.

On the basis of the different feature sets, separate
classifiers are built for every ambiguous wordform
or lemma. This implies that the basis for group-

®For more information on Senseval and for downloads of the
data see http://www.senseval .org/.

A wordform/lemma is ‘ambiguous’ if it has two or more
different senses in the training data. The sense ‘=" is seen as
marking the basic sense of a word/lemma and is therefore also
taken into account.

8:Sense’ or ‘class’ refers to the different labels which dis-
ambiguate the ambiguous wordforms/lemmas.

ing occurrences of particular ambiguous words to-
gether is that either their wordform or their lemma is
the same. In the experiments presented here, a fre-
quency threshold of 10 was used, which means that
classifiers were only built for the wordforms with an
amount of training instances equal to or above the
threshold. For the remaining wordforms, the base-
line count was used, thus assigning the most fre-
quent sense to every instance.

In total, there were 1,364 ambiguous lemmas in
the corpus of which 622 presented 10 or more occur-
rences, and 952 ambiguous wordforms of which 486
had 10 or more occurrences. So 622 lemma classi-
fiers and 486 wordform classifiers were built.

The context was treated as a ‘bag of words’ which
means that the position of a context word relative
to the ambiguous wordform was not taken into ac-
count. This approach was chosen to help limit the
data sparseness problem: if the context features are
all treated dependent on their position relative to the
ambiguous word in the sentence, the model will have
more features to assign weights to. This means that
the sparse data problem will be worse. If, on the
other hand, context features are “lumped” together
independent of their relative position, there are less
features to be estimated and there is more data for
the particular feature ‘context’.

4 Results and Evaluation of the WSD
Application

Before we turn to the actual results of using the dif-
ferent PoS taggers in our WSD system for Dutch,
let us first compare the differences regarding the as-
signed PoS tags. Table 2 shows the distribution of
the different PoS tags in the WSD data depending
on the PoS tagger used, as well as the distribution of
the PoS tags in the training corpus.

A major difference between the distribution of
PoS tags is that both the HMM and MBT tagger as-
sign more V tags, whereas the TBL tagger assigns
more N tags. The preference for N tags in the TBL
tagger can be explained by the fact that all unknown
words initially get tagged N. Also, in Dutch ver-
bal infinitives have the same morphological suffix
as plural nouns (-en). INT and Misc differ with all
three taggers, but we could not detect any obvious
reason for this. As we can see from table 2, there

| PoS | TBL \ HMM \ MBT | Train. Corpus |
N 22,830 (19.46%) | 20,041 (17.08%) | 20,384 (17.37%) 20.35%
Punc || 19,792 (16.87%) | 20,161 (17.17%) | 20,142 (17.17%) 12.69%
Y 17,645 (15.04%) | 19,505 (16.62%) | 19,556 (16.66%) 15.13%
Pron | 13,880 (11.83%) | 13,938 (11.88%) | 13,885 (11.83%) 9.82%
Adv || 11,250 (9.58%) | 11,289 (9.62%) | 11,178 (9.53%) 8.19%
Art || 9477 (8.08%) | 9350 (7.96%) | 9328 (7.95%) 9.39%
Prep | 8190 (6.98%) | 8358 (7.26%) | 8,229 (7.01%) 10.54%
Conj | 6713 (5.72%) | 6,742 (5.74%) | 6,770 (5.77%) 5.18%
Adj || 6313 (5.38%) | 6,621 (5.63%) | 6,626 (5.65%) 6.53%
Num 869 (0.74%) | 713 (061%) | 744 (0.63%) 1.78%
Int 376 (0.32%) | 559 (0.47%) | 455 (0.39%) 0.18%
Misc 3 (0.003%) 71 (0.04%) 41 (0.04%) 0.22%

Table 2: Frequencies of PoS tags assigned by each PoS tagger in the WSD data and distribution of PoS in

the training corpus

are bigger differences between the TBL tagger and
the other two, whereas the differences between the
HMM and the MBT tagger are less noticeable.

In order to test the real error of the classifiers built,
we used a leave-one-out approach (Weiss and Ku-
likowski, 1991; Manning and Schiitze, 1999). This
means that every data item in turn is selected once as
a test item and the classifier is trained on all remain-
ing items. The accuracy of a single classifier is then
the number of data items correctly predicted. The
overall accuracy is the total of data items correctly
predicted by all classifiers.

The results in table 3 show the average accuracy
on our training data using leave-one-out as a test
method with respectively wordforms and lemmas as
basis.

As the table of results shows, the WSD system
performs well. The basic classifiers containing a
minimum of information already do significantly
better than the frequency baseline.® Furthermore,
adding PoS as extra linguistic information—next to
the lemma/wordform and the context already in-
cluded in the basic classifiers—does increase results
over the accuracy achieved with a basic classifier.
This supports the underlying hypothesis behind the
WSD system that more linguistic information is ben-
eficial for WSD. Since the WSD data needs to be
disambiguated morpho-syntactically as well as with

®Assigning the most frequent sense to every occurrence of
an ambiguous wordform/lemma.

regard to lexical semantic ambiguity, it is not sur-
prising that adding PoS information achieves bet-
ter results than only using the lemma/wordform and
context.

Comparing the performance among the different
PoS taggers, we can see quite clearly that our ex-
pectations are (partly) confirmed: the MBT tagger,
which did best in the stand-alone evaluation, is also
working best in the WSD system. This is the case
for all setups: using wordforms or lemmas as basis
for the classifiers, as well as for classifiers including
context as wordforms or as lemmas.*°

Surprisingly enough, the hypothesis does not hold
for the “ranking” of the HMM and TBL taggers. De-
spite the fact that the HMM tagger performed sec-
ond best in the stand-alone evaluation, it does not
perform better than the TBL tagger when integrated
into the WSD system.

A possible explanation might be that the differ-
ence between the training corpus and the WSD data
is so big that the HMM tagger is no longer more ac-
curate than the TBL tagger in the WSD application,
leading to the conclusion that the HMM tagger is
more corpus dependent than the TBL tagger. A pos-
sible reason might be that the heuristics for unknown

©Applying the paired sign test with a confidence level of
95%, all results using MBT PoS tags were found to be statis-
tically significantly better than results with other PoS tags (and
than the basic classifiers). The classifiers including TBL and

HMM PoS tags do not differ significantly from each other, but
both perform significantly better than the basic classifiers.

Base: Wordforms
Feature set \ Accuracy
baseline 76.70
lemma, con. words (basic) 80.81
lemma, con. lemmas (basic) 80.52

TBL | HMM | MBT
lemma, pos, con. words 81.67 | 81.67 | 81.89
lemma, pos, con. lemmas 81.42 | 81.36 | 81.67
Base: Lemmas
Feature set \ Accuracy
baseline 73.41
word, con. words (basic) 82.52
word, con. lemmas (basic) 82.25

TBL | HMM | MBT
word, pos, con. words 83.32 | 83.34 | 83.46
word, pos, con. lemmas 83.06 | 83.05 | 83.30

Table 3: WSD results (in %) comparing the effect of integrating the output of different POS-taggers into a

complex system

words in the HMM tagger produces worse results on
the WSD data than the heuristics used by the TBL
tagger. Since no gold-standard PoS tagged version
of the WSD data exists, it is difficult to investigate
this puzzle any further.

Nevertheless, our hypothesis that highly accurate
input influences the results of a complex system is at
least partly verified: the most accurate PoS tags also
produce the most accurate results when integrated
into our WSD system.

5 Conclusion and Future Work

In this paper, we tested the hypothesis whether high
quality input improves the final results of a complex
NLP system. We have therefore proceeded to an
application-oriented evaluation of three PoS taggers
in a WSD system. A transformation-based tagger, a
Hidden Markov Model tagger, and a memory-based
tagger were compared for this purpose.

After the MBT tagger has been established as the
most accurate tagger in a stand-alone evaluation, the
PoS information from all three taggers is integrated
into our WSD system for Dutch. This supervised
system uses maximum entropy classifiers which al-
low to integrate various sources of information into
a single model.

The results computed on the training part of the
Dutch Senseval-2 corpus show that the MBT tagger
also produces the best results in the WSD system.
This clearly indicates that highly accurate input into
a WSD system is producing better results than qual-
itatively lesser input.

A surprising result, however, was the fact that the
performance of the complex WSD system with the
different PoS tags included does not necessarily re-
flect the stand-alone accuracy of the PoS taggers.
Even though the HMM tagger performed better than
the TBL tagger in the stand-alone comparison, there
is no significant difference to be observed in the re-
sults of the WSD system. A possible explanation
might be corpus dependency.

For future work, we would like to include the
PoS tags of the context wordforms or lemmas to see
whether our hypothesis still holds then. It would
also be interesting to see whether the overall results
are further improved by this additional information.

Acknowledgments

This research was carried out within the framework
of the PIONIER Project Algorithms for Linguistic
Processing. This PIONIER Project is funded by
NWO (Dutch Organization for Scientific Research)

and the University of Groningen. We are grateful to
Robbert Prins for his help with the HMM tagger as
well as to Gertjan van Noord and Menno van Zaanen
for comments and discussions.

References

Adam Berger, Stephen Della Pietra, and Vincent Della
Pietra. 1996. A maximum entropy approach to nat-
ural language processing. Computational Linguistics,
22(1):39-71.

Johan Berghmans. 1994. WOTAN—een automatische
grammaticale tagger voor het Nederlands. Master’s
thesis, Nijmegen University, Nijmegen.

Gosse Bouma, Gertjan van Noord, and Robert Malouf.
2001. Alpino: Wide-coverage computational analy-
sis of Dutch. In Walter Daelemans, Khalil Sima’an,
Jorn Veenstra, and Jakub Zavrel, editors, Computa-
tional Linguistics in the Netherlands 2000, pages 45—
59, Amsterdam. Rodopi.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part of speech tagging. Computational Lin-
guistics, 21(4):543-565.

Michael Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis, Com-
puter and Information Science Department, University
of Pennsylvania, Philadelphia.

Jan Daciuk. 2000. Finite state tools for natural lan-
guage processing. In Proceedings of the COLING
2000 Workshop “Using Toolsets and Architectures to
Build NLP Systems™, pages 34-37, Centre Universi-
taire, Luxembourg.

Walter Daelemans, Jakub Zavrel, Ko van der Sloot, and
Antal van den Bosch. 2002a. MBT: Memory-Based
tagger, reference guide. Technical Report ILK 02-09,
Induction of Linguistic Knowledge, Computational
Linguistics, Tilburg University, Tilburg. version 1.0.

Walter Daelemans, Jakub Zavrel, Ko van der Sloot,
and Antal van den Bosch. 2002b. TiMBL.: Tilburg
Memory-Based learner, reference guide. Technical
Report ILK 02-10, Induction of Linguistic Knowl-
edge, Computational Linguistics, Tilburg University,
Tilburg. version 4.3.

Erwin W. Drenth. 1997. Using a hybrid approach to-
wards Dutch part-of-speech tagging. Master’s the-
sis, Humanities Computing, University of Groningen,
Groningen.

Iris Hendrickx and Antal van den Bosch. 2001. Dutch
word sense disambiguation: Data and preliminary re-
sults. In Proceedings of Senseval-2, Second Interna-
tional Workshop on Evaluating Word Sense Disam-
biguation Systems, pages 13-16, Toulouse.

Veéronique Hoste, Walter Daelemans, Iris Hendrickx, and
Antal van den Bosch. 2002. Evaluating the results
of a Memory-Based word-expert approach to unre-
stricted word sense disambiguation. In Proceedings
of the ACL-02 Workshop on Word Sense Disambigua-
tion: Recent Successes and Future Directions, pages
95-101, Philadelphia.

Christopher Manning and Hinrich Schiitze. 1999. Foun-
dations of Statistical Natural Language Processing.
MIT Press, Cambridge.

Robbert Prins and Gertjan van Noord. 2003. Reinfor-
cing parser preferences through tagging. Traitement
automatique des langues. forthcoming.

Pieter uit den Boogaart.
Geschreven and Gesproken Nederlands.
Scheltema en Holkema, Utrecht.

1975. Woordfrequenties in
Oosthoek,

Leonoor van der Beek, Gosse Bouma, Rob Malouf, and
Gertjan van Noord. 2002. The Alpino dependency
treebank. In Mariét Theune, Anton Nijholt, and Hen-
dri Hondorp, editors, Computational Linguistics in the
Netherlands 2001, pages 8-22, Amsterdam. Rodopi.

Jorn Veenstra, Antal van den Bosch, Sabine Buchholz,
Walter Daelemans, and Jakub Zavrel. 2000. Memory-
Based word sense disambiguation. Computers and the
humanities, 34(1-2):171-177.

Sholom Weiss and Casimir Kulikowski. 1991. Computer
Systems that Learn. Morgan Kaufman, San Mateo.

Jakub Zavrel and Walter Daelemans. 1999. Recent ad-
vances in Memory-Based part-of-speech tagging. In
VI Simposio Internacional de Communicacion Social,
pages 590-597, Santiago de Cuba.

