Towards Semantic-Based Overlap Measuresfor Question Answering

Diego Molla
Centre for Language Technology
Macquarie University
Sydney, NSW 2109
Tel. +61 2 9850 9531
Fax +61 2 9850 9551
di ego@ cs. ny. edu. au

Abstract

In this paper we present an evalua-
tion of overlap-based measures of sim-
ilarity for sentences in the same lan-
guage. The measures include syntactic
and semantic information, and to that
end they incorporate grammatical re-
lations and flat logical forms. A full
parser is required to build the above in-
formation. Separate extrinsic evalua-
tions within the context of question an-
swering have been made with two dif-
ferent parsers to test the impact of the
parser and the overlap measures.

1 Introduction

Text-based Question Answering (QA) is a hot
research topic and the increasing availability of
electronic text will ensure that research in this
area will continue for long. Much of the cur-
rent research on QA focuses on the development
of methodologies for processing relatively large
volumes of text. For example, the competition-
based QA track of the Text REtrieval Conference
(TREC) (Voorhees, 2001) uses more than 3Gb of
source text. Competing systems often exploit the
data redundancy existing in the source text. Some
of them even use the Web to increase the data re-
dundancy (Brill et al., 2001; Clarke et al., 2001,
for example). These systems typically trade ac-
curacy for speed and avoid the use of intensive
natural language processing techniques.

Most of the current QA systems are based on an
architecture like that of Figure 1 (Hirschman and

Gaizauskas, 2001; Voorhees, 2001). In an off-line
or indexing stage, an indexing module analyses
the text documents and creates a set of document
images that will be used by the subsequent QA
modules. In an on-line stage, a question analy-
sis module classifies the question and determines
the type of the expected answer. The question
analysis module would typically return a list of
named-entity types that are compatible with the
question (for example a who question typically
indicates people or organisations). The module
may also produce an image of the question. This
image may be similar in format to the document
images and can range from a simple bag of words
(Cooper and Ruiger, 2000, for example) to a fairly
complex logical form (Harabagiu et al., 2001; El-
worthy, 2000, for example). Once the question is
analysed, a document preselection module iden-
tifies the documents that are most likely to contain
the answer. This module typically uses informa-
tion retrieval techniques that rely on bag-of-words
approaches and statistical information (Moorhees,
2001). A filtering module examines the resulting
documents and selects or rewards the named enti-
ties that are compatible with the question type. A
scoring module then performs a more intensive
analysis and ranks the preselected named entities
(an possibly surrounding text) according to their
likelihood to contain the answer. The scoring sys-
tem relies on the output given by the question
analysis module and possibly the images of the
preselected documents that were created during
the off-line stage. There may be feedback loops
between the document preselection, filtering, and
scoring modules to increase the likelihood of find-

Offine
Onine

Question [Juestion image

Document
Image
Document
Preselection

Filtering

Expected answer type

Figure 1: Architecture of a generic question-
answering system.

ing difficult answers (Harabagiu et al., 2001, for
example).

The scoring methodology used can be as sim-
ple as a word overlap or word frequency count, or
as complex as an automatic proof system that op-
erates on logical forms of both the questions and
the answers. In some QA systems the scoring sys-
tem relies heavily on the use of sentence patterns
(Soubbotin, 2001, for example).

In the present study we have implemented a
QA framework that uses simplifications of the
modules described above. The emphasis in this
study has been placed on the comparison of core
methodologies for the scoring stage. To avoid
the introduction of unwanted variables, we have
avoided the use of methodologies that rely on
world knowledge or domain knowledge. Thus,
we have refrained from testing the use of exter-
nal resources or inference systems.

With this QA framework we intend to assess
the impact of syntactic and semantic information
in a QA task. For that reason, we include infor-
mation regarding word dependencies, grammati-
cal relations, and logical forms in the procedure to
measure the similarity between a question and an
answer candidate. The results of the evaluations
show both the impact of the scoring measures and
the impact of the parsers used to extract the syn-
tactic and semantic information. Section 2 de-
scribes grammatical relations and their use in an
overlap measure. Section 3 focuses on the overlap
of flat logical forms. Section 4 introduces the QA
system that was used for the evaluations, and Sec-
tion 5 explains the methodology used in the au-
tomatic evaluations. Finally, Section 6 discusses

dependent

mod arg_mod arg aux conj

ncmod xamod cmod detmod

clausal

[

dobj obj? iobj xcomp ccomp

nesubj xsubj csubj

Figure 2: Hierarchy of grammatical relations.

the results and Section 7 concludes and points to
future lines of research.

2 Grammatical Relations

We use the grammatical relations of
Carroll et al. (1998), who devised them as a
means to provide the canonical representation
of the output of parsers for their evaluation.
Figure 2 shows the hierarchical classification of
the grammatical relations (Briscoe and Carroll,
2000). This hierarchy allows the mapping from
the output of an arbitrary parser and therefore
allow the evaluation of parsers with different
output granularity.

Table 1 lists the grammatical relations used in
this paper and the evaluation — For further detail
about grammatical relations see (Briscoe and Car-
roll, 2000). For example, the grammatical rela-
tions for the sentence The man that came ate ba-
nanas and apples with a fork without asking are:

DETMOD(_,man, the),
CMOD(that,man,come),
SuBJ(come,man,.),
SUBJ(eat,man,),
DOBJ(eat,banana,.),
DOBJ(eat,apple,)
CONJ(and,banana,apple),
NCMOD(fork,eat,with),
DETMOD(_, fork,a),
XCOMP(without,eat,ask)

Briscoe and Carroll’s grammatical relations are
not to be confused with the dependency arcs used
in the theory of dependency grammar (Mel’Cuk,
1988). To illustrate the difference, consider the
sentence The man that came ate bananas and

Relation Description
CONJ(type,head+) Conjunction
MOD(type,head,dependent) Modifier

CMOD(type,head,dependent)

Clausal modifier

NCMOD(type,head,dependent)

Non-clausal modifier

DETMOD(type,head,dependent) | Determiner
SUBJ(head,dependent,initial _gr) | Subject
OBJ(head,dependent,initial _gr) Object

DOBJ(head,dependent,initial _gr)

Direct object

XCOMP(head,dependent)

Clausal complement without an overt subject

Table 1: Grammatical relations used in this paper.

apples with a fork. Figure 3 shows the graph-
ical representation of the structure returned by
Conexor FDG, a dependency-based parsing sys-
tem (Tapanainen and Jarvinen, 1997). In depen-
dency grammar a unique head is assigned to each
word, thus the head of man is ate. However
man is the dependent of more than one gram-
matical relation, namely SUBJ(eat,man,.))
and SUBJ(come,man,). Furthermore, in de-
pendency grammar a word can have at most
one dependent of each argument type, and
so ate can have at most one object. But
the same is not true for grammatical relations,
and we get both OBJ(eat,banana,)) and
OBJ(eat,apple,). Thus, grammatical re-
lations provide a sentence representation that is
closer to the semantic contents of a sentence than
the representation provided by dependency arcs.

Molla and Hutchinson (2003) used the gram-
matical relations to compare the accuracy of
two broad-coverage dependency-based parsers,
Link Grammar (Sleator and Temperley, 1993)
and Conexor Functional Dependency Grammar
(Tapanainen and Jarvinen, 1997) — henceforth
referred to as Conexor FDG. The evaluation used
a subset of the original relations: SUBJ, OBJ,
XCOMP, and MOD. This subset was used because
of limitations of the output of the parsers and the
algorithms for the automatic construction of the
grammatical relations. Thus, the reduced gram-
matical relations for the example The man that
came ate bananas and apples with a fork without
asking is:

MOD(that,man,come),
SUBJ(eat,man,),

Link Gram- | Conexor
mar FDG
Precision | SUBJ 50.3% 73.6%
0oBJ 48.5% 84.8%
XCOMP | 62.2% 76.2%
MOD 57.2% 63.7%
Average | 54.6% 74.6%
Recall SUBJ 39.1% 64.5%
0oBJ 50% 53.4%
XCOMP | 32.1% 64.7%
MOD 53.7% 56.2%
Average | 43.7% 59.7%

Table 2: Intrinsic evaluations of Link Grammar
and Conexor FDG.

SUBJ(come,man,),
OBJ(eat,banana,.),
OBJ(eat,apple,.),
MOD(fork,eat,with),
XCOMP(without,eat,ask)

The results of the evaluation on a corpus anno-
tated with the correct grammatical relations (Car-
roll et al., 1998) show significantly higher values
of recall and precision for Conexor FDG with re-
spect to Link Grammar (Table 2).

The grammatical relations can be used by the
scoring module of our QA system. We only
need to compute the overlap of grammatical re-
lations between the question and the answer can-
didate. In theory, we must use the hierarchical
organisation of the grammatical relations to de-
cide if two grammatical relations unify. For ex-
ample, SUBJ(eat,man,) should unify with

main <
> subj ins <
rmd< cc < pconp<
>det >subj obj <ﬁ >det
4 4

/Ml the man that

came ate bananas and apples with a fork

Figure 3: Dependency structure of a sample sentence.

SUB_OR_DOBJ(eat,man). However, since the
same parser was used for both the question and
the answer, the granularity of grammatical rela-
tions will be practically the same. Thus, each
grammatical relation can be seen as an unstruc-
tured token and the scoring module can simply
count the number of common tokens, very much
like counting the overlap of words. This was the
approach used in our QA prototype.

3 Flat Logical Forms

Flat logical forms have been used in several
NLP systems including question-answering sys-
tems (Harabagiu et al., 2001; Lin, 2001; Molla
et al., 2000, for example). The flat logical forms
that we use in our QA system are borrowed from
(Mollé et al., 2000), who uses reification to flat-
ten out nested expressions. For example, the flat
logical form of The cp command will quickly copy
files is:*

object(’cp’,02,[x2]),
object(’command”, 03, [x3]),
compound_noun(x2,x3),
prop(’quickly”,p5,[e6]),
evt(’copy’,eb6,[x3,x7]),
object(’file’,o7,[X7])

Flat logical forms express the main predicate-
argument dependencies between the entities in-
troduced by the sentence in a form that is suit-
able for computing semantic similarity. In par-
ticular, we only need to find the common predi-
cates between the question and the answer candi-
date. The only additional complexity is the han-
dling of variables in the terms of the question. It
is therefore necessary to instantiate the question
variables with constants found in the answer can-
didate. For example, the logical form of Which

For illustration purposes, the logical forms used in this

paper are dlightly different from the ones shown in the liter-
ature.

command copies files? is (the symbols in upper-
case indicate variables):

object(’command”,01, [X1]),
evt(“copy”,E2,[X1,X2]),
object("file”,02,[X2])

If this logical form is to match that of the sen-
tence The cp command will quickly copy files
above, the scoring module needs to instantiate the
variable O1 in the question with the constant 03
in the answer candidate, X1 with X3, and so on.
In our implementation we have used Prolog unifi-
cation.

Since there are several plausible combinations
of variable instantiations, the scoring module
finds the set of instantiations that provides the
highest overlap of logical forms.

Table 3 shows the flat logical forms of ques-
tions that differ solely in the argument positions,
the flat logical form of an answer candidate, and
the resulting overlaps.

4 The Question Answering Framework

In contrast with (Molla et al., 2000), the seman-
tic interpreters used in our evaluations to compute
the logical forms do not use any additional lexical,
domain, or world knowledge. Furthermore, there
is no disambiguation step and there is no anaphora
resolution module. The resulting semantic inter-
preters may therefore be less accurate, but the re-
sulting QA systems are in a better position to be
compared with the QA systems based on gram-
matical relations described in Section 2. Once it
is decided which methodology is better, it is con-
ceivable to add the additional modules that further
enhance the expressivity of the sentence image.
For the present evaluation we used the Reme-
dia Publications Reading Comprehension corpus
used by DeepRead (Hirschman et al., 1999). The
corpus is aimed at testing the degree of reading
comprehension by children, and the documents

Answer candidate | Flat Logical Form

John saw Mary

object(’john’,01,[x1]), object(’mary’,03,[x3]), evt(’see’,e2,[x1,x3])

Question Flat Logical Form

Did John see Mary?
Did Mary see John?

object(’mary’,0,[X]), evt(’see’,E,[Y,X]), object(’john’,02,[Y])
object(’john’,0,[X]), evt(’see’,E,[Y,X]), object(’mary’,02,[Y])

Table 3: Question answering using flat logical forms. Overlap shown in bold.

Document | [Separate | [Sentence | Sentence

Questions Splitting Analysis
Sentence image
Expected answer type

¥
Question
Analysis

Question image

Fittering

Figure 4: Architecture of the question-answering
system.

in this corpus are classified into several levels of
reading proficiency. There are about 30 docu-
ments for each of the levels 2, 3, 4, and 5, with a
total of 117 documents. Each document includes
a short piece of text and five questions (who-,
what-, when-, where-, and why-) about the text.

The corpus contains annotations of the corefer-
ence chains and the named entities. The answers
are also marked-up in the text and a gold standard
for every answer is available. These annotations
make the corpus suitable for the development and
test of QA systems.

To evaluate the impact of the parsers and the
scoring modules we have developed a simple
guestion answering system framework (Figure 4).
Given that every document contains the questions
that are to be asked about the document, our QA
system does not need to include a preselection
stage. Instead, every document is processed inde-
pendently. The system has a pre-processing stage
that segments the document into text and ques-
tions. The text is split into sentences and each
sentence is analysed independently.

Every question in the document is analysed
to produce the question image. The question is
also classified into one of the who-, what-, when-,
where-, and why- categories. Depending on the
guestion category, the question analysis module
determines and returns the likely named entities

Regex Expected Answer Type
“Who person, organization
“What | any

“When | date, time

“Where | location

“Why any

Table 4: Question types and expected answer
types.

of the expected answers.

Table 4 shows the named entities associated
with each question type. The question classifier
is extremely simple due to the fact that there are
always five questions, and they have a very sim-
ple pattern. Thus, the regular expressions shown
in Table 4 suffice to identify the question types.
The procedure to determine the expected answer
type is therefore very simple but fairly effective
for the corpus and the named-entity types used
in the named-entity annotations. Since the focus
of this work is on the comparison of the scoring
modules we did not feel we needed to produce a
more sophisticated question analysis module.

The named-entity annotations provided with
the evaluation corpus relieves the system from us-
ing a named-entity extraction component. The re-
sulting system performs perfect named-entity ex-
traction, which may artificially enhance the final
quality of the answers returned. The results there-
fore cannot be compared with the results given
by QA systems such as those participating in the
Question Answering track of TREC (Voorhees,
2001), but they are good for the purposes of com-
parison that we pursue here.

The answer extraction module penalises all
sentences that have no entities compatible with
the answer type by giving them an initial score of
-100. The only part of the QA system that varies
across the comparisons is the scoring component.

The scoring methods described above can there-
fore be compared free of interference from other
modules.

Following the specifications of the QA track of
TRECS8 to TREC10, the system returns the five
answer candidates with highest scores, ranked by
scores in descending order.

5 Evaluation Methodology

All four combinations of parser (Link Grammar
and Conexor FDG) and scoring module (gram-
matical relations and flat logical forms) were used
in the evaluations. All other modules in the QA
system were left untouched.

The evaluation of the quality of the answers
was done automatically. An answer candidate is
judged correct if more than 80% of its words ap-
pear in one of the correct answers provided by the
corpus annotations. We have not evaluated the ac-
curacy of this evaluation method, but we have no
reasons to believe that the final conclusions of the
comparison are significantly affected by this au-
tomatic evaluation procedure, since all the exper-
iments were evaluated with the same procedure.

The final measure is TREC QA’s Mean Recip-
rocal Rank (MRR). Thus, for a given question, if
the first correct answer returned is in rank R, the
question is scored as 1/R, or 0 if no correct an-
swer is found. The final score of the system is the
mean of scores for the individual questions.

An initial inspection of the first results revealed
that the overall scores were very low. As a result,
several answer candidates would receive the same
score. Table 5 shows an example of the answers
returned for a question. We can observe that all
five answer candidates were given the same score,
but only the last candidate was correct. There
is no way for the system to know which of the
sentences with same score is best. To determine
the impact of returning several sentences with the
same score, two indices were computed in addi-
tion to the MRR. The two indices correspond
to the MRR that would result if the correct an-
swer was chosen first or last among those of the
same score. These indices represent the “best”
and “worst” case, respectively, and ideally they
would be almost equal.

0.5
0.45
0.4
0.35
03
g 0.25
0.2
0.15
0.1
0.05
0 t t t t
=, w 23 Bt

2 g T = S w w

RTINS

= ° HEE 5 i = E

SR ICRC] €]

Figure 5: Evaluation of scoring measures.

6 Results and Discussion

The vertical bars in Figure 5 show the variation
between the best and worst MRR for the text
of levels 3, 4, and 5 together. Five cases are
displayed, corresponding with a baseline scoring
based on stem overlap and all combinations of
parser (either Conexor FDG or Link Grammar)
and scoring measure (either overlap of grammati-
cal relations or overlap of flat logical forms).

Overall, we can see that the flat logical forms
give better results than the grammatical relations.
This is not surprising, since the flat logical forms
were designed for tasks that require the semantic
comparison of sentences. In contrast, the gram-
matical relations were designed for the compari-
son of parsers.

Also, Conexor FDG produces better re-
sults than Link Grammar. These results con-
firm Molla and Hutchinson (2003)’s findings that
Conexor FDG is slightly better than Link Gram-
mar in a similar QA system that is based on
a different corpus and evaluation methodology.
Furthermore, the increase of performance with
Conexor FDG is only marginal. This is in contrast
with a direct comparison between Link Gram-
mar and Conexor FDG which, as shown in Ta-
ble 2 above, rated Conexor FDG much better than
Link Grammar. The current experiment shows
that, regardless of the method used (grammati-
cal relations or flat logical forms), the MRR of
the QA system that uses Conexor FDG is only
slightly higher than the MRR of the QA sys-
tem that uses Link Grammar. Thus, our results
present further evidence that intrinsic evaluations

Rank | Sentence Score Overlap Correct

11989 Remedia Publications, | 1 compound_noun(vx2,v_x3) no
Comprehension s-4

2 | (North Redwood, Minn 1 compound_noun(vx2,v_x3) no

3 | Not long ago, he ran an ad in | 1 object(ad,v.o7,[vX7]) no
some newspapers In small towns

4 | The ad showed a drawing of | 1 object(ad,v.o02,[vXx2]) no
lovely furniture

5 | The ad said the furniture was for | 1 object(ad,v.o02,[vXx2]) yes
sale

Table 5: Answers returned for the question What does the Sears ad offer?

0.5
0.45 |
0.4 ! i | |
0.35 |
0.3
Eo.zs
0.2
0.15
0.1
0.05
% r"% g . Eﬁr-\ Eﬁ
£3 iY I ii1 fis
& 2 g SHOEEE £55
© S & < 5 £
cER =&
&)]

Figure 6: Combination of overlap measures.

are of very limited value, as stated already by
Galliers and Sparck Jones (1993). An extrinsic
evaluation that shows the impact of the modules
to evaluate within the context of an application
(QA in this case) may give results that differ sub-
stantially from those of an intrinsic evaluation.

What is surprising is the fact that, as Figure 5
shows, a measure based on simple stem overlap
gives better results. Subsequent experiments in-
dicate that a combination of the above scoring
systems plus overlaps of word dependencies and
word forms produce better results and they have a
narrower difference between best and worst cases.
For example, Figure 6 shows the results of two
possible combinations:

Weight on grammatical relations:

27T x GRO +9 x FO
+3xDO+0

Score =

Weight on flat logical forms:

27T x FO +9 x GRO
+3xDO+0

Score =

In the above formulas, O stands for word form
overlap, DO is the overlap of dependencies, F'O
is the overlap of minimal logical forms, and G RO
is the overlap of grammatical relations.

The dependencies used were extracted from
the Conexor FDG parser, which is dependency-
based. All the experiments about the combination
of scoring systems were used with Conexor FDG.
Similar results are expected with Link Grammar
or other parsers. We are experimenting with the
impact of other possible scoring combinations.

7 Conclusions and Further Research

This research shows that the combined informa-
tion on word dependencies, grammatical relations
and flat logical forms improves the accuracy of
the system with respect to the individual mea-
sures, though the additional resources required to
extract syntactic and semantic information may
not justify the use of these measures against sim-
ple word overlap.

Further research is necessary to determine the
reason for this. For example, it may be that the
very nature of the Reading Comprehension docu-
ment set makes it unlikely to represent real-world
text. The text is intentionally simple, the docu-
ments are short and there is little text redundancy.
Furthermore, the fact that the texts are of varied
topics and that every document contains the ques-
tions that apply to the document makes it highly
unlikely that the questions associated to a specific
document have eligible answer candidates outside
the document. For all these reasons we are per-
forming similar experiments with the corpus used
in the QA track of TREC 10 and TREC 11. How-

ever, preliminary results support the results pre-
sented in this paper.

It may well be that one needs to compute more
complex overlap measures to leverage the addi-
tional information. Additional further research
includes the evaluation of weighted overlap mea-
sures that consider the relative importance of spe-
cific grammatical relations or logical form terms,
and the determination of the optimal weights to
be given.

Finally, perhaps the simple questions used in
the Reading Comprehension corpus and in TREC
do not require the use of much linguistic informa-
tion. An evaluation framework with more com-
plex questions is necessary to test this possibility.

We also plan to evaluate the impact of other
NLP modules such as anaphora resolvers and dis-
ambiguators, and the use of lexical resources (e.g.
WordNet or localisations of WordNet) and do-
main and world knowledge. The current QA sys-
tem can be easily expanded to allow for all of
these evaluations.

References

Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais,
and Andrew Ng. 2001. Data-intensive question an-
swering. In Voorhees and Harman (Moorhees and
Harman, 2001).

Ted Briscoe and John Carroll. 2000. Gram-
matical relation annotation. On-line document.
http://ww. cogs. susx. ac. uk/ | ab/ nl p/
carrol |l /grdescription/index. htm.

John Carroll, Ted Briscoe, and Antonio Sanfilippo.
1998. Parser evaluation: a survey and a new pro-
posal. In Proc. LREC98.

C.L.A. Clarke, G.V. Cormack, T.R. Lynam, C.M. Li,
and G.L. McLearn. 2001. Web reinforced question
answering. In Voorhees and Harman (Voorhees and
Harman, 2001).

Richard J. Cooper and Stefan M. Riiger. 2000. A sim-
ple question answering system. In Voorhees and
Harman (Voorhees and Harman, 2000).

David Elworthy. 2000. Question answering using
a large NLP system. In Voorhees and Harman
(Voorhees and Harman, 2000).

Julia R. Galliers and Karen Sparck Jones. 1993. Eval-
uating natural language processing systems. Tech-
nical Report TR-291, Computer Laboratory, Uni-
versity of Cambridge.

Sanda Harabagiu, Dan Moldovan, Marius Pagca, Mi-
hai Surdeanu, Rada Mihalcea, Roxana Girju, Vasile
Rus, Finley Lacdtusu, and Razvan Bunescu. 2001.
Answering complex, list and context questions with
LCC'’s question-answering server. In Voorhees and
Harman (Voorhees and Harman, 2001).

Lynette Hirschman and Rob Gaizauskas. 2001. Nat-
ural language question answering: The view from
here. Natural Language Engineering, 7(4):275-
300.

Lynette Hirschman, Marc Light, Eric Breck, and
John D. Burger. 1999. Deep Read: A reading com-
prehension system. In Proc. ACL’99. University of
Maryland.

Jimmy J. Lin. 2001. Indexing and retrieving natural
language using ternary expressions. Master’s the-
sis, MIT.

Igor Mel’€uk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

Diego Molld and Ben Hutchinson. 2003. Intrin-
sic versus extrinsic evaluations of parsing systems.
In Proc. European Association for Computational
Linguistics (EACL), workshop on Evaluation Ini-
tiativesin Natural Language Processing, pages 43—
50, Budapest, April. Association for Computational
Linguistics, ACL.

Diego Molla, Rolf Schwitter, Michael Hess, and
Rachel Fournier. 2000. Extrans, an answer extrac-
tion system. Traitment Automatique des Langues,
41(2):495-522.

Daniel D. Sleator and Davy Temperley. 1993. Parsing
English with a link grammar. In Proc. Third Inter-
national Workshop on Parsing Technologies, pages
277-292.

M. M. Soubbotin. 2001. Patterns of potential
answer expression as clues to the right answers.
In Voorhees and Harman (Voorhees and Harman,
2001).

Pasi Tapanainen and Timo Jarvinen. 1997. A non-
projective dependency parser. In Procs. ANLP-97.
ACL.

Ellen M. Voorhees and Donna K. Harman, editors.
2000. The Ninth Text REtrieval Conference (TREC-
9), number 500-249 in NIST Special Publication.
NIST.

Ellen M. Voorhees and Donna K. Harman, editors.
2001. The Tenth Text REtrieval Conference (TREC-
10), number 500-250 in NIST Special Publication.
NIST.

Ellen M. Voorhees. 2001. The TREC question an-
swering track. Natural Language Engineering,
7(4):361-378.

