
T-Code Compression for Arabic Computational Morphology

Jim Yaghi and Mark R. Titchener

Department of Computer Science

University of Auckland.

jyag001@ec.auckland.ac.nz, mark@tcode.auckland.ac.nz

Sane Yagi

Department of Linguistics

University of Sharjah.

saneyagi@yahoo.com

Abstract

It is impossible to perform root-based

searching, concordancing, and gram-

mar checking in Arabic without a

method to match words with roots and

vice versa. A comprehensive word list

is essential for incremental searching,

predictive SMS messaging, and spell

checking, but due to the derivational

and inflectional nature of Arabic, a

comprehensive word list is taxing on

storage space and access speed. This

paper describes a method for com-

pactly storing and efficiently accessing

an extensive dictionary of Arabic words

by their morphological properties and

roots. Compression of the dictionary

is based on T-Code encoding, which

follows the Huffman encoding model.

The special characteristics inherent

in the recursive augmentation method

with which codes are created allow

compact storage on disk and in mem-

ory. They also facilitate the efficient

use of bandwidth, for Arabic text

transmission, over intranets and the

Internet.

1 Introduction

1.1 Challenges of Arabic

Arabic poses a formidable challenge for compu-

tational linguists due to its derivational nature.

Word generation requires moulding three- and oc-

casionally four-consonant roots into a range of

morphosemantic template patterns, where the root

radicals intersperse between a templates’ letters to

produce a new word with a new meaning that still

shares the basic meaning of the root. Often these

templates augment the root by lengthening its me-

dial radical, inserting a long vowel between the

radicals, and/or adding consonantal prefixes. The

generated words are what is termed ‘stems’ in the

English language, but they are not actual words;

they are mere semantic abstractions. To become

actual words, the stems are moulded into mor-

phosyntactic patterns that will indicate whether a

word is a verb or noun, present or past, active or

passive voice, etc.

The process of root extraction from actual

words, on the other hand, is not a simple reversal

of the process of word generation because the

root radicals would have been disguised by the

application of morphological patterns.

Although Arabic morphology is systematic, it

has remained a challenge to produce, for example,

useful spell checkers, grammar checkers, search

engines, and indexers that are not based on exact

matching. The missing ingredient at the base of

this problem is an accurate root-based morpho-

logical analyser. Spell-checkers, normally, do not

contain a large enough word list to accommodate

the inflectional variation words undergo when

affixed because these may run in millions. Few

grammar checkers exist for Arabic, because it

is difficult to parse a sentence if its words are

not correctly interpreted by a morphological

parser. Various types of Arabic search engines

are significantly impaired because of the inability

to find character-to-character correspondence

between search terms and variant match items

such as differing tense, voice, person, number, or

gender.

1.2 T-Code Technique

Finite State Transducers (FSTs) have been estab-

lished as a standard way to encode morphologi-

cal alterations (Karttunen et al., 1997). However,

FSTs are normally compiled from rules written in

a special FST generator language. FST compilers

like PC-KIMMO (Antworth, 1990) and 2lc (Kart-

tunen, 1993; Karttunen and Beesley, 1992) use a

specialised language to generate lexical transduc-

ers. On the other hand, our implementation uses

the standard PERL regular expressions (Friedl,

2002) but in a specialised manner.

Beesley (2001) describes a system that gener-

ates FSTs using 2lc for lexical transformations

of Arabic words. When generating words, the

system uses the compiled FSTs to achieve mor-

phological and phonological letter alterations and

then uses them in reverse to perform derivation.

Our approach uses, like Beesley, the compiled

FSTs for word generation, but it does not use it for

root derivation.

Our approach produces a list of Arabic stems,

inflected affixed forms along with their roots and

complete morphological classifications; this list

facilitates the direct regeneration of words. Our

root derivation technique requires this extensive

list or dictionary of stems to be stored in a search-

friendly manner.

The dictionary of stems would ordinarily oc-

cupy a large amount of disk storage space, but we

propose here a technique that finds an acceptable

balance between compression and lookup speed,

T-Code (Titchener, 1984). T-Code compression is

similar in style to Huffman encoding, as T-Codes

are a subset of all possible Huffman code sets

(Gunther, 1998). T-Code has the advantage

of statistical synchronisation, or the ability to

self-synchronise (Titchener, 1997), making it

ideal for transmission over networks, especially

where information loss is inevitable (eg., wireless

networks).

Webegin with basic roots andmorphosemantic,

morphosyntactic, and inflectional affixation rules

to generate all possible stems. After some simple

affix removal rules are applied, any valid lookup

word should be found in the comprehensive list

of stems. Internally, Arabic words are encoded

with their roots and morphological classification

so that the original word may be regenerated when

needed.

In this paper, we discuss the system we have

built for verb generation which can be used either

in whole or in part for root-to-word and word-to-

root lookups. We begin with a description of how

the word list was generated, followed by a discus-

sion of the dictionary format and how it was com-

pressed, we then describe how the compressed

dictionary was searched and decoded, and finally

conclude with some suggestions for simple appli-

cations.

2 Word Generation

2.1 Word Data Creator Environment

The Word Data Creator Environment (WCE) was

built to assist in creating and debugging the gen-

eration database. This software provides a graphi-

cal user interface facilitating data entry and exper-

imentation.

WCE allowed us to edit the MainDictionary

Table. For each entry, we were able to supply

a root radical, a root classification identification

number, and two numbers identifying the mor-

phosemantic pattern and a morphosyntactic vari-

ant that a derived word would follow. Unlike tra-

ditional root-type classifications in Arabic mor-

phology, our root classifications identify a root by

the type and location of alterable letters it con-

tains, for example, × (w), Ý (y), and ` (’)1. Al-
terable letters are those that usually undergo rule-

based transformation if followed or preceded by

certain other letters.

In addition to entry editing,WCE allowed us to

edit related template entries from the Templates

Table. A Templates Table entry is indexed by

a pattern and variant identifier and a tense and

voice combination. Every entry specifies a

general template string which, for the given voice

and tense, causes derived words to have a certain

meaning. Entries also identify a set of inflection

and spelling transformation rules and an affix

list number. Transformation rules are dependent

1For readability, this paper uses Buckwal-
ter’s Arabic orthographical transliteration scheme
(http://www.cis.upenn.edu/~cis639/arabic/info/translit-
chart.html).

on a combination of the template string letters

and the root radicals. The template strings of

each entry are, in fact, the combined result of a

morphosemantic and a morphosyntactic pattern,

transformed for the tense and voice of the entry.

The possible tenses are past and present, the

voices are passive and active, and the modes are

indicative and imperative.

Affix lists, which were also editable from

within WCE, contain patterns for generating

17 different morphosyntactic forms specifying

combinations of gender, number, and person for

each voice and tense. Both affixation and trans-

formation rules are specified using the language

of PERL regular expressions.

2.2 Word Generation Engine

Within WCE is an implementation of the Word

Generation Engine (WGE), which allowed us to

debug our classifications and transformation rules,

and to ensure the correct spelling of generated

words. While making modifications to root rad-

icals, word classifications, template strings, and

transformation and affixation rules, we were able

to preview the result of any of the 17word types on

the main screen for the selected MainDictionary

Table entry.

The three components, Stem Transformer,

Affixer, and Slotter, activated in sequence, make

up WGE. Stem Transformer applies the appro-

priate transformation rules to the stem template,

Affixer adds an affix to the transformed template,

and finally Slotter applies the transformed radi-

cals to the affixed template to produce the final

affixed word.

WGE begins with a stem ID from theMainDic-

tionary Table as input. The root and entry associ-

ated with the stem ID are used to identify the radi-

cals of the root, the stem template string, the set of

transformation rules that apply, and an affix list.

Stem Transformer is applied incrementally us-

ing radicals, a template string, and one transfor-

mation rule per pass, as in Figure 1. The output

of each pass is fed back into Stem Transformer as

a modified template string and modified radicals,

along with the next transformation rule. When all

rules associated with the template are exhausted,

the resultant template string and radicals are out-

put to the next phase.

i transform_ruletemplate_string

F M L R

Stem Transformer

Transformed
Intermediate StemDecompose

Intermediate Stem Transform

Compose

th

template_string F M L R

i=0...n

final when i=n

when i<n

final when i=n

search_patternreplace_string

Figure 1: Stem Transformation Phase

A template string marks the positions at which

radicals belong in the template by using the Ro-

man letters F,M, L, and R. These may be viewed

as the variables in the template; all other char-

acters are Arabic constants. Stem Transformer

begins by inserting the root radicals directly after

their position markers. For example, a template,

g FC u@ M@ L@ (<iFotaMaLa)2, with a radical set
{ �،º،� } ({*,k,r}), becomes g F�C u@ Mº@ L�@
(<iF*otaMkaLra). The result is then decomposed

back into the template form, and the root radicals

are updated if altered. For the same example,

the stem template is transformed by an ordered

sequence of rules {1,12}. The text of rule 1

is: F(.)([@ B A K C]*)(u) F$1$2$1. The first

part specifies the match pattern and the second

specifies the replace string. Rule 1 removes the

infix letter u (t) and replaces it with a copy of

the first radical which should directly follow

the radical’s diacritic. The result is the string,

g F�C �@ Mº@ L�@ (<iF*o*aMkaLra).
Stem Transformer concludes by decomposing

the updated template into template text and

radicals. The altered template and radical set

are then passed back into Stem Transformer,

where another rule from the rule sequence

may be applied. For the example above, the

decomposed template becomes g FC �@ M@ L@
(<iFo*aMaLa), while the root radical set remains

unchanged. During this second pass, Stem Trans-

former uses the altered template and radical set

2The letters F, M, L, and R in bold are radical position
markers, not transliterations.

as input together with rule 12, whose text is,

([FMLR]?)([^ @ B A K C]*)([@ B A K C]*)([FMLR]?)
(\2) $1$2K . Rule 12 is a gemination rule,

and uses a backreference in the search pattern,

in order to match any repeated letter. With

its replace string, the second of the duplicate

letters is replaced by the gemination diacritic, /

K / (~). The decomposed result is the template,

g F @K M@ L@ , and the untransformed radical set,

{ �،º،� } ({*,k,r}), which can produce the word

g�@K»@�@ (<i*~akara).

replace_string (affix)

F M L R

Affixer

Transformed
Intermediate StemDecompose

Intermediate Word Transform

Compose
Generic Intermediate

Stem Match

template_string F M L R

final final

from Stem Transformer

template_string

Figure 2: The Affixer Phase

In brief, the final output of Stem Transformer

is a root-transformed template and a template-

transformed radical set. These outputs are used as

input to the affixation phase which succeeds stem

transformation. Affixer, which is applied itera-

tively on the result of Stem Transformer, outputs

17 different affixed morphosyntactic forms for

every stem. Affixer is run with different replace

strings specific to the type of affix being produced.

It modifies copies of the transformed stem from

the previous phase, as in Figure 2. For example,

g F @K M@ L@ is passed to Affixer, with radical set,
{ �،º،� } ({*,k,r}), and the past active feminine

singular affix replace string, $1$6M$7@ L$11uC .
Figure 3 shows the generic transformed-template

match string and indicates the back-reference

groupings, which are used in the replace string

for the affix. The result of applying the affix

transformation above is the affixed template

string, g F @K M@ L@ uC (<iF~aMaLato).

(([^FMLR]*) F ([^]*) ([]*))

1

2 3 4

(([^FMLR]*) M ([^]*) ([]*))

5

6 7 8

(([^FMLR]*) L ([^]*) ([]*))

9

10 11 12

(([^FMLR]*) R ([^]*) ([]*))

13

14 15 16

F M

L R

Figure 3: The generic transformed-template

match string

Transform

F M L R

Slotter

from Affixer

template_string

Transform

Transform

template_string

replace R literal with R value

replace L literal with L value

template_string

replace M literal with M value

Transform

template_string

replace F literal with F value

Affixed Word

final

Figure 4: The Slotter Phase

In Slotter, the last stage of word generation,

transformed radicals replace the Roman position

markers in the transformed template, to produce

the final form of the word. For the example above,

the result is g�@K»@�@uC (<i*~akarato) which is the past

active feminine singular form of the word.

3 T-Code Encoding

Using a format that allows searching the database,

we output an alphabetically sorted list of each

of the 2 million words that WGE generated.

Since diacritics are optional in written Arabic,

we wanted to facilitate the matching process by

having the possibility of ignoring diacritics or

only matching those diacritics that a search item

specifies. In order to achieve this, we indexed our

list for lookup using bare words, words without

diacritics. For each entry, we included the root,

template, and affix type identifiers as numbers.

This gave the capability of generating the actual

word after lookup in order to pinpoint an exact

diacritic match if necessary.

Indexing the complete word list fromWGE and

storing it in a disk-based B-Tree data structure

yields files larger than 100 MB3 Since our dictio-

nary only represents the verbs of Arabic, adding

the nouns would at least double its size; therefore,

it would be advantageous to keep the dictionary’s

disk size minimal.

T-Code encoding, like Huffman encoding, is a

variable length coding scheme. The basis of T-

Code text compression is that shorter codes are

assigned to frequently repeated items. Since un-

compressed text is normally represented by fixed

length codes in software, T-Code is capable of

achieving a large compression factor for text be-

cause it has low entropy. For the word database

produced by WGE, a great amount of redundancy

exists since the 2 million words are based on only

5,500 verb roots. T-Code has the advantage of

self-synchronisation; that is, a series of bits from a

code will only be recognised as being members of

the T-Code set if they constitute a valid code word.

If a series of bits does not belong to the T-Code

set, it will not be valid until all the bits of the code

arrive. This is useful because no additional code

length information needs to be stored in the data.

The T-Codes used to encode the database are

obtained by first calculating a target distribution

of code bit-lengths, then creating an adjusted T-

Code distribution based on the target, and finally

assigning the shortest codes to the most frequent

data items.

3.1 Calculating a Target Distribution

A target distribution for the dictionary database

was calculated using the frequencies of its unique

items. The equation below was used to calculate

the code’s target bit-length ` for each data item i

3The file size being so large is explainable by the fact that
Unicode UTF-16 uses 16-bits per Arabic character (Consor-
tium, 2003), which causes output to be twice as large as it
may have been for Roman characters.

in the database using the item’s average frequency

f̄i.

`i = −
⌈

log2 f̄i

⌉

, i = 0...n

We grouped the frequencies of unique root,

template, and affix type identifier numbers for

each word entry. Additionally, a slightly different

frequency count for the letters of the lookup

words was performed in order to take into ac-

count their compressed form. Special attention

was given to the compression of the low entropy

lookup words whose efficient access is essential.

Original Letters Counted

Entry Transliteration Entry Transliteration

mo Ab mo Ab

mpn AbA ..m ..A

mpnpn AbAbA ...pn ...bA

mpnvx AbAtt ...vx ...tt

mpnvÌwÍ AbAtmtmËwÍmtm

mpnvÐ��� AbAtntnÏ���ntn

mpny AbAv ...y ...v

mpnzÑ AbAvnÎn

mpn} AbAj ...} ...j

mpn~n AbAjAmA

mpn~Ñ AbAjnÎn

pn~Øm bAjwA pn~Øm bAjwA

Table 1: Eliminating redundancy by not counting

repeated letters.

The bare words forming the lookup entries

have a one-to-many relationship with actual

words. That is, many different generated words

with diacritics may become the same lookup

entry when diacritics are removed. Therefore,

if it is possible to distinguish between one bare

word and the next, repetition of lookup entries

is unnecessary. A bit-skip field is used in the

encoded database to mark the end of an entry;

details of this and the encoded database format

are discussed in Section 3.2. During this phase,

we were only concerned with the frequency of the

letters of the lookup items in the final database,

so unique entries had their letters counted only

once.

Another source of redundancy in lookup items

appears in their alphabetically sorted form. Of-

ten, an entry shares initial letters with following

entries. While the dictionary format handles this,

calculation of a target distribution only counts let-

ters not sequentially shared between consecutive

entries, as may be seen in Table 1.

Code Target Modified T-Code

Length Frequency Target Distribution

5 9 5 5

6 5 9 9

7 - - 0

8 2 2 2

9 - - 0

10 4 4 4

11 3 3 3

12 9 9 9

13 10 10 10

14 2 2 2

15 - - 0

16 16378 3836 3836

17 2750 7232 7233

18 - 8059 14159

19 - - 27308

20 3 3 52009

Table 2: AT-Code distribution from the target dis-

tribution for the dictionary.

3.2 Encoding the Dictionary

AT-Code distribution was calculated based on the

target distribution, as in Table 2. Its codes were

created and sorted from shortest to longest then as-

signed to the unique data items of the database in

order of most frequent to least frequent. The un-

compressed dictionary’s data items were then T-

Code encoded.

Figure 5 depicts the encoded dictionary struc-

ture. A header is used to identify the positions

of the start and end of the encoded data. The T-

Code encoded data is represented as a continuous

bit stream written in byte-sized units.

3.2.1 Indexing and Accessing the Dictionary

Access to the dictionary is required to be

sequential. Without a proper indexing system

lookups would be inefficient, having potential

complexity of order O(N). To facilitate efficient

lookups, a simple first letter lookup was used to

give direct access to the byte position of the first

entry using the first letter of the lookup word.

Header

Alphabetic Index
letter start_position

Encoded Data

data_start_pos
data_end_pos

bit-stream

Figure 5: The encoded dictionary structure.

While the first-letter-lookup gives a reasonable

efficiency advantage, the rest of the lookup pro-

cess is required to sequentially read the entries

starting with the first letter. In order to address

this, we added a two-byte fixed width field at the

start of every entry, and distributed their bits as in

Figure 6. An example in Table 3 illustrates how

the fixed width fields are used.

Pos. Entry Transliteration Next Pos. Shared

0 mo Ab 11 0

1 mpn AbA 11 2

2 mpnpn AbAbA 3 3

3 mpnvx AbAtt 4 3

4 mpnvÌwÍ AbAtmtm 5 4

5 mpnvÐ��� AbAtntn 6 4

6 mpny AbAv 8 3

7 mpnzÑ AbAvn 8 4

8 mpn} AbAj 11 3

9 mpn~n AbAjA 10 4

10 mpn~Ñ AbAjn 11 4

11 pn~Øm bAjwA 12 4

Table 3: An example illustrating how the next en-

try bit-skip and shared letter fields are used.

The first 12 bits store the distance in bits to the

next test entry. If the word being searched for in

the dictionary does not have a partial match with

the test word at the current entry, the bit-skip field

points to the next entry that does not begin with all

the same letters. If a partial match is found, then

only words between the current position and the

bit-skip position may match the lookup word.

The remaining 4 bits store information on the

next entry bit skip shared letter count entry info

2-byte fixed width field variable length t-code sequence

Figure 6: An entry using 12 bits for number of bits to skip to next entry and 4 bits for the number of

shared letters.

number of letters shared between the current word

and the next word. This allows the decoder to

compare only the codes of the letters that have not

been tested earlier, reducing the number of com-

parisons needed to make a match.

3.2.2 Results

Using T-Codes and the indexing system de-

scribed in this section, the dictionary disk-size

was reduced to a mere 8 megabytes. The cur-

rent dictionary size includes search and lookup

information, which is over 90% smaller than the

uncompressed B-Tree version with a comprable

lookup speed.

Two devices may use a copy of the dictionary in

order to communicate using T-Code transmission.

A device may encode and transmit every Arabic

word in a message into three codes containing the

root, template, and affix identifiers for the word.

The bandwidth used to transmit an Arabic word

becomes a fraction of the equivalent T-Code en-

coded word.

For example, consider a word such as Ú@¼wBqØÎ@
(yaktubwna), which consists of the root, template,

and affix identifier set {12884,460,30}. The T-

Code lengths will depend only on the statistical

frequency of each of these identifiers for all the

words in an Arabic corpus so as to provide maxi-

mum efficiency; in this case the word may be rep-

resented as {0010101, 001001, 10100} and trans-

mitted as 18 bits. Compare this size with the same

word transmitted in Unicode. This 9 letter word

would normally require 2,592 bits to be transmit-

ted in raw Unicode(16-bit per character x 9 char-

acters). If, instead, the raw identifier set was trans-

mitted, it would require 48 bits (16-bit per inte-

ger x 3 integers), which is still significantly higher

than the T-Code encoded form.

4 A Simple Application: A Root

Extractor and Word Parser

To demonstrate the efficiency of the dictionary,

we created a PERL based implementation of the

decoder, and wrote a web CGI that derives and

parses Arabic words. This particular implemen-

tation, although very simple, also functions as an

accurate root extractor.

Figure 7: Example output from the word-parser

Web CGI using the T-Code encoded dictionary of

Arabic words.

A UTF-8 Unicode-encoded HTML webpage

accepts Arabic words in a simple form. The CGI

is invoked with the input stripped of diacritics.

Next, the CGI removes combinations of conjunc-

tion, prefix, and suffix letters that it finds in a

pre-supplied list of affixes and it begins with the

longest to the shortest sequences. The original

word and each of its stripped forms are T-Code en-

coded and pushed into a queue. Entry codes that

match any of the items in the queue are retrieved

with their identifier lists from the dictionary and

decoded. Identifiers are used in order to generate

the words with diacritics that the entry identifies.

Also, the identifier information is used to morpho-

logically classify the entered word and the affixes

that are used with it. The various possible mor-

phological parsings are then output to HTML, as

in Figure 7.

5 Further Work

We have described a system that uses T-Code to

compress and access a comprehensive list of Ara-

bic verbs by their morphological properties. Word

generation here is restricted to verbs, but further

research must extend the coverage to verbs and

rootless words such as particles and loan words.

Once data has been obtained for word gen-

eration of nouns, the implementations of many

of the applications discussed in the introduction

become feasible. For example, a spell checker

can be instructed to recognise conjunction,

prefix, and suffix letter combinations, as de-

scribed in Section 4. Since these letters do not

cause alteration to adjacent letters, they may

be removed and the remaining stem looked

up in the dictionary. If a match is not found,

a spelling error may be reported. Suggested

spellings may come from the word-generation

and transformation rules of the closest matching

word or words. The closest match, like in English

spell-checkers, would be the words that have

reasonable character-correspondence.

Using the root-extraction algorithm in Sec-

tion 4, root-based searching becomes possible.

Both the search term and search text will undergo

root extraction before a match is found.

Incremental searches such as that used in pre-

dictive text messaging only need to have a list

of the conjunctions and affixes added to the dic-

tionary list. The implementation can then allow

combinations of conjunctions and affixes to at-

tach to dictionary entries. Since the dictionary list

now includes all forms affixed, transformed, and

disguised, valid Arabic words will always find a

match in the dictionary.

In the near future, we hope to increase the

lookup and decoding speed by creating a T-Code

Finite State Automaton (FSA) for the dictionary

as described in (Nithyaganesh, 1998), which will

be able to read an entire byte or two and output

several code words. Currently, the decoding

process tests if a code belongs to the T-Code

set; if it does not match, another bit is added to

the T-Code before it is tested once more. This

continues until the code matches a code from

the valid T-Code set. With a T-Code FSA, a

significant improvement in the decoding speed

will be witnessed, since bytes are looked up rather

than bits.

References

Evan L Antworth. 1990. PC-KIMMO: a two-level
processor for morphological analysis. Occasional
Publications in Academic Computing, 16.

Kenneth R Beesley. 2001. Finite-state morpholog-
ical analysis and generation of arabic at xerox re-
search: Status and plans in 2001. In ARABIC Lan-
guage Processing: Status and Prospects. Arabic
NLP Workshop at ACL/EACL 2001, July.

The Unicode Consortium, 2003. The Unicode Stan-
dard, Version 4.0, chapter 2, page 29. Addison-
Wesley, Reading,MA. ISBN 0-321-18578-1.

Jeffery E. F. Friedl. 2002. Mastering Regular Expres-
sions. O’Reilly, 2nd edition, July.

Ulrich Gunther. 1998. Robust Source Coding With
Generalised T-Codes. Ph.D. thesis, University of
Auckland.

Lauri Karttunen and Kenneth R Beesley. 1992. Two-
level rule compiler. Technical Report ISTL-92-2,
Xerox,Xerox Palo Alto Research Center, Palo Alto,
California.

L. Karttunen, J-P. Chanod, G. Grefenstette, and
A. Schiller. 1997. Regular expressions for
language engineering. In Natural Language
Engineering, pages 238–305. February 5.

Lauri Karttunen. 1993. Finite-state lexicon compiler.
Technical Report ISTL-NLTT-1993-04-02, Xerox,
Xerox Palo Alto Research Center, Palo Alto, Cali-
fornia, April.

Kirubalaratnam Nithyaganesh. 1998. The Talk-Net
Project Real-Time Speech Communication Using T-
Codes. MSc thesis, University of Auckland.

MarkRTitchener. 1984. Digital encodingbymeans of
new t-codes to provide improved data synchroniza-
tion and message integrity. In Technical Note, IEE
Proceedings, volume 131 of 4, pages 51–53, July.

Mark R Titchener. 1997. The synchronization of
variable-length codes. IEEE Transactions on Infor-
mation Theory, 43:683–691,March.

