
Encoding and Presenting Interlinear Text Using XML Technologies

Baden Hughes, Steven Bird and Catherine Bow
Department of Computer Science and Software Engineering

University of Melbourne
Victoria 3010, Australia

{badenh, sb, cbow }@cs.mu.oz.au

Abstract

Interlinear text is a common presenta-
tional format for linguistic information,
and its creation and management have
been greatly facilitated by the develop-
ment of specialised software. In earlier
work we developed a four-level model
and corresponding formal specification
for interlinear text. Here we describe
a suitable XML representation for the
model and show how it can be rendered
into a variety of convenient presenta-
tional formats. We conclude by dis-
cussing architectural extensions, an ap-
plication programming interface for in-
terlinear text, and prospects for embed-
ding the interlinear model into existing
applications.

1 Introduction

Interlinear text is a standard presentational form
for displaying a source text aligned with variety
of linguistic annotation phonological, morpholog-
ical and syntactic analyses, glosses and transla-
tions. An example of Yidinj interlinear text is
shown in Figure 1.

Interlinear texts can vary in the number of
rows, the content and level of analysis for each

njundu wanjdjam

you-SA where-ABL

Where have you come from ?

Figure 1: Yidinj Interlinear Text

row, and certain aspects of layout. However, as
we survey a broad range of cases, we can observe
consistent patterns in layout. These patterns have
lead us to propose an abstract model of interlin-
ear text which is sufficiently general that it en-
compasses the majority of cases based on a sur-
vey of print and electronic representations of in-
terlinear text (Bow, Hughes and Bird 2003). As
we will show here, the model has a natural repre-
sentation in XML, which can be used to generate
a variety of useful visualisations. We begin by de-
scribing the model in§2, then propose a suitable
XML representation (§3). In §4 we discuss com-
mon presentation styles, and in§5 we show how
they can be implemented using XSL. Finally, we
report our work on a prototype (§6) and discuss
future research (§7).

2 The EMELD Interlinear Text Model

For the purposes of this discussion we adopt the
following nomenclature. Byinterlinear textwe
mean a written record of an external linguistic
event, consisting of a transcription aligned with
linguistic analysis. Aline of interlinear text refers
to a row of transcription plus all the rows of analy-
sis pertaining to it. Within the line, there is ahor-
izontal modalityof words and their analysis, plus
there is thevertical modalityof row elements to
indicate the structure of the interlinear text. Ad-
ditionally there is thevertical alignmentof one
row above the other; typically there is consistency
from one block of rows to the next in the vertical
alignment of these rows.

Within the context of the EMELD project
(EMELD, 2000), Bow, Hughes and Bird (2003)



proposed a four-level, hierarchical model of inter-
linear text consisting of Text, Phrase, Word and
Morpheme levels. Aphrase is a collection of
transcription and its interlinear analysis arrayed
across two or more rows, normally represented in
interlinear text as beginning on a new line, and
wrapping only if necessary. Aword is a smaller
collection of material (e.g. transcriptions, mor-
phemes and glosses) that must be kept together
on the same line. Amorphemeis the smallest pos-
sible level of alignment between linguistic forms
and their meanings. In contrast, atext is the high-
est level of structure corresponding to the exter-
nal linguistic artefact being investigated. Just as
it is possible for a word to contain a single mor-
pheme, a phrase may contain a single word, and
a text may contain a single phrase. Thus there is
no prior commitment to the total length of this ex-
ternal linguistic artefact. According to this four-
level scheme, the user has flexibility in the assign-
ment of content to levels, and the decision may be
influenced by both linguistic considerations (what
is a ‘word’? Is this one text or two?) and layout
considerations (what should be kept on the same
line in a display?). Additionally, at any particular
level, analysis may be optionally omitted.

In this model, two rows are represented within
a single node of the hierarchy if they are aligned
with each other. For example, morphemes and
their glosses, while being displayed on two differ-
ent rows, are both represented at the Morpheme
level of the hierarchy, given their 1:1 correspon-
dence. The hierarchical model allows for the con-
catenation of morphemes into words, words into
phrases, and phrases into text, as required by the
interlinear text. It also allows for complex infor-
mation structures to be represented in simple tree
diagrams.

3 The XML Representation

We now turn to a discussion of the XML repre-
sentation of the EMELD model. In this represen-
tation, the textual material has a number of levels,
which can be considered nodes in an XML doc-
ument. Each level consists of some content, and
a sequence of children at subsequent levels. The
content is given a user-defined type which docu-
ments its intended semantic interpretation.
<interlinear-text>

<item type=" user-defined ">
Content at the text level, such
as metadata, or an unaligned
transcription of the entire text,
or a pointer to an unaligned audio file

</item>
<phrases>

Nested XML content to represent the
phrasal constituents of the text

</phrases>
</interlinear-text>

This structure is repeated at each of the four
levels, using the Yidinj example again:

<interlinear-text>
<item type="title">A Yidinj Story</item>

<phrase>
<item type="number">98</item>
<item type="gls">[When Damari eventually

did turn up at the fighting ground, Guyala
asked him:] ’Where have you [come] from?’
</item>

<words>
<word>

<item type="txt">nundu</item>
<morphemes>

<morph>
<item type="gls">you-SA</item>

</morph>
</morphemes>

</word>
<word>

<item type="txt">wandam</item>
<morphemes>

<morph>
<item type="gls">where-ABL</item>

</morph>
</morphemes>

</word>
</words>

</phrase>
</phrases>

</interlinear-text>

4 Interlinear Text Styles

Now that we have a model of the structure of
interlinear text, we demonstrate its adequacy by
showing how it can be used in generating a variety
of layouts. (This logic is largely analogous to that
used in conventional generative grammar: having
analysed surface forms and proposed an under-
lying representation, it is incumbent upon us to
provide the rules and constraints which can be ap-
plied to generate the original surface forms from
the putative underlying representations.) Here
we discuss a variety of presentation issues, be-
fore defining and demonstrating the mapping us-
ing XSL in the following sections.



4.1 Grouping of Content

Generalising from these examples, it should be
possible to view an interlinear text with coarser-
grained alignment, e.g. combining phrase-level
items to form a single text-level item, or combin-
ing morpheme-level items to form a single word-
level item. More generally, when a text is en-
riched by the addition of finer-grained segmen-
tation, it should still be possible to view it with
coarser alignment. In terms of the hierarchical
model, this amounts to taking material from a
lower-level set of nodes, concatenating it together,
and storing it in a higher-level node. Just as we
can ignore the low-level structures, we must also
be able to ignore the high-level structures. For ex-
ample, given an interlinear text it should be pos-
sible to extract its words or morphemes in order
to construct a word-list. Therefore, it is a require-
ment on the rendering process that it can ignore
aspects of the structure for the purpose of display
and alignment.

4.2 Which Rows to Display

Interlinear texts have widely varying levels of de-
tail, ranging from two rows to a dozen. When a
text is enriched by the addition of another row of
information, it should still be possible to view it
in its original form without this extra row. There-
fore, it is a requirement on the rendering process
that it can omit specific rows from the display.

4.3 Row Styles

Font variation in form may reflect the preference
of the author or the requirements of the publisher.
It should be possible to view the rows of a given
text in different styles without having to manually
change the style of every item in the text. There-
fore, it is a requirement of the rendering process
that it can distinguish different types of rows and
display them in user-specified fonts, typefaces,
point sizes and so forth.

4.4 Ordering of Rows

There are some widespread conventions concern-
ing the vertical arrangement of the rows of inter-
linear text. For example, morphemes are usually
written underneath the corresponding words , and
glosses are usually written underneath the corre-
sponding morphemes. However, there are occa-

sional exceptions to such patterns. At the text
level we can observe considerable variation. In
some cases, the notes on the text are placed af-
ter the phrases of the text, in other places the or-
der is reversed. It should be possible to view a
the rows of a given text in different orders with-
out having to manually reorganise the layout of
every item. Therefore, it is a requirement on the
rendering process that it can distinguish different
types of rows and display them in a user-defined
sequence.

5 Rendering Interlinear Text with XSL

Our implementation of rendering is based on the
Extensible Stylesheet Language (XSL) (Bradley,
2000), which can be used to transform XML doc-
uments into other formats. By choosing different
stylesheets, or selecting different parameters for
a given stylesheet, it should be possible to gen-
erate a variety of useful formats, whether for hu-
man consumption using a particular technology
(e.g. conversion to HTML for delivery to a web
browser), or for machine consumption (e.g. con-
version to or serialisation of another XML format
for delivery to another program).

The transformation performed by this model
must accomplish two things: (i) convert the ab-
stract XML representation into a format which
specifies grouping, row ordering and styles, and
(ii) convert the XML markup into the formatting
instructions of some other language like PDF or
HTML. The second of these can be further broken
down into two stages: conversion to XSL Format-
ting Objects, and conversion to the delivery for-
mat. The full model is shown in Figure 2 below.

On the left we see the abstract representation,
which is mapped using one of our stylesheets
XSL1 to a surface representation that fixes the
grouping of items, ordering of rows, and so forth.
A different choice of stylesheet will result in dif-
ferent groupings and orderings in the surface rep-
resentation XMLSR. This format may be further
transformed using third-party XSL stylesheets
(XSLPUB) to meet the requirements of publish-
ers. We supply another transform XSLFO which
converts the surface representation into a low-
level representation using XSL formatting ob-
jects. Third party software can then be used to
generate the format to be delivered to the end-



user.
The key rendering challenge posed by inter-

linear text is line-wrapping. A line of inter-
linear text contains multiple rows, and these
must be wrapped as a group, keeping words
and their morphological analysis together on the
same line. Thus, these multi-row constituents
must be treated as indivisible entities. Format-
ting languages such as HTML (Raggett, Le Hors
and Jacobs, 1999), DocBook (OASIS, 2003) and
DSSSL (ISO/IEC, 1996) model a document as a
collection of blocks (paragraphs, quotes, tables,
lists) each containing lines of text. Critically,
blocks must appear on a line of their own, or
equivalently, lines cannot contain multiple blocks.
In order to handle the line wrapping requirements
of interlinear text, we need a language which per-
mits inline blocks, such as TeX or XSL-FO (XSL
Formatting Objects (Adler et al, 2003)). To facili-
tate flexible integration with web environment we
have chosen to use XSL-FO.

Unfortunately, some XSL-FO engines do not
handle inline blocks correctly at the present time
(e.g. Apache FOP (The Apache Project, 2003)
and XEP (RenderX, 2003)). After experimenta-
tion, we have found that XSL Formatter (Anten-
naHouse, 2003) correctly handles inline blocks,
and so we have used it to generate the examples
included below. For a discussion of XSL-FO en-
gines and their various conformance levels, see
Kimber (2002).

XSL processing of the abstract XML format to
specify grouping, row-ordering and styles is quite
straightforward. We give three examples to illus-
trate. The following template matches a phrase,
and orders its constituent words before any con-
tent at the phrase level (such as a free translation).
<xsl:template match="phrase">

<phrase>
<xsl:apply-templates select="words"/>
<xsl:apply-templates select="item"/>

</phrase>
</xsl:template>

The following template matches an interlinear-
text, ordering any content of type “title” before
the constituent phrases, and ordering any other
content (e.g. notes) afterwards.
<xsl:template match="interlinear-text">

<interlinear-text>
<xsl:for-each

select="item[@type=’title’]">

<title>
<xsl:value-of select = "." />

</title>
</xsl:for-each>

<phrases>
<xsl:apply-templates

select="phrases"/>
</phrases>

<xsl:for-each
select="item[@type!=’title’]">
<item>

<xsl:value-of select = "." />
</item>

</xsl:for-each>
</interlinear-text>

</xsl:template>

The following template matches a document
and constructs a single interlinear text consisting
of just the words (including any morphemes and
glosses), and sorts them.

<xsl:template match="document">
<document>

<interlinear-text>
<phrases>

<xsl:for-each
select="interlinear-text/phrases/

phrase/words/word">
<xsl:sort select="."/>

<phrase>
<words>

<xsl:copy-of select="."/>
</words>

</phrase>
</xsl:for-each>

</phrases>
</interlinear-text>

</document>
</xsl:template>

Using such templates we can generate a va-
riety of document types for external processing
(e.g. use by third-party software) or for delivery
to end-users.

Further work on the XSL mapping is needed:
to support common layout styles and to include
additional rendering parameters; to permit display
parameters to be stored within the abstract XML
representation itself (or in a special XML format
declaration file); and to model affixation in order
that hyphens are introduced appropriately at mor-
pheme boundaries.

6 Prototype

In demonstrating our model we have adopted a
three level architecture which consists of an un-
derlying data representation, a surface display
format, and a variant display format. Essentially



the processes involved in demonstrating the flex-
ibility of this architecture are the conversion of
the underlying data to a surface display, and then
converting the surface display to a variant display.

6.1 Underlying Data

The underlying data is interlinear text structured
according to our model and expressed in XML.
This underlying data can be validated against an
existing DTD or schema.

6.2 Surface Display

The surface display is a basic display format cor-
responding to traditional interlinear text which is
enabled by the application of an XSL stylesheet
to the underlying data. There are two types of
surface display we have identified. The first is a
simple type, namely direct application of a sin-
gle XSL stylesheet to an underlying XML doc-
ument. The second is more complex, including
the parameterisation of user selected display in-
put which in turn affects the XSL stylesheet and
the corresponding display of the underlying XML
document. These distinctions form the basis of
the categorisation of functions.

6.3 Variant Display

The variant display is a customised display format
which demonstrates the flexibility of manipulat-
ing the underlying data for different display pur-
poses. For this demonstration we have identified
a number of desirable variants based on common
linguistic data structures.

6.3.1 Simple Display Types

We have identified two simple display types: (i)
free translation as separate block and (ii) frame
interface based expansion of free translation. In
the first variant, we manipulate the surface dis-
play to format the free translation as a separate
block of text from the interlinear content. In
the second, we manipulate the surface display to
provide the free translation in a separate frame
from the interlinearization, and allow synchro-
nised scrolling and linking between the segments
of the free translation and the relevant interlinear
segments.

6.3.2 Complex Display Types

We have identified a number of complex dis-
play types based on parameterised input. These
are tree view or metastructural view; row re-
ordering; optional row display; wordlist link-
age; and concordance linkage. Thetree-viewor
metastructural displayessentially allows naviga-
tion of the interlinear text using a tree view dis-
play format. Individual branches of the tree can
be expanded or compressed. This may be use-
ful for structural analysis of the text. Therow re-
ordering displayallows the selection of a prefer-
ence for the order of the lines of interlinear text,
eg display source text first, display source text
last. This may be useful in evaluation contexts for
back-glossing. Theoptional row displayallows a
selection of preference for how many interlinear
lines are displayed. This may be useful for con-
text where features of interest are identified in the
interlinear text (eg syntactic vs morphological vs
phonological annotation). Theword list linkage
displayallows the selection of a particular word,
and the corresponding display of interlinear con-
tent for that word. This may be useful for con-
texts where particular words are of intermittent
interest and detected whilst browsing the source
or translation text. Theconcordance linkage dis-
play allows the selection of a particular, and the
corresponding display a list of of all other occur-
rences of the particular word within the text, in-
cluding the surrounding words. Any context can
be selected, and the complete interlinearization
displayed for that context.

6.4 Implementation

We have implemented a prototype which supports
the rendering of user-nominated display types.
Our implementation is web based, with all user
interaction occurring within the browser but re-
liant on embedded XML rendering capabilities
and plugins to handle external application types
such as PDF. Our implementation can be de-
scribed as consisting of three modules, namely
the user interface, the parameterisation logic, and
the rendering engine.

The user interface is very simple, allowing the
user to select the input text from a series of XML
interlinear sources, then to select various display
types, and finally to select an output format. Un-



derlying each of these choices are a series of pa-
rameters, which are processed by a script to deter-
mine the display type and result type. These pa-
rameters then are passed to the rendering engine,
which in combines the interlinear source and the
option parameters to generate the appropriate out-
put type which is then sent back to the browser for
either direct display or display through a browser
plugin.

At a technical level, the user interface itself
is written in HTML, while the parameterisation
logic is coded in PHP. We have experimented with
two server side implementations - one is a wrap-
per based approach to a Java application executed
in the shell; the other is using a Java servlet sup-
ported by Apache and Tomcat. (These alterna-
tive implementations reflect the lack of a fully-
featured rendering engine which services both
browser based rendering and plugin-based render-
ing.

There are a number of extensions to the proto-
type we hope to implement in the future, includ-
ing a remotely instantiable rendering engine, the
ability for users to contribute their own interlinear
texts for rendering, the ability for users to control
aspects of the display types, and a wider variety
of output formats (eg. JPEG, SVG, or tree dia-
grams).

7 Future Research

Although we have developed a specification and
prototype implementation for interlinear text,
there are a number of areas which warrant fur-
ther research. Here we identify and briefly dis-
cuss three of these, namely: architectural exten-
sions; the development of an API for interlinear
text manipulation; and the prospects for embed-
ding of the interlinear text model with existing
(and ultimately, new) tools. The creation of such
tools which are designed for use by the linguist
for creating, editing and publishing of interlinear
texts represents a significant undertaking, but is
based on the foundational work of analysing in-
terlinear text structure, and expressing this in an
open format.

7.1 Architectural Extensions

Having discussed the presentational flexibility
that the XML-based specification provides, we

can now turn to the corresponding architectural
flexibility inherent in XML itself. We will con-
sider linkages of interlinear text to higher level
linguistic ontologies; as the subject for mining
and retrieval in large corpora, such as the Web;
and compatibility with other schemas for the rep-
resentation of materials in an interlinear fashion.

7.1.1 Linguistic Ontologies

Interlinear text typically includes annotations
regarding a wide variety of linguistic phenom-
ena. Each annotator typically uses a different la-
belling inventory for such analysis, and thus au-
tomated cross-linguistic enquiry is made signif-
icantly more difficult through the disparate la-
belling of linguistic features. In order to lever-
age the large amount of annotated interlinear text
which exists, there is a requirement for annotation
to subscribe to a common ontology of linguis-
tic concepts. Such a linguistic ontology (GOLD)
has been defined in Farrar, Lewis and Langen-
doen (2002) and further refined in Farrar and
Langendoen (2003). Our model provides ease
of integration of such ontology-based annotation
structures, and may provide a leverage point for
theory-neutral cross-linguistic enquiry. Further
work is required to fully exploit the power of a
formally structured interlinear text with embed-
ded ontological annotations.

7.1.2 Text Mining and Retrieval

Although we provide a model for encoding in-
terlinear text and its subsequent manipulation, it
is obvious that a vast amount of interlinear mate-
rial already exists, some of which is in electronic
form. In particular, interlinear text is published
online through a variety of document types in-
cluding lexicons, pedagogical materials, language
recordings and transcriptions, language descrip-
tions, grammars and scholarly papers about lan-
guage. For the most part, this interlinear material
is locked up in proprietary formats or is expressed
only in a loosely structured fashion. Re-use of en-
coded interlinear text which exists in this form is
desirable, but obstructed through formats which
do not lend themselves to easy linkage. Some re-
searchers, notably Lewis (2003), have embarked
on efforts to identify interlinear text in these con-
texts, and to retrieve likely examples of interlinear
text for re-use. In this particular context, the ex-



istence of a model into which existing interlinear
forms can be easily translated is a desirable entity.
Providing tools exist to manipulate interlinear text
compliant with this new model may provide an
incentive for linguistic data managers to explore
conversion techniques for common proprietary or
loosely structured formats. Assuming such con-
version is carried out, the standardised body of
interlinear text that results can in turn be queried
directly for a variety of purposes.

7.1.3 Compatibility with Other Schemata

In our earlier work, we clearly delineated in-
terlinear text from other materials which were ex-
pressed in an interlinear format. Models such as
those proposed by Brugman (2003) use interlin-
ear text as a representational medium for non-
textual data, in particular for multimodal sources
such as audio and video. The annotation of such
data sources may require variation in the gran-
ularity of an interlinear model in order to cap-
ture the extra-linguistic dimension of the expres-
sion (eg gesture). Whilst we position our model
as an interchange (and possibly archival format),
we acknowledge that other annotation types re-
quire different structures in which to encode an-
notations. Already we have commenced investi-
gations into the use of XML namespaces to allow
both types of annotation and analysis to coexist
within a single XML document. Software which
is XML namespace-aware can then interpret rows
of analysis according to the appropriate textual or
multimodal models. Further work in this area is
required to ensure tight integration and the devel-
opment of appropriate conversion tools.

7.2 An API for Interlinear Text
Manipulation

We have presented a data model but apart from
our discussion of rendering we have not attempted
to define the legal operations that construct, ac-
cess and otherwise manipulate the structures. In
future work we plan to define the data types and
legal operations formally, independently of their
possible XML and XSL representations. This
will serve as the basis for object-oriented imple-
mentation, for the definition of application pro-
gramming interfaces, and for research on suitable
query languages. More generally, we need to con-

sider interfaces to other data sources such as texts
and lexicons.

7.3 Embedding Interlinear Functionality in
Application Instances

The model presented here is a specialisation of
the interlinear text model presented by Maeda and
Bird (2000), and can be represented using anno-
tation graphs. In future work we will implement
a tool that is part of the Annotation Graph Toolkit
(AGTK, http://agtk.sf.net), building on the exist-
ing InterTrans tool (Bird et al, 2002). This will
require extending the XML format to support the
specification of media file offsets which is likely
to be trivial. In addition, translation tools which
support conversion between native AGTK and our
proposed model format for interchange will facil-
itate the import of existing data into this new tool.

8 Conclusion

Interlinear text is a highly pervasive data type in
the linguistic domain. Although a number of tools
have gained widespread acceptance for creating
and editing interlinear text, the lack of an open
and extensible model has resulted in annotated
textual data in interlinear form being tied to par-
ticular implementations either as structural or pre-
sentation formats. In this paper we have sought to
present open, extensible encoding and presenta-
tion mechanisms which allow the re-use of inter-
linear text in a variety of output formats. A signif-
icant advantage of adopting an XML-based struc-
tural encoding is that interlinear text can poten-
tially be manipulated and queried systematically
by any number of tools which subscribe to open
standards, whether they have a linguistic lineage
or otherwise.

References

Sharon Adler, Anders Berglund, Jeff Caruso,
Stephen Deach, Tony Graham, Paul Grosso,
Eduardo Gutentag, Alex Milowski, Scott
Parnell, Jeremy Ridner and Steve Zilles.
2001. Extensible Stylesheet Language Ver-
sion 1.0 The World Wide Web Consortium.
http://www.w3.org/TR/2001/REC-xsl-20011015/

Antenna House Incorporated. 2003. XSLFor-
matter Antenna House Incorporated.
http://www.antennahouse.com/xslformatter.htm



The Apache Project. 2003. Apache Format-
ting Objects Processor The Apache Project.
http://xml.apache.org/fop

Steven Bird, Kazuaki Maeda, Xiaoyi Ma, Haejoong
Lee, Beth Randall, and Salim Zayat. 2002.Table-
Trans, MultiTrans, InterTrans and TreeTrans: Di-
verse Tools Built on the Annotation Graph Toolkit.
Proceedings of the Third International Conference
on Language Resources and Evaluation, Paris: Eu-
ropean Language Resources Association, pp 364-
370.

Catherine Bow, Baden Hughes and Steven Bird. 2003.
Towards a General Model of Interlinear Text.Pro-
ceedings of the EMELD Language Digitization
Project Conference 2003: Workshop on Digitizing
and Annotating Texts and Field Recordings. LSA
Institute, University of Michigan, Lansing MI USA.
http://www.emeld.org/workshop/2003/papers03.html

Catherine Bow, Baden Hughes and Steven Bird. 2003.
The EMELD Model for Interlinear TextManuscript
in preparation.

Neil Bradley. 2000.The XSL Companion. Addison-
Wesley.

Hennie Brugman. 2003. Annotated Recordings
and Texts in the DOBES Project Proceedings
of the EMELD Language Digitization Project
Conference 2003: Workshop on Digitizing
and Annotating Texts and Field Recordings. LSA
Institute, University of Michigan, Lansing MI USA.
http://www.emeld.org/workshop/2003/papers03.html

DSSSL 1996.Document Style Semantics and Specifi-
cation LanguageISO/IEC 10179:1996

The EMELD Project 2000. Electronic Metas-
tructures for Endangered Language Documentation
http://www.emeld.org

Scott Farrar and Terry Langendoen. An Ontology for
Linguistic Annotation. To appear inGLOT Interna-
tional.

Scott Farrar, William Lewis and Terry Langendoen
2002. A Common Ontology for Linguistic Con-
cepts.Proceedings of the Knowledge Technologies
Conference, March 10-13 2002, Seattle.

Baden Hughes, Steven Bird and Catherine Bow.
2003. Interlinear Text XML and XSL Demonstra-
tion Handout. Proceedings of the EMELD
Language Digitization Project Conference
2003: Workshop on Digitizing and Annotat-
ing Texts and Field Recordings. LSA Insti-
tute, University of Michigan, Lansing MI USA.
http://www.emeld.org/workshop/2003/papers03.html

W. Eliot Kimber 2002.Production Quality XSL-FO.
http://xml.coverpages.org/KimberProductionQuality-
XSL-FO.html

William Lewis. 2003. Migrating and Mining
Interlinear Text. Proceedings of the EMELD
Language Digitization Project Conference
2003: Workshop on Digitizing and Annotat-
ing Texts and Field Recordings. LSA Insti-
tute, University of Michigan, Lansing MI USA.
http://www.emeld.org/workshop/2003/papers03.html

Kazuaki Maeda and Steven Bird. 2000.A Formal
Framework for Interlinear Text. Proceedings of
the Workshop on Web-based Documentation and
Description, Philadelphia, USA; December 12-15,
2000.

Organisation for the Advancement of Structured In-
formation Standards (OASIS). 2003.DocBook
http://www.oasis-open.org/docbook

Dave Raggett, Arnaud Le Hors and Ian Jacobs
1999. The Hypertext Markup Language Ver-
sion 4.1 The World Wide Web Consortium.
http://www..w3.org/TR/html4

RenderX. 2003.XEP XSL Rendering EngineRen-
derX Inc. http://xep.xattic.com/

9 Acknowledgements

This research in this paper has been supported
by the National Science Foundation under Grant
No. 0094934 (Electronic Metastructure for En-
dangered Languages Data).



Figure 2: The Rendering Model


