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Abstract 

Currently, the most common technique 
for Natural Language parsing is done by 
using pattern matching through references 
to a database with the aid of grammatical 
structures models. But the huge variety of 
linguistical syntax and semantics means 
that accurate real time analysis is very dif-
ficult. We investigate several optimisation 
approaches to reduce the search space for 
finding an accurate parse of a sentence 
where individual words can have multiple 
possible syntactic categories, and catego-
ries and phrases can combine together in 
different ways. The algorithms we con-
sider include mechanisms for ordering 
that reduce the search cost without loss of 
completeness or accuracy as well as 
mechanisms that prune the space and may 
result in eliminating valid parses or re-
turning a suboptimal as the best parse. We 
discuss the development and benchmark-
ing of the existing and proposed algo-
rithms in terms of accuracy, search space 
and parse time. Speed up of an order of 
magnitude was achieved without loss of 
completeness, whilst decrease of over two 
orders of magnitude was achieved in the 
search space. A further order of magni-
tude reduction of both time and search 
space was achieved at the expense of 
some loss of accuracy in finding the most 
probable parse. 

1 Introduction 

The complexity and the sizes of the lexical data-
bases and grammatical rules contribute to most of 
the behaviour of Natural Language parsers. By 
increasing the sizes of the database or including a 
more complex set of grammatical rules, the parser 
is able to handle the parsing of more complex sen-
tences or is able to include more accurate informa-
tion to the parsed sentences, but the introduction of 
these results in a more complex parsing procedure 
and the capability to compute for more cases is 
necessary for the parser. Even without the ex-
tended database or rules, parsing of long sentences 
is often avoided due to the extremely large amount 
of different possibilities in parsing the sentence. 

To counteract the increase in the parse time 
form the application of complex grammatical rules, 
we explore the effects of applying search algo-
rithms to a parser to reduce the search space and 
hence enhance the parsing speed. To measure the 
accuracy of the parse, we use a simple scoring sys-
tem derived from the probability that a particular 
structure would exist. This scoring system does not 
always parse the sentence correctly, but it provides 
a good indication of the likeliness of the structure 
from a statistical point of view. 

The purpose of the project is to provide a faster 
way of parsing sentences without losing the effect 
of grammatical structures, or the semantic and syn-
tactic information that have been applied to or ex-
tracted from the parser. These areas being the key 
focus of most research done in NLP and will con-
tinue to increase in complexity in the future. 
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2 Parsing 

The parser we are using was the probabilistic, lexi-
calised combinatory, categorical grammar 
(PLCCG) parser implemented by the CSIRO1 (Jar-
rad et al., 2003) that incorporates a bottom-up 
search strategy. In the training stage, the parser 
builds up a statistical model of the grammatical 
structure by learning from a manually parsed cor-
pus, which is used to assign the possible categories 
and the probabilities of the particular category for a 
word, and also the probabilities associated with the 
actual combination of two structures. The CCG2 
(Steedman, 1996) incorporated in the parser de-
fines the rules and methods used in the combina-
tion stage of the parser, and implements an 
extended set of the standard CCG combinators 
(Jarrad et al., 2003) that makes the grammar more 
flexible. The nature in which a combination occurs 
is very much like using the link grammar rules to 
combine between the different states. 

Initially, the individual words are given a set of 
potential categories that it has seen for the particu-
lar word in the training corpus. Due to the varieties 
in the training data and the increase in freedom 
gained from the extended grammar, some words 
are given a huge set of potential categories. This 
creates a more robust grammar, which can handle 
the parsing of complex sentences, but also contrib-
utes to an explosion in the search space. If the par-
ticular word was not seen in the training corpus, a 
lexical database called WordNet (Miller et al., 
1993) is used to assign the possible categories for 
the word. This is done by extracting the part of 
speech (POS) tags for the unknown word and as-
signing all the possible categories for that POS to 
the word. Finally, if the word was not found in 
WordNet, the set of all possible categories are as-
signed to the unfamiliar word with the probability 
of the category being the frequency of the category 
form the entire training corpus. The difference in 
the number of initial categories for a word can be 
enormous, ranging from one to over one thousand. 

The probability scores for the states are derived 
from the combination of 3 transition probabilities, 
the word category transition, categorial transition, 
and the lexical transition. The parser uses these 
probabilities to derive the scores of a parse to find 
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the most probable parse, which is derived by 
exhaustively combining all possible states for the 
parsing sentence. The approach in which this is 
done is very similar to the chart parser (Charniak, 
1993). This eventually results in the formation of a 
state combing all words in the sentence, which we 
call the terminal state. The scores of all the termi-
nal states are compared and the parser returns the 
parse tree structure for the most probable state. If 
there are multiple states that are equivalent in how 
it was structured, the parser keeps the state with the 
higher probability. For duplicate scores, the first 
one it encounters is kept. 

The task of finding all of the possible combina-
tions is almost as difficult as the travelling sales-
man problem. The search space expands as the 
third power of the words, but due to the fact that 
states can only combine with adjacent states, some 
reduction in the search space occurs automatically. 
But on top of the possible combinations of the se-
quences of words, there is a squared factor for the 
number of possible categories each combination 
would need to consider, which results in the 
model: 
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Where i, j, and k represents the starting position 

of the left sequence, ending position of the left se-
quence, and the ending position of the right se-
quence, respectively. l represents the number of 
words in the sentence and Ni,j represents the num-
ber of states for the sequence between i and j. 

The above model clearly indicates that the task 
of parsing, especially when the number of catego-
ries for a word can be of the order of several hun-
dreds, is a lengthy task. This value can reach up to 
several millions even on sentences with less than 
10 words. Hence the need for a search algorithm 
that would prune the search space without any loss 
of accuracy. 

3 Optimal-Search Algorithm 

The major goal of this project was to explore alter-
native standard and novel algorithms that were ap-
propriate to the task and could relatively easily be 
slotted into the existing parser framework. The 



kind of algorithms and optimisations that are rea-
sonable is tightly constrained by the nature of the 
CCG model and the PLCCG implementation. An-
other major constraint of the algorithm is one that 
is often ignored, which is the overhead in the exe-
cution of the algorithms. This factor plays an 
equally important role in the search problem, but 
has often been ignored due to the increase in the 
hardware performance rate. The algorithmic design 
was modularised, so that an easy switching of the 
algorithm could be done with a uniform interface 
to the rest of the original parser. This meant that 
the algorithm relied on some of the existing struc-
ture of the parser, which was the cause of some 
limitations in the algorithms and is an area that 
could be modified in the future to further increase 
the efficiency of the parser. 

The first algorithm that was considered was 
Adaptive probing (Wheeler, 2001) and this was 
tested on a subset of the problem by simulation 
using a toy language (Kilby, 2002). This algorithm 
was considered due to the gain in search speed 
seen in the simplified search problem, but was re-
jected due mainly to the random nature of the 
search, which means that an exhaustive search was 
necessary to provide the most probable parse. 

The first enhancement was to apply a different 
ordering of the combinations to allow the fast build 
up of the relevant sections of the parse tree. By 
ranking the states in order of their probabilities, the 
parse tree was built up in such a way that the most 
probable state in the tree was considered first. Due 
to the randomised build up of the parse tree in 
terms of extension of the branches in the search 
tree, the algorithm had to include an indicator to 
allow the extension of branches from nodes, even 
after it had been used to construct its children 
states already. This backtracking mechanism was 
implemented using a list containing all of the 
states, which was divided into two sections. A 
pointer into the list indicated the division point 
between the two sections, one of which contained 
all of the states that had been used to combine with 
other states, and the other section contained all of 
the states that had not been used to combine with 
other states. Whenever a state was used to combine 
with other states, it was placed in the used section 
and the states that resulted from the combination 
were placed in the non-explored section. This di-
vided list ensured that no two same combinations 
would ever occur more than once. 

To apply the ranked ordering, the list was main-
tained in a sorted manner by their probability 
scores and the pointer simply moved along the list, 
as more states were used to combine with other 
states. The state being pointed to by the pointer, 
which was the state being used to combine with 
other states of higher scores, was called the pivot 
state. By combining the pivot state with states of 
higher scores, the algorithm guaranteed that result-
ing state of the combination would be equal or 
lower scored than the pivot state. This allowed for 
a simple algorithm for maintaining the ordered list. 
The ranking algorithm is essentially embodied by 
the following pseudo-code: 

 
1. Populate the list with every state for every 

word. 
2. Sort the list by their probability scores. 
3. Set pointer at the first state in the list. 
4. While the list contains un-combined states: 
5. Set pivot as the next most probable state. 
6. Return if pivot state is a terminal state. 
7. Combine pivot with all adjacent states 

with higher probability. 
8. Insertion sort all newly created states in 

to the list. 
9. Return failure 

 
With the application of this ordering, the algo-

rithm allowed for early termination of the search, 
since the newly created states (being of equal or 
lesser probability) must be inserted below the pivot 
state due to the cascading effect of the product of 
the probability. Any terminal state found later 
would have a lower probability than the first one 
that was found, so the algorithm guarantees the 
retrieval of the most probable state without having 
to exhaustively search all possible combinations. 

By only using a single list to maintain all possi-
ble derivation of the states, traversals and mainte-
nance of the ordering of the list used up a lot of 
valuable time. To counteract this, we re-introduce 
a charting behaviour as the second improvement to 
the algorithm. We implemented a table, called the 
indexed table, in which all the states that were in 
the used section were placed, rather than keeping 
them in the same list. The table also grouped to-
gether the states that occupied the same starting 
and ending positions, to simplify the decision 
process in determining which states were adjacent 
to the pivot state. The ranked list was replaced by a 



table, which we called the sorted table that handled 
the push and pop manipulations to simplify and to 
modularise the algorithm for future use. 

The third major step involved the use of a criti-
cal score, which is the score of the currently most 
probable terminal state in the sorted table. By not 
operating on states that are going to produce a 
lower probability than the critical score, it allowed 
for a large pruning of the search tree, weeding out 
states with very low probability that would not 
contribute to the most probable terminal state. The 
algorithm also provides a pre-processing stage be-
fore a combination between states took place, 
which contributed to a little overhead, but managed 
to cut down the amount of unnecessary combina-
tions and avoided the lengthy combination stage of 
two states. 

The scoring system, as it stood, meant that 
combined states of large length would have a very 
low score, even if they consisted of very probable 
sub-structures. There was a necessity to allow lar-
ger sized states a better score to indicate their 
higher desirability. The next major step in the evo-
lution of the algorithm was to alter the scoring sys-
tem to allow larger sized states higher ranking than 
by the use of the raw probability scores. This was 
achieved by normalising the scores to the most 
probable scores of the corresponding positions of 
the states and hence altered the ranking system so 
that states that occupied different sections in the 
sentence were compared relative to other states 
that occupied the same sequence of words. The 
scores of a potential perfect combination of the 
most probable states for each word were used to 
derive the normalisation scores for the particular 
sequence. This is not the most accurate way of de-
termining the normalisation scores, but it provided 
an efficient way to change to ordering while not 
causing too much overheads in the pre-processing 
stage. The normalisation scores and the scores used 
for ranking are derived by: 
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In the above model, i and j represents the start-

ing and ending indexes of the state and l represents 

the length of the sentence. Si,j
normal represents the 

normalization score for the sequence in the range 
between i and j, Sk,k

max represents the score of the 
most probable states for word at k. Si,j

rank represents 
the score used for ranking, but it also represents the 
heuristical score of the state. Si,j represents the raw 
probability score of the particular sequence which 
starts and ends at positions i and j. Note that the 
S0,l

normal is a constant for the same sentence and can 
be factored out for the purpose of ranking, which 
gives: 
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The combined algorithm still maintains the re-

trieval of the parse tree with the same probabilistic 
score as the exhaustive algorithm, but has managed 
to prune a very large section of the search tree 
without creating too much overhead in the execu-
tion of the algorithm. The pseudo–code for this 
new algorithm is: 

 
1. Construct the normalisation mapping. 
2. Initialise the critical score to zero. 
3. Populate and sort the sorted table with all 

states for all words using the normalised 
scores. 

4. Remove the most probable state and insert 
into the indexed table. 

5. While the sorted table contains un-
combined states: 

6. Remove the most probable from the 
sorted table as the pivot. 

7. Return if the pivot is a terminal state. 
8. Combine pivot with all adjacent states in 

the indexed table that don’t fall below 
the critical score. 

9. For every state that has been created: 
10. Adjust the critical score if the produced 

state is a terminal state and the score 
is better. 

11. Insert the created states into the sorted 
table with the normalised score. 

12. Insert the pivot into the indexed table. 
13. Return failure. 
 

We also investigated alternative algorithms that 
included more pruning in the search tree, and also 
the effects of prematurely ending the search when 
an approximate result was found. We experi-



mented with ideas like pruning lower scored states 
at the start of the algorithm (beam search), ap-
proximating the correct parse to be the first termi-
nal state it found, and applying a different priority 
system that encouraged the build up of larger sized 
states without first building up the sub-structures. 
The beam search had the same effects to the parser 
as a reduced set of categories and combinators, in 
that, some valid sentences could not be parsed be-
cause of the reduced amount of ways in forming 
the valid parse. This is a very common approach 
taken to optimise a searching task (Goodman, 
1997), but was not the desired approach for this 
project since the task of the algorithm was to find 
the most probable parse for the sentence. 

By terminating the algorithm prematurely, the 
parser sometimes retrieved the non-optimal result 
and also did not contribute much to the reduction 
of the parsing time, due to the improved ordering 
of the search algorithms. 

By re-ordering the search, so that the build up 
of larger sized states were prioritised, the effects of 
the ordering by their scores were lost and hence the 
algorithm had to either exhaustively search all 
combinations to determine the most probable 
parse, or it had to end the algorithm after the pro-
duction of some terminal state was made. This did 
not guarantee the retrieval of the most probable 
parse and it also meant that some unlikely combi-
nations that could have been avoided by the rank-
ing had to be done. 

When implementing most of the experimental 
algorithms, some of the core structure to the algo-
rithm had to be modified, but an interesting algo-
rithm was discovered in the process. This was the 
product of the beam search and the prioritising of 
larger states, which we called the tree-climbing 
algorithm. The beam search stage, which we called 
the seeding stage, involved building of the parse 
with only the most probable state for each of the 
word, and the tree-climb approach, which was ap-
plied in the subsequent stage, resulted in an algo-
rithm that was faster than the combined optimal 
algorithm, but was not as accurate when it came to 
the retrieval of the most probable parse. However, 
the proportionality of the incorrect parse was 
significantly lower than the application of just the 
beam search or the tree-climb algorithm. The tree-
climb approach was not attractive in terms of both 
parsing accuracy and time in the cases where the 
sub-structures had to be built up first when it was 

applied by itself, but the seeding stage constructed 
the majority of the necessary sub-structures in the 
search tree, and hence allowed the tree climb algo-
rithm to connect up the un-combined sections and 
quickly form a parse for a sentence. Although this 
algorithm did not guarantee the retrieval of the 
most probable parse, it provided alternative points 
of view in the relevance of the scoring system 
which was used to determine the ‘correct parse’ of 
the sentence; some parses which were retrieved 
were structured more similarly to the humanly 
evaluated parse than the most probable parse, even 
though they were assigned lower probabilities. 

4 Results 

The algorithms were trained and tested on both the 
Susanne corpus and the Penn Treebank corpus 
(Mitchell et al., 1992), approximately 95% of each 
was included in the training sets (sections 02 to 21 
for the Penn Treebank) and a randomly chosen 
subset from the rest of the corpus was used for the 
testing sets (section 23 for the Penn Treebank cor-
pus). This corresponded to 50 sentences in the Su-
sanne corpus and just over 580 sentences in the 
Penn Treebank corpus. The major difference be-
tween the two corpora is the number of possible 
categories it contains. Where the Susanne corpus 
contains just over 500 categories, the Penn Tree-
bank corpus contains over 1200 categories it can 
assign to each of the words. The two corpora were 
used to test the performance of the developed algo-
rithms; hence the parsing accuracy is not the in-
tended matter being evaluated here. 

 

 
Figure 1: Benchmarked logarithmic plot com-
paring the exhaustive algorithms to the devel-
oped algorithms on the Susanne corpus. 
 



The PLCCG parser and the developed algo-
rithms were implemented on Python, the reason 
being that the parser is still under development in 
the areas of syntactic and semantic accuracy. 

The progressive increments to the proposed 
algorithm all contributed to large areas of the 
search space being pruned, but due to the over-
heads in the execution of the algorithm, some of 
the benefits were not as much as first expected. 

Figure 1 indicates the ratio differences between 
the original exhaustive algorithm and the proposed 
algorithms on the Susanne corpus. The results from 
the Penn Treebank corpus are not shown, since we 
were unable to obtain the results for some algo-
rithms due to memory problems. The left column 
indicates the parsing time and the right column 
indicates the amount of search space it explored, or 
the number of combinations made during the parse. 
The difference between the two indicates a rough 
estimate of the overhead in the execution of the 
algorithm compared to the original algorithm. As 
the plot indicates, the parse time of the ranked al-
gorithm was excessive. The overhead in determin-
ing the adjacent states contributed to most of the 
parse time and resulted in a worse parse time, even 
though it was only exploring a quarter of the 
search space. 

After the charting was implemented, the bene-
fits of the algorithms became more apparent, even 
through it was still exploring the same search 
space. The reduction of the search space by 75% 
from the use of the ranked ordering indicates that 
most of the categories assigned to the initial words 
did not make much contribution, due to the rare-
ness of its own category and the corresponding 
derived states. 

The inclusion of the critical score made another 
dramatic reduction in the search space, indicating 
that a lot of unnecessary searching was occurring 
after the terminal state was produced, which could 
be carefully pruned out without affecting the final 
result. The proportionality between the search time 
and the search space increased with the inclusion 
of the critical value, which was contributed by the 
overheads in the pre-processing stage before the 
combination between the states occurred. 

The use of the normalised scores contributed to 
yet another reduction in the parse time and search 
space. This algorithm did not make as much use of 
the critical value compared to the raw critical algo-
rithm due to better ordering of the states, but since 

the normalisation scores are not the perfect repre-
sentation of the relative scores to each position, 
which is impossible to predict, the critical value 
still plays an important role in the algorithm. This 
algorithm introduces extra processing to calculate 
the normalised scores and to re-order the states 
with the same scores, but the overheads is still a lot 
less than the raw critical scored algorithm, due to 
the repeated pre-processing overheads. 

The experimental tree-climb algorithm result 
seen on the far right shows an impressive parse 
time and huge reduction in the search space, but 
has slight inaccuracies parse compared to the other 
algorithms, which can be seen in Table 1. 
 
 Exhaustive Optimal Suboptimal 

Susanne (%) 
Parse time 100.0 15.2 1.7 
Search space 100.0 6.9 0.3 
Most probable 100.0 100.0 84.0 
Penn Treebank (%) 
Parse time 100.0 10.4 0.7 
Search space 100.0 4.7 0.1 
Most probable 100.0 100.0 66.7 

Table 1: Statistics of parsing of the optimal and 
suboptimal algorithms for both the Susanne and 
Penn Treebank corpora. 
 
The parse time and the search space are repre-

sented as the proportionality compared to the ex-
haustive algorithm and the percentage that the 
algorithm retrieved the most probable parse is in-
dicated in the last row. The optimal algorithm is 
the combined algorithm of all the algorithms that 
provided benefits to the parsing speed without the 
loss of accuracy and the suboptimal algorithm is 
the tree-climb algorithm, which provided a fastest 
and also a reasonably accurate result from all 
tested suboptimal algorithms. 

The results from the 2 corpora indicate similar 
trends in the characteristics of the algorithms, 
which indicate a consistent improvement from the 
application of the algorithms. The parse time and 
the search space showed a bigger improvement 
from the larger Penn Treebank corpus, even though 
there is over twice the number of categories to 
choose from. This is suspected to be the fact that 
more trivial sentences exists within the Penn Tree-
bank testing set. Another contributing factor to this 
is the fact that the training set is a lot larger in the 



Penn Treebank test. This means that the algorithm 
does not need to look up unknown words from 
WordNet or spend time assigning all possible cate-
gories for the word. 

The optimal search algorithm returns the most 
probable parse tree, but sometimes varied in the 
tagging and bracketing of the parse due to the 
cases when multiple parses have the same prob-
ability. The tree-climb algorithm’s performance in 
the accuracy domain is relatively poor, but some of 
the loss in the accuracy can be recovered by alter-
ing the amount of states used in the seeding stage.  
However, because the algorithm loses track of the 
ranking of the states, the algorithm must exhaus-
tively combine all states to determine the most 
probable parse. 

 

 
Figure 2: Number of words in the sentence ver-
sus parsing time on the Penn Treebank corpus 
for the exhaustive, optimal and the suboptimal 
algorithm. 
 
On a corpus based comparison, it is fairly easy 

to see the improvements of the developed algo-
rithms, but for the task of NLP, it is probably more 
important to look at a per sentence comparison, 
especially if it is in an environment where human 
interaction is required. Figure 2 indicates the rela-
tionship between the parsing time and the number 
of words in the sentence for the exhaustive, opti-
mal and the suboptimal search algorithms. There is 
a huge reduction in the parse time from the algo-
rithm with the optimal algorithm, and an even 
greater reduction from the suboptimal algorithm. 
Both these algorithms possesses another great fea-
ture in that the exponential coefficient factor for 
the parse time is a lot less than the exhaustive algo-
rithm. This means that the algorithm works more 
efficiently with longer sentences, but the plot still 
indicates that the new algorithms are still better 

than the exhaustive algorithm for short sentences, 
even with the extra overheads from various forms 
of initialisation. 

The long parsing times are the consequences of 
using a scripting language for the development and 
testing of the parser. The results should reduce by a 
factor of several tens or even hundreds if the parser 
was implemented on a natively compilable lan-
guage. 

Figure 3 describes the overall efficiency of the 
algorithms, which displays 4 different dimensions 
about the algorithms. The first is the linear slope 
seen in all the algorithms. This indicates that the 
non-searching processes in the individual algo-
rithms (overheads), like the initialisation stage do 
not contribute greatly to the parse time, with the 
exception of the set of plots around the 10 second 
range, which has deviated from the other results. 
This is due to the extra time taken for the algo-
rithms to fetch the relevant categories form Word-
Net and also the assignment of all possible 
categories. This is not apparent in the exhaustive 
algorithm, because they perform a lot more combi-
nations if the number of categories assigned to 
each of the words is large, where as the optimal 
and the suboptimal algorithms does not take most 
of them into account. The actual slope of the plots 
indicates the sizes of the coefficient of the relation-
ship, shown more clearly in Figure 2. 

 

 
Figure 3: Efficiency of the algorithms measured 
on the Penn Treebank corpus. 
 
The second dimension is the y-intercepts of the 

plots, which describes the efficiency of the execu-
tion of the algorithm. The smaller the y-intercept, 
the more efficient it is in executing each combina-
tion. The exhaustive algorithm clearly out-
performing the others, due to the simple way it 
needs to be implemented. Due to the large over-



head in applying the suboptimal algorithm, there is 
a large overhead in the algorithm, meaning that if 
the states of a very low probability had to be used 
to produce a terminal state, this algorithm would 
run the slowest. 

The third dimension is the spanning distance 
between the plots, which indicates the size of the 
exponential coefficient. The longer the distance 
between the quicker parses and the longer parses, 
the larger the exponential coefficient it has. The 
effect of which can be seen more clearly on Figure 
2. The fourth and the final dimension is the aver-
age speed of the parse time, which is indicated by 
the average height of the points. 

5 Conclusion and Future Work 

Unlike most modern search algorithms that take 
advantage of the continuously increasing process-
ing power of the modern day computers and hence 
lose elegance in the search technique, the devel-
oped search algorithm allows for the retrieval of 
the best possible solution in a very efficient man-
ner while also taking into account of the overheads 
involved in execution of the algorithm. The im-
plementation of the algorithm as the searching 
mechanism to find the most probable parse for the 
target parser has dramatically reduced the parsing 
time required to retrieve the same result as an ex-
haustive search mechanism. 

The characteristics of the algorithm has the po-
tential to be converted into a simple chunk parser, 
which is sometimes enough to extract the relevant 
information from the sentences. The proposed al-
gorithm encourages the quick build up of sub-
parses, rather than the linear build-up algorithm of 
the exhaustive algorithms, hence the order in 
which the combination occurs allows for the split-
ting of the sentence into sections or chunks by 
early termination of the algorithm. 

The tree-climb algorithm needs further investi-
gation, as the algorithm may possesses characteris-
tics which may end up being more beneficial to the 
accuracy of the parser. This is due to the fact that 
the most probable parse is not always the correct 
parse. Further investigation techniques might in-
clude getting the algorithm to find multiple solu-
tions before it is returned, or to measure the 
accuracy after altering the amount of states used in 
the seeding stage. Primitive experiments done on 
adjusting the seeding amount has decreased the 

error rate, but further tests are required to under-
stand the effects on this. 

By modifying the probability scores to include 
information on things like the syntactic and seman-
tic context to provide a better indication of the 
grammar which will provide a better scoring sys-
tem, the parser should be able to provide better 
results and still rely on the developed optimal algo-
rithm to retrieve the most probable parse. This also 
means that the algorithm is generic enough to be 
applied to other kinds of search problems. The 4 
main implemented techniques; ranking the nodes 
in the search tree to allow for early search termina-
tion, using charting to avoid processing of un-
wanted search space, applying the critical point 
scores and a quick pre-processing stage to avoid 
lengthy computation, and the use normalised 
scores to provide a better heuristical indication of 
the node being searched all provide vital ways to 
reduce the search space of the problem. 
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