
Application of Search Algorithms to Natural Language Processing

Abstract

Currently, the most common technique
for Natural Language parsing is done by
using pattern matching through references
to a database with the aid of grammatical
structures models. But the huge variety of
linguistical syntax and semantics means
that accurate real time analysis is very dif-
ficult. We investigate several optimisation
approaches to reduce the search space for
finding an accurate parse of a sentence
where individual words can have multiple
possible syntactic categories, and catego-
ries and phrases can combine together in
different ways. The algorithms we con-
sider include mechanisms for ordering
that reduce the search cost without loss of
completeness or accuracy as well as
mechanisms that prune the space and may
result in eliminating valid parses or re-
turning a suboptimal as the best parse. We
discuss the development and benchmark-
ing of the existing and proposed algo-
rithms in terms of accuracy, search space
and parse time. Speed up of an order of
magnitude was achieved without loss of
completeness, whilst decrease of over two
orders of magnitude was achieved in the
search space. A further order of magni-
tude reduction of both time and search
space was achieved at the expense of
some loss of accuracy in finding the most
probable parse.

1 Introduction

The complexity and the sizes of the lexical data-
bases and grammatical rules contribute to most of
the behaviour of Natural Language parsers. By
increasing the sizes of the database or including a
more complex set of grammatical rules, the parser
is able to handle the parsing of more complex sen-
tences or is able to include more accurate informa-
tion to the parsed sentences, but the introduction of
these results in a more complex parsing procedure
and the capability to compute for more cases is
necessary for the parser. Even without the ex-
tended database or rules, parsing of long sentences
is often avoided due to the extremely large amount
of different possibilities in parsing the sentence.

To counteract the increase in the parse time
form the application of complex grammatical rules,
we explore the effects of applying search algo-
rithms to a parser to reduce the search space and
hence enhance the parsing speed. To measure the
accuracy of the parse, we use a simple scoring sys-
tem derived from the probability that a particular
structure would exist. This scoring system does not
always parse the sentence correctly, but it provides
a good indication of the likeliness of the structure
from a statistical point of view.

The purpose of the project is to provide a faster
way of parsing sentences without losing the effect
of grammatical structures, or the semantic and syn-
tactic information that have been applied to or ex-
tracted from the parser. These areas being the key
focus of most research done in NLP and will con-
tinue to increase in complexity in the future.

Takeshi Matsumoto
School of Informatics and Engineering
Flinders University of South Australia
takeshi.matsumoto@flinders.edu.au

David M. W. Powers
School of Informatics and Engineering
Flinders University of South Australia
powers@infoeng.flinders.edu.au

Geoff Jarrad
Business Intelligence Group

CSIRO ICT centre
geoff.jarrad@csiro.au

2 Parsing

The parser we are using was the probabilistic, lexi-
calised combinatory, categorical grammar
(PLCCG) parser implemented by the CSIRO1 (Jar-
rad et al., 2003) that incorporates a bottom-up
search strategy. In the training stage, the parser
builds up a statistical model of the grammatical
structure by learning from a manually parsed cor-
pus, which is used to assign the possible categories
and the probabilities of the particular category for a
word, and also the probabilities associated with the
actual combination of two structures. The CCG2
(Steedman, 1996) incorporated in the parser de-
fines the rules and methods used in the combina-
tion stage of the parser, and implements an
extended set of the standard CCG combinators
(Jarrad et al., 2003) that makes the grammar more
flexible. The nature in which a combination occurs
is very much like using the link grammar rules to
combine between the different states.

Initially, the individual words are given a set of
potential categories that it has seen for the particu-
lar word in the training corpus. Due to the varieties
in the training data and the increase in freedom
gained from the extended grammar, some words
are given a huge set of potential categories. This
creates a more robust grammar, which can handle
the parsing of complex sentences, but also contrib-
utes to an explosion in the search space. If the par-
ticular word was not seen in the training corpus, a
lexical database called WordNet (Miller et al.,
1993) is used to assign the possible categories for
the word. This is done by extracting the part of
speech (POS) tags for the unknown word and as-
signing all the possible categories for that POS to
the word. Finally, if the word was not found in
WordNet, the set of all possible categories are as-
signed to the unfamiliar word with the probability
of the category being the frequency of the category
form the entire training corpus. The difference in
the number of initial categories for a word can be
enormous, ranging from one to over one thousand.

The probability scores for the states are derived
from the combination of 3 transition probabilities,
the word category transition, categorial transition,
and the lexical transition. The parser uses these
probabilities to derive the scores of a parse to find

1 Commonwealth Scientific and Industrial Research Organisa-
tion
2 Combinatory Categorial Grammar

the most probable parse, which is derived by
exhaustively combining all possible states for the
parsing sentence. The approach in which this is
done is very similar to the chart parser (Charniak,
1993). This eventually results in the formation of a
state combing all words in the sentence, which we
call the terminal state. The scores of all the termi-
nal states are compared and the parser returns the
parse tree structure for the most probable state. If
there are multiple states that are equivalent in how
it was structured, the parser keeps the state with the
higher probability. For duplicate scores, the first
one it encounters is kept.

The task of finding all of the possible combina-
tions is almost as difficult as the travelling sales-
man problem. The search space expands as the
third power of the words, but due to the fact that
states can only combine with adjacent states, some
reduction in the search space occurs automatically.
But on top of the possible combinations of the se-
quences of words, there is a squared factor for the
number of possible categories each combination
would need to consider, which results in the
model:

kj

l

i

l

ij

l

jk
ji NN ,1

1

1

1

1
, +

−

=

−

= +=
⋅∑ ∑ ∑

Where i, j, and k represents the starting position

of the left sequence, ending position of the left se-
quence, and the ending position of the right se-
quence, respectively. l represents the number of
words in the sentence and Ni,j represents the num-
ber of states for the sequence between i and j.

The above model clearly indicates that the task
of parsing, especially when the number of catego-
ries for a word can be of the order of several hun-
dreds, is a lengthy task. This value can reach up to
several millions even on sentences with less than
10 words. Hence the need for a search algorithm
that would prune the search space without any loss
of accuracy.

3 Optimal-Search Algorithm

The major goal of this project was to explore alter-
native standard and novel algorithms that were ap-
propriate to the task and could relatively easily be
slotted into the existing parser framework. The

kind of algorithms and optimisations that are rea-
sonable is tightly constrained by the nature of the
CCG model and the PLCCG implementation. An-
other major constraint of the algorithm is one that
is often ignored, which is the overhead in the exe-
cution of the algorithms. This factor plays an
equally important role in the search problem, but
has often been ignored due to the increase in the
hardware performance rate. The algorithmic design
was modularised, so that an easy switching of the
algorithm could be done with a uniform interface
to the rest of the original parser. This meant that
the algorithm relied on some of the existing struc-
ture of the parser, which was the cause of some
limitations in the algorithms and is an area that
could be modified in the future to further increase
the efficiency of the parser.

The first algorithm that was considered was
Adaptive probing (Wheeler, 2001) and this was
tested on a subset of the problem by simulation
using a toy language (Kilby, 2002). This algorithm
was considered due to the gain in search speed
seen in the simplified search problem, but was re-
jected due mainly to the random nature of the
search, which means that an exhaustive search was
necessary to provide the most probable parse.

The first enhancement was to apply a different
ordering of the combinations to allow the fast build
up of the relevant sections of the parse tree. By
ranking the states in order of their probabilities, the
parse tree was built up in such a way that the most
probable state in the tree was considered first. Due
to the randomised build up of the parse tree in
terms of extension of the branches in the search
tree, the algorithm had to include an indicator to
allow the extension of branches from nodes, even
after it had been used to construct its children
states already. This backtracking mechanism was
implemented using a list containing all of the
states, which was divided into two sections. A
pointer into the list indicated the division point
between the two sections, one of which contained
all of the states that had been used to combine with
other states, and the other section contained all of
the states that had not been used to combine with
other states. Whenever a state was used to combine
with other states, it was placed in the used section
and the states that resulted from the combination
were placed in the non-explored section. This di-
vided list ensured that no two same combinations
would ever occur more than once.

To apply the ranked ordering, the list was main-
tained in a sorted manner by their probability
scores and the pointer simply moved along the list,
as more states were used to combine with other
states. The state being pointed to by the pointer,
which was the state being used to combine with
other states of higher scores, was called the pivot
state. By combining the pivot state with states of
higher scores, the algorithm guaranteed that result-
ing state of the combination would be equal or
lower scored than the pivot state. This allowed for
a simple algorithm for maintaining the ordered list.
The ranking algorithm is essentially embodied by
the following pseudo-code:

1. Populate the list with every state for every

word.
2. Sort the list by their probability scores.
3. Set pointer at the first state in the list.
4. While the list contains un-combined states:
5. Set pivot as the next most probable state.
6. Return if pivot state is a terminal state.
7. Combine pivot with all adjacent states

with higher probability.
8. Insertion sort all newly created states in

to the list.
9. Return failure

With the application of this ordering, the algo-

rithm allowed for early termination of the search,
since the newly created states (being of equal or
lesser probability) must be inserted below the pivot
state due to the cascading effect of the product of
the probability. Any terminal state found later
would have a lower probability than the first one
that was found, so the algorithm guarantees the
retrieval of the most probable state without having
to exhaustively search all possible combinations.

By only using a single list to maintain all possi-
ble derivation of the states, traversals and mainte-
nance of the ordering of the list used up a lot of
valuable time. To counteract this, we re-introduce
a charting behaviour as the second improvement to
the algorithm. We implemented a table, called the
indexed table, in which all the states that were in
the used section were placed, rather than keeping
them in the same list. The table also grouped to-
gether the states that occupied the same starting
and ending positions, to simplify the decision
process in determining which states were adjacent
to the pivot state. The ranked list was replaced by a

table, which we called the sorted table that handled
the push and pop manipulations to simplify and to
modularise the algorithm for future use.

The third major step involved the use of a criti-
cal score, which is the score of the currently most
probable terminal state in the sorted table. By not
operating on states that are going to produce a
lower probability than the critical score, it allowed
for a large pruning of the search tree, weeding out
states with very low probability that would not
contribute to the most probable terminal state. The
algorithm also provides a pre-processing stage be-
fore a combination between states took place,
which contributed to a little overhead, but managed
to cut down the amount of unnecessary combina-
tions and avoided the lengthy combination stage of
two states.

The scoring system, as it stood, meant that
combined states of large length would have a very
low score, even if they consisted of very probable
sub-structures. There was a necessity to allow lar-
ger sized states a better score to indicate their
higher desirability. The next major step in the evo-
lution of the algorithm was to alter the scoring sys-
tem to allow larger sized states higher ranking than
by the use of the raw probability scores. This was
achieved by normalising the scores to the most
probable scores of the corresponding positions of
the states and hence altered the ranking system so
that states that occupied different sections in the
sentence were compared relative to other states
that occupied the same sequence of words. The
scores of a potential perfect combination of the
most probable states for each word were used to
derive the normalisation scores for the particular
sequence. This is not the most accurate way of de-
termining the normalisation scores, but it provided
an efficient way to change to ordering while not
causing too much overheads in the pre-processing
stage. The normalisation scores and the scores used
for ranking are derived by:

normal
jiji

normal
l

normal
ljji

normal
i

rank
ji

j

ik
kk

normal
ji

SSS

SSSS

SS

,,,0

,1,1,0,

max
,,

⋅=

⋅⋅=

=

+−

=
∏

In the above model, i and j represents the start-

ing and ending indexes of the state and l represents

the length of the sentence. Si,j
normal represents the

normalization score for the sequence in the range
between i and j, Sk,k

max represents the score of the
most probable states for word at k. Si,j

rank represents
the score used for ranking, but it also represents the
heuristical score of the state. Si,j represents the raw
probability score of the particular sequence which
starts and ends at positions i and j. Note that the
S0,l

normal is a constant for the same sentence and can
be factored out for the purpose of ranking, which
gives:

normal

jiji
rank

ji SSS ,,, =

The combined algorithm still maintains the re-

trieval of the parse tree with the same probabilistic
score as the exhaustive algorithm, but has managed
to prune a very large section of the search tree
without creating too much overhead in the execu-
tion of the algorithm. The pseudo–code for this
new algorithm is:

1. Construct the normalisation mapping.
2. Initialise the critical score to zero.
3. Populate and sort the sorted table with all

states for all words using the normalised
scores.

4. Remove the most probable state and insert
into the indexed table.

5. While the sorted table contains un-
combined states:

6. Remove the most probable from the
sorted table as the pivot.

7. Return if the pivot is a terminal state.
8. Combine pivot with all adjacent states in

the indexed table that don’t fall below
the critical score.

9. For every state that has been created:
10. Adjust the critical score if the produced

state is a terminal state and the score
is better.

11. Insert the created states into the sorted
table with the normalised score.

12. Insert the pivot into the indexed table.
13. Return failure.

We also investigated alternative algorithms that
included more pruning in the search tree, and also
the effects of prematurely ending the search when
an approximate result was found. We experi-

mented with ideas like pruning lower scored states
at the start of the algorithm (beam search), ap-
proximating the correct parse to be the first termi-
nal state it found, and applying a different priority
system that encouraged the build up of larger sized
states without first building up the sub-structures.
The beam search had the same effects to the parser
as a reduced set of categories and combinators, in
that, some valid sentences could not be parsed be-
cause of the reduced amount of ways in forming
the valid parse. This is a very common approach
taken to optimise a searching task (Goodman,
1997), but was not the desired approach for this
project since the task of the algorithm was to find
the most probable parse for the sentence.

By terminating the algorithm prematurely, the
parser sometimes retrieved the non-optimal result
and also did not contribute much to the reduction
of the parsing time, due to the improved ordering
of the search algorithms.

By re-ordering the search, so that the build up
of larger sized states were prioritised, the effects of
the ordering by their scores were lost and hence the
algorithm had to either exhaustively search all
combinations to determine the most probable
parse, or it had to end the algorithm after the pro-
duction of some terminal state was made. This did
not guarantee the retrieval of the most probable
parse and it also meant that some unlikely combi-
nations that could have been avoided by the rank-
ing had to be done.

When implementing most of the experimental
algorithms, some of the core structure to the algo-
rithm had to be modified, but an interesting algo-
rithm was discovered in the process. This was the
product of the beam search and the prioritising of
larger states, which we called the tree-climbing
algorithm. The beam search stage, which we called
the seeding stage, involved building of the parse
with only the most probable state for each of the
word, and the tree-climb approach, which was ap-
plied in the subsequent stage, resulted in an algo-
rithm that was faster than the combined optimal
algorithm, but was not as accurate when it came to
the retrieval of the most probable parse. However,
the proportionality of the incorrect parse was
significantly lower than the application of just the
beam search or the tree-climb algorithm. The tree-
climb approach was not attractive in terms of both
parsing accuracy and time in the cases where the
sub-structures had to be built up first when it was

applied by itself, but the seeding stage constructed
the majority of the necessary sub-structures in the
search tree, and hence allowed the tree climb algo-
rithm to connect up the un-combined sections and
quickly form a parse for a sentence. Although this
algorithm did not guarantee the retrieval of the
most probable parse, it provided alternative points
of view in the relevance of the scoring system
which was used to determine the ‘correct parse’ of
the sentence; some parses which were retrieved
were structured more similarly to the humanly
evaluated parse than the most probable parse, even
though they were assigned lower probabilities.

4 Results

The algorithms were trained and tested on both the
Susanne corpus and the Penn Treebank corpus
(Mitchell et al., 1992), approximately 95% of each
was included in the training sets (sections 02 to 21
for the Penn Treebank) and a randomly chosen
subset from the rest of the corpus was used for the
testing sets (section 23 for the Penn Treebank cor-
pus). This corresponded to 50 sentences in the Su-
sanne corpus and just over 580 sentences in the
Penn Treebank corpus. The major difference be-
tween the two corpora is the number of possible
categories it contains. Where the Susanne corpus
contains just over 500 categories, the Penn Tree-
bank corpus contains over 1200 categories it can
assign to each of the words. The two corpora were
used to test the performance of the developed algo-
rithms; hence the parsing accuracy is not the in-
tended matter being evaluated here.

Figure 1: Benchmarked logarithmic plot com-
paring the exhaustive algorithms to the devel-
oped algorithms on the Susanne corpus.

The PLCCG parser and the developed algo-
rithms were implemented on Python, the reason
being that the parser is still under development in
the areas of syntactic and semantic accuracy.

The progressive increments to the proposed
algorithm all contributed to large areas of the
search space being pruned, but due to the over-
heads in the execution of the algorithm, some of
the benefits were not as much as first expected.

Figure 1 indicates the ratio differences between
the original exhaustive algorithm and the proposed
algorithms on the Susanne corpus. The results from
the Penn Treebank corpus are not shown, since we
were unable to obtain the results for some algo-
rithms due to memory problems. The left column
indicates the parsing time and the right column
indicates the amount of search space it explored, or
the number of combinations made during the parse.
The difference between the two indicates a rough
estimate of the overhead in the execution of the
algorithm compared to the original algorithm. As
the plot indicates, the parse time of the ranked al-
gorithm was excessive. The overhead in determin-
ing the adjacent states contributed to most of the
parse time and resulted in a worse parse time, even
though it was only exploring a quarter of the
search space.

After the charting was implemented, the bene-
fits of the algorithms became more apparent, even
through it was still exploring the same search
space. The reduction of the search space by 75%
from the use of the ranked ordering indicates that
most of the categories assigned to the initial words
did not make much contribution, due to the rare-
ness of its own category and the corresponding
derived states.

The inclusion of the critical score made another
dramatic reduction in the search space, indicating
that a lot of unnecessary searching was occurring
after the terminal state was produced, which could
be carefully pruned out without affecting the final
result. The proportionality between the search time
and the search space increased with the inclusion
of the critical value, which was contributed by the
overheads in the pre-processing stage before the
combination between the states occurred.

The use of the normalised scores contributed to
yet another reduction in the parse time and search
space. This algorithm did not make as much use of
the critical value compared to the raw critical algo-
rithm due to better ordering of the states, but since

the normalisation scores are not the perfect repre-
sentation of the relative scores to each position,
which is impossible to predict, the critical value
still plays an important role in the algorithm. This
algorithm introduces extra processing to calculate
the normalised scores and to re-order the states
with the same scores, but the overheads is still a lot
less than the raw critical scored algorithm, due to
the repeated pre-processing overheads.

The experimental tree-climb algorithm result
seen on the far right shows an impressive parse
time and huge reduction in the search space, but
has slight inaccuracies parse compared to the other
algorithms, which can be seen in Table 1.

 Exhaustive Optimal Suboptimal

Susanne (%)
Parse time 100.0 15.2 1.7
Search space 100.0 6.9 0.3
Most probable 100.0 100.0 84.0
Penn Treebank (%)
Parse time 100.0 10.4 0.7
Search space 100.0 4.7 0.1
Most probable 100.0 100.0 66.7

Table 1: Statistics of parsing of the optimal and
suboptimal algorithms for both the Susanne and
Penn Treebank corpora.

The parse time and the search space are repre-

sented as the proportionality compared to the ex-
haustive algorithm and the percentage that the
algorithm retrieved the most probable parse is in-
dicated in the last row. The optimal algorithm is
the combined algorithm of all the algorithms that
provided benefits to the parsing speed without the
loss of accuracy and the suboptimal algorithm is
the tree-climb algorithm, which provided a fastest
and also a reasonably accurate result from all
tested suboptimal algorithms.

The results from the 2 corpora indicate similar
trends in the characteristics of the algorithms,
which indicate a consistent improvement from the
application of the algorithms. The parse time and
the search space showed a bigger improvement
from the larger Penn Treebank corpus, even though
there is over twice the number of categories to
choose from. This is suspected to be the fact that
more trivial sentences exists within the Penn Tree-
bank testing set. Another contributing factor to this
is the fact that the training set is a lot larger in the

Penn Treebank test. This means that the algorithm
does not need to look up unknown words from
WordNet or spend time assigning all possible cate-
gories for the word.

The optimal search algorithm returns the most
probable parse tree, but sometimes varied in the
tagging and bracketing of the parse due to the
cases when multiple parses have the same prob-
ability. The tree-climb algorithm’s performance in
the accuracy domain is relatively poor, but some of
the loss in the accuracy can be recovered by alter-
ing the amount of states used in the seeding stage.
However, because the algorithm loses track of the
ranking of the states, the algorithm must exhaus-
tively combine all states to determine the most
probable parse.

Figure 2: Number of words in the sentence ver-
sus parsing time on the Penn Treebank corpus
for the exhaustive, optimal and the suboptimal
algorithm.

On a corpus based comparison, it is fairly easy

to see the improvements of the developed algo-
rithms, but for the task of NLP, it is probably more
important to look at a per sentence comparison,
especially if it is in an environment where human
interaction is required. Figure 2 indicates the rela-
tionship between the parsing time and the number
of words in the sentence for the exhaustive, opti-
mal and the suboptimal search algorithms. There is
a huge reduction in the parse time from the algo-
rithm with the optimal algorithm, and an even
greater reduction from the suboptimal algorithm.
Both these algorithms possesses another great fea-
ture in that the exponential coefficient factor for
the parse time is a lot less than the exhaustive algo-
rithm. This means that the algorithm works more
efficiently with longer sentences, but the plot still
indicates that the new algorithms are still better

than the exhaustive algorithm for short sentences,
even with the extra overheads from various forms
of initialisation.

The long parsing times are the consequences of
using a scripting language for the development and
testing of the parser. The results should reduce by a
factor of several tens or even hundreds if the parser
was implemented on a natively compilable lan-
guage.

Figure 3 describes the overall efficiency of the
algorithms, which displays 4 different dimensions
about the algorithms. The first is the linear slope
seen in all the algorithms. This indicates that the
non-searching processes in the individual algo-
rithms (overheads), like the initialisation stage do
not contribute greatly to the parse time, with the
exception of the set of plots around the 10 second
range, which has deviated from the other results.
This is due to the extra time taken for the algo-
rithms to fetch the relevant categories form Word-
Net and also the assignment of all possible
categories. This is not apparent in the exhaustive
algorithm, because they perform a lot more combi-
nations if the number of categories assigned to
each of the words is large, where as the optimal
and the suboptimal algorithms does not take most
of them into account. The actual slope of the plots
indicates the sizes of the coefficient of the relation-
ship, shown more clearly in Figure 2.

Figure 3: Efficiency of the algorithms measured
on the Penn Treebank corpus.

The second dimension is the y-intercepts of the

plots, which describes the efficiency of the execu-
tion of the algorithm. The smaller the y-intercept,
the more efficient it is in executing each combina-
tion. The exhaustive algorithm clearly out-
performing the others, due to the simple way it
needs to be implemented. Due to the large over-

head in applying the suboptimal algorithm, there is
a large overhead in the algorithm, meaning that if
the states of a very low probability had to be used
to produce a terminal state, this algorithm would
run the slowest.

The third dimension is the spanning distance
between the plots, which indicates the size of the
exponential coefficient. The longer the distance
between the quicker parses and the longer parses,
the larger the exponential coefficient it has. The
effect of which can be seen more clearly on Figure
2. The fourth and the final dimension is the aver-
age speed of the parse time, which is indicated by
the average height of the points.

5 Conclusion and Future Work

Unlike most modern search algorithms that take
advantage of the continuously increasing process-
ing power of the modern day computers and hence
lose elegance in the search technique, the devel-
oped search algorithm allows for the retrieval of
the best possible solution in a very efficient man-
ner while also taking into account of the overheads
involved in execution of the algorithm. The im-
plementation of the algorithm as the searching
mechanism to find the most probable parse for the
target parser has dramatically reduced the parsing
time required to retrieve the same result as an ex-
haustive search mechanism.

The characteristics of the algorithm has the po-
tential to be converted into a simple chunk parser,
which is sometimes enough to extract the relevant
information from the sentences. The proposed al-
gorithm encourages the quick build up of sub-
parses, rather than the linear build-up algorithm of
the exhaustive algorithms, hence the order in
which the combination occurs allows for the split-
ting of the sentence into sections or chunks by
early termination of the algorithm.

The tree-climb algorithm needs further investi-
gation, as the algorithm may possesses characteris-
tics which may end up being more beneficial to the
accuracy of the parser. This is due to the fact that
the most probable parse is not always the correct
parse. Further investigation techniques might in-
clude getting the algorithm to find multiple solu-
tions before it is returned, or to measure the
accuracy after altering the amount of states used in
the seeding stage. Primitive experiments done on
adjusting the seeding amount has decreased the

error rate, but further tests are required to under-
stand the effects on this.

By modifying the probability scores to include
information on things like the syntactic and seman-
tic context to provide a better indication of the
grammar which will provide a better scoring sys-
tem, the parser should be able to provide better
results and still rely on the developed optimal algo-
rithm to retrieve the most probable parse. This also
means that the algorithm is generic enough to be
applied to other kinds of search problems. The 4
main implemented techniques; ranking the nodes
in the search tree to allow for early search termina-
tion, using charting to avoid processing of un-
wanted search space, applying the critical point
scores and a quick pre-processing stage to avoid
lengthy computation, and the use normalised
scores to provide a better heuristical indication of
the node being searched all provide vital ways to
reduce the search space of the problem.

Acknowledgement
This project was supported in part by a scholarship
from the CSIRO.

References
Eugene Charniak. 1993. Statistical Language Learning.

MIT Press, Cambridge, England.

Jushua Goodman. 1997. Global Thresholding and Mul-
tiple-Pass Parsing. Proc. EMNLP-2.

Geoff Jarrad, Simon Williams, and Daniel McMichael.
2003. A Framework for Total Parsing. CMIS techni-
cal report 03/10.

Phil Kilby. 2002. Applying Adaptive Probing to Achieve
Fast Parsing. Project proposal paper.

Mitchell P. Marcus, Beatrice Santorini, Mary A. Mar-
cinkiewicz. 1992. Building a large annotated corpus
of English: the Penn Treebank.
http://www.cis.upenn.edu/~treebank/home.html.

George A. Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine Miller. 1993. In-
troduction to WordNet: An On-line Lexical
Database. http://www.cogsci.princeton.edu/~wn/.

Mark Steedman. 1996. A Very Short Introduction to
CCG. ftp://ftp.cis.upenn.edu/pub/steedman/ccg/
ccgintro.ps.gz

Ruml Wheeler. 2001. Incomplete Tree Search using
Adaptive Probing. Proc. IJCAI-01.

