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Intreductlea 

Much of the study of language has centered around the study of syntax, to the detriment 
of semantics and pragmatics. Part of the reason for this may be akin to the motivation of  the 
besotted gentleman on his hands and knees beneath a streetlamp, who, when queried as to why 
he is looking on the sidewalk for the keys he lost in the alley, replies: "Because the light is 
better here!" I believe it is time to start mucking about in the alley; the keys are there. I also 
think we have a new flashlight: Parallel Distributed Processing 2. PDP mechanisms allow us to 
build machines whose fundamental operations include best fit search, constraint relaxation and 
automatic generalization. These are useful properties for processing language. I think the 
application of  these models to NLP will change our view of what constitutes "semantics'. I 
will argue that in order to deal with meaning seriously, we have to move beyond the folk- 
psychological level of symbols, and represent the microstructure of  symbols. This is more than 
a granularity issue. It also has to do with the grounding of meaning in perception. It is on the 
level of  microfeatures that I believe this grounding occurs, and PDP gives us a way to express 
this interface between language and perception. 

My discussion of these issues will take the following course 3. First I describe my previous 
work on word sense disambiguation in a PDP framework as a springboard for the rest of the 
discussion, and to give a sense of  how lexical semantics might fit into an overall parsing model. 
Next I motivate a new model of word meanings through an example. I try to show that PDP 
has a natural way of  expressing these meanings, and I give a sketch of how connectionist 
semantics could be learned. Finally, I briefly discuss metaphor. 

Word sense dlsamblguatlon 

One of the fundamental problems of  natural language processing is word sense 
disambiguation. Determining the correct sense of a word for a particular use involves the 
interaction of many sources of knowledge: syntactic, semantic and pragmatic (i.e., "everything 
else'). In previous work (Cottrell, 1985) I have shown how word sense disambiguation can be 
modeled as a constraint relaxation process between competing hypotheses instantiated as nodes 
in a network representing linguistic knowledge. The representation is one that I have 
fancifully called proclarative: disambiguation happens as the result of  activation spreading 
through a knowledge base where constraints between hypotheses are represented by positive 
and negative links between them. Figure 1 shows the bas/c structure of  the model. The model 
operates as follows: First, words activate all of their lexical entries. These, in turn, activate 
syntactic and semantic (case) structures, which represent relations between word senses. It is 
feedback from these developing representations that provides support for the correct meanings 
and syntactic classes of the words. At the same time, bindings of constituents to roles in both 
syntax and semantics are mutually constraining one another to decide such things as 
prepositional phrase attachment. Thus parsing into a case structure is modeled as a three way 
constraint relaxation between the lexical entries of the words, the possible syntactic 
representations, and the possible semantic relations. Syntactic and semantic information are 
accessed in parallel, and operate s/multancously to determine the correct parse. This was 

I would like to  thank Mike Mozer, Harold Pashler, and Dave Rumelhart for helpful comments on this  paper. 
Any haziness that  remains is mine. 

2[ will resume familiarity with the coonectionist ,  or PDP paradigm. The best introduct ion is Rumelhart and 
McCleUand (1986). 

3I will restrict myself here to lexical semantics. The  generalization to  logical form ia left as an ~erciae  for the 
reader. 
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Figure 1. Sources of  knowledge and constraint paths for disambiguation. 

shown to be a useful model of  the human disambiguation process, as evidenced by explanations 
of various psycholinguistic and neurolinguistic results. 

One of  the major weaknesses of that model was the representation of "meaning'. Each 
meaning of a word is represented by a unit with an "awkward lexeme" (WilLs, 1976) as a label. 
Certainly, the label on a node is not important; it is the way the node connects up to other  
nodes that determine its relationship to other "meanings'. But I think this is a general failing 
of almost all NLP programs currently in existence: the meaning of a word is best represented 
n o t  as a symbol, but as an aggregate of connected mlcrofeatures. I will next try to show why. 

W h a t  Is m e a n i n g ?  ( A  thought experiment) 

It has been said that all words are polys~nous to a degree. Let's take a fairly sale 
example: truck. This seems hardly polysemous, but it turns out we can bend the meaning, at 
least the image formed, in fairly continuous ways. Consider Billy picked up the truck. If you 
are like me, you get a picture of a small, probably pl~tic truck. In a symbolic system we might 
have a rule that if a usually large object is the obiect of a picking up action, then we should 
"toy-iCy" i t ,  either looking up the entry for "toy truck" or by apply/ng a "toy/fication" 
transformation to the repres~tat ion we had already retrieved: it weighs less, it is much smaller, 
it is composed of plastic. Of course, in S,,perman picked up the truck, we have an exception to 
the rule. And in Bobby picked up the roy gun, the application of the  toy-ify/ng rule would need 
to be modified so that the size is not reduced. One can imagine that the list of rules and their 
application criteria might get a bit unwieldy. 

One answer to this is, "Yes, the world is compL(cated." The problem is that this is not an 
isolated phenomenon. Rather, it pervades our conceptual landscape. The concepts that 
people use are not fixed entities, nor are they entities that vary discretely along a small number 
of dimensions. They covary in a continuous way. In Tommy lugged the truck up dze hill, we 
imagine a heavier toy truck than the one Billy picked up, but a lighter one than Superman did. 
It might even be the same truck - Billy picked up the t r u c k  and handed it to Tommy. Tommy 
lugged it up the hill." In this case it is Tommy that we imagine is smaller than Billy! Thus the 
interpretation we derive of the words in a sentence is the result of constraints between the 
meanings of the individual words, as well as the usual list: the structure of the sentence, the 
context in which it is spoken, the relationship between the speaker and the hearer, the shared 
knowledge, etc. People are very good at tasks like this that involve the application of  multiple, 
simultaneous constraints. I claim that the "rules" that I attempted to describe above can 
emerge from the regularities of interaction among the internal structures of the concepts 
themselvea, rather than an application of explicit rules to atomic concepts 4. There is no reason 
that this could not be implemented in a "symbolic" system that has a constraint propagation 
mechanism, and continuous-valued levels of properties. The problem is that the modification 
would alter it so radically that we might as well have started with a conneetionist model s. 

4I am not claiming these arc simply first order interactions; relations b©twccn fcatu~  ¢ l u ~ m  also need to be 
captured. 

5Another reason for starting with a conncctionist model is the existence of powerful learning algorithms that 
can derive constraints between features, as we will son bc/ow. 
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A modest proposal 

In this section I will draw on previous work of others to lay out how a connectionlst 
model can represent the kind of  meanings that I think our experiment with truck point to. 
The basic idea is that meanings arc connectionist schemata. These are assumed to be 
embedded in a system like the one I described above for word sense disamblguation - that is, 
they arc getting input from other schemata concerned with syntax and larger semantic (case) 
structures. 

Conneetionlst 5chernma. Rumelhart et al. (1986) have demonstrated how a connectionlst 
model of a schema can do something no implementation has done before: represent smoothly 
varying constraints between the slot fillers. The demonstration model represents the 
information we have about rooms. Each unit of the model represents one of forty possible 
descriptors and contents of a room: size, walis, ceiling, bathtub, stove, etc. The connection 
strengths between the units of  the schema model were derived from people's reports of what 
they expected to find in each kind of  room. (The weights were set according to the 
conditions] probability that one item was reported given another item was reported.) Things 
that occurred together often were given a strong positive weight, things that never occurred 
together were given a negative weight. For exzmple, every room has walls and a ceiling. These 
have a strong positive connection between them because they always co-occur. Probing the 
model consists of "clamping on" some units, which then activate positively connected units, 
and inhibit ones negatively associated with them. The office schema, for example, can be 
accessed by probing the model with "desk" (and "ceiling', to simulate the context is "room') 
(se¢ Figure 2). The "prototype" rooms are shown to be peaks in a "goodness surface" in the 
space of  unit activations that reflects the number of constraints satisfied between units of  the 
model. The activation of  the units travels up the goodness surface to the corner where the 
elements of  the office schema become activated. This type of pattern completion is a typical 
way to access information in connectionist models. 

An interesting variation on. this is when two items arc probed together that do not 
normally co-occur. For example, if the model is probed with "bed" and "sofa" what rcsults is a 
large bedroom with a fireplace. The goodness spac.c has been warped by these two inputs to 
form a new stable peak, where the filler of one of the slots, "size-of-room', has constra/ned 
what wiU be in the contents • of the room in a way that is intuitively pleasing. 
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Figure 2. Probing the mode[ with "desk" and "ceiling'. The size of the square indicates activa- 
tion value of the unit, and time moves from left to light. (From McClelland & Rumeihart, 
1986, reprinted by permission). 
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Figure 3. Probing the model with "bed" and "sofa'. (From McCIclland & Rumclhart, 1986, re- 
printed by permission). 

It is possible to train a connectionist model to exhibit this blending of  meanings, and to 
do so at the more micro-level I am advocating for word s,~ses. McClelland & Kawamoto 
(1986) trained a network to assign cam= roles to nouns presented in a matrix as VERB-SUB.l- 
OB J-MODIFIER. The representation of the input was a set of features for each syntactic slot 
that were linked to output feature schemata for each case role. The model was trained on a 
set of  sentences in this format, and then tested on novel sentences. When given the novel 
sentence the doll "moved, the model interpreted the doll as animate, because of  the shared 
features between doll and humans and a tendency to assign animaey to agents. Thus, the 
model adjustccl the meaning to fit the situation. The point is, distributed connectionist 
representations that represent symbols such as "doll" as a set of features and constraints can 
relax those constraints depending on external constraints - inputs from combinations of  
features in the schemata of  the other words in the sentence. 

These models assumed the elements of  the schemata - the micro-features - were chosen by 
the modeler. The next section deals with how the features themselves might be learned, and 
how they might be grounded in perceptual processes. 

Learning. A problem with any representation of meaning in terms of features is the 
infinite regression of fcatur¢~ defined in terms of features. What is the basis clause of the 
inductive process of building a semantic reprepreseatation? I believe that semantics must 
fundamentalIy be based in perception of and interaction with the environment. Powerful new 
algorithms have been discovered that allow connectionist networks to develop thdr own 
internal representations of their environment. Surprisingly, a rather useful network is one that 
does an identity mapping (Figure 4). The network has an input and output layer connoted  
through a smaller layer of hidden units. By forcing the network to reproduce the input on the 
output through this narrow channel, it has to learn a, efficient encoding of the input at the 
hidden unit layer. Such networks are self-organizing systems that learn to represent the 
important features of their environment. 

These systems have bean used to encode natural images and speech signals (CottreU, 
Munro & Zipscr, to appear; Eiman & Zipser, 1986). The internal representations devised by 
th¢~  two systems (auditory and visual) can then be the "environment" to a third system which 
would take into account covariances between the two of them in a unified abstract =acoding of  
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Figure 4. A network that develops an efficient encoding of its environment. 

sound and light (see Figure 5) ~. Now it will only take one of  the input modalities to evoke the 
other. The input of an image would activate the image encoding, which in turn would partially 
activate the unif.,'xl encoding of  associated sounds and images. This can be filled out by 
pattern completion, enabling the unified encoding to feed back and activate the encoding of 
the word associated with the image. That is, an image will evoke a word and a word an image. 
WhiIe this is an oversimplified sketch, the important point is that conneetionist systems use a 
uniform representation medium for both modalities, and thus afford the modeler an ease of  
communication between visual, proprloceptive and auditory inputs. Thus, this approach 
promises a computationally viable way to ground the infinite regress of meaning in associations 
between speech sounds with other perceptual representations generated from interactions with 
the environment While this is just the base case of the induction, it has not been addressed 
by other approaches. 

Metaphor. A second problem for a model of meaning is the question of metaphor. How 
could a connectionist system learn the metaphorical mappings that are such a big part of 
language? Connectionist schemata that have many stable states reflecting related meanings may 
account for much of  what we call "metaphor". But how might new meanings be learned that 
are more radical transformations of old ones? For example, how might we learn that I feel up 
today means one's mood is devated? Our identity mapping networks can be put to good use 
here in the folIowing way 7. Suppose we div/de up the input pattern in Figure 4 into portions 
corresponding to a function, an input and an output.  So the triple (1: a b) represents F(a) = 
b, and given (F a b) the network produces (F a b). It' we add a pattern completion network 

~ua/Coding 
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0 0 ¢  • d 

Visuml I n p u t  "Word I~puc 

Figure 5. Automatically learned inter-modal encoding. 

A similar idea has bern independently proposed by Chauv/n (198.T). 

"/The following network is implemented, - ,  McClelland wou/d say, in "hopcwarc'. 

69 



on the output  layer, we can now give the network (F a *) (where " represents no input) and it 
will produce F(a,b), computing that F(a) equals b. In fact, within resource limitations, we can 
give it F(*,b) or  even "(a,b) and have it invert the mapping or induce the relationship between 
the arguments. In ambiguous cases it will produce blends of  the possible answers. 

Now, assume that we have enough units in the argument positions that we can represent 
anything we want, and that we have trained it with functions and arguments from several 
disparate domains. Suppose we now give the network a function F with an argument c that is 
not in the domain of F. One characteristic of  these networks is that they map similar inputs 
to similar outputs.  The degree of overlap between the features of c and the features of 
elements of  the domain of  F will determine the coherency of  the mapping. If c is sufficiently 
similar to a previously learned input, it will map c to an output  similar to the previous one. It 
is able to do this because the mapping reflects constraints it has learned between the features 
of  the inputs and outputs  of  F. If c is sufficiently different from other inputs it has learned in 
the domain of  F, the result will be uninterpretable. Somewhere between these two is 
metaphor s . 

Conclusion 

I have attempted to show in this paper that word meanings are more of a moving target 
than we would like to think, and that they covary depending on constraints between them. 
The connectionist approach to semantics has a natural way to capture these smoothly varying 
constraints and meanings. I also have sketched how these meanings can be grounded in 
perceptual encoding; and how some aspects of metaphor might be captured in this framework. 
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