
Unification and the new grammatism

Steve Pulman
University of Cambridge Computer Laboratory

Corn Exchange Street
Cambridge CB2 3QG, UK.

What are we talking about?

The prototypical unification grammar consists of a context-free skeleton, enriched with a set
of feature+value specifications on the grammatical symbols in the rules and associated lexicon.
These feature specifications may involve variables, and may be recursive (i.e. the values may be
interpreted as referring to a whole category). Whereas parsing and generating sentences using
grammars with atomic grammatical labels involves a test for equality between symbols in a rule
and those in a tree, in unification grammars the test is whether two non-atomic descriptions 'unify',
i.e. can be made identical by appropriate mutual substitutions of terms. This mechanism can be
used to enforce identity and coocurrence restrictions between feature values, and to 'percolate'
such values between nodes. Thus, to take a simple example, a rule like:

A--* B C
foo(A) = foo(B)
baz(B) = baz(C)

where the equations specify constraints on the possible values of the features ' foo' and 'baz ' ,
can be understood as 'percolating' the value of foo from B to A, or vice versa, and as enforcing
agreement between baz values on the daughter categories. But these are not separate operations or
procedures: in fact, they are not operations or procedures at all. They are order independent, fully
declarative statements about what must be true for a tree to be well formed whose implementat ion
by unification has these desirable effects. Thus unification provides a neat and manageable solution
to the problem of feature agreement, and feature percolation between nodes in a phrase structure
tree: a problem which has produced more ad-hoc and underspecified 'solutions' than almost any
other in linguistics. (Nor has the conlputational-paradigm done any better: the usual solution in
NLP has been to decorate CF rules with arbitrary bits of Lisp code).

This high level syntax in terms of equations may transl/xte down into a forin suitable for
unification of terms, resulting perhaps in a rule like:

A[foo(X)] -~ B(foo(X), baz(Y)l C[baz(Y)l

or for unification of graphs, perhaps represented more like:

[[mother [category h [foo X]]]
[daughterl [category B [foo X]

[baz Y]]]
[daughter2 [category C [baz Y]]]]

The actual 'unification' used may range from strict (first order) logical unification to more
or less arbitrarily powerful pattern matching (Functional Unification Grammar , Kay 1979), with
many other variants aimed at capturing specific types of linguistic regularity (Generalised Phrase
Structure Grammar , Gazdar, Klein, Pullum and Sag, 198.5; Lexical Functional Grammar , Bresnan,
ed. 1982). Furthermore, a system of default values for features may be employed, so that, unlike
ordinary term unification, it can make sense to unify two expressions like 'A[foo(a)] ' and 'AIbaz(b)l '
as 'A[foo(aJ,baz(b)]'. [mplicitly what is happening here is that we are assuming a default value
for each feature (as a variable here), and thus actually employing ordinary term unification on
'Aifoo(a),baz(X)] ' and 'A[foo(Y),baz(b)] ' . (This way of looking at it brings the set-theoretic and
the pattern-matching sides of unification more obviously together.) However, if we had declared
different default values unification might fail in such cases: a default value b for foo, for example,
would prevent unification in this example.

42

W h a t c a n y o u do w i t h u n i f i c a t i o n g r a m m a r s ?

Assume that we are talking about ordinary unification (i.e. allowing for category valued fea-
tures, but not for negation, disjunction or other types of testing or pattern matching). A CFG
enriched with such unification is still an extremely powerful system. Given the ability to manipu-
late category valued features we can generate some context-sensitive languages directly (at least).
We can use the feature system to mimic a Turing machine (though this may not be reflected in
weak generative capacity of the resulting grammar): and can simulate or implement many other
apparently widely diverse grammatical formalisms: Fillmore type case grammars, categorial and
dependency grammars, indexed grammars, some aspects of systemic networks, and so on. We can
express such grammars in a wholly declarative way in the confidence that there is a theoretically
clean and fairly efficient computational interpretation of them. Furthermore, viewed simply as
a computational device, this type of unification can be used for several other types of linguistic
structural manipulation beyond those involved in morphological or syntactic analysis:

(i) building up explicit, possibly decorated, parse trees themselves during the course of recog-
nising a sentence, as is done in, e.g. Definite Clause Grammars (Pereira and Warren, 1980).

(ii) building up logical forms compositionally by using extra features to represent the function-
argument structure of a constituent as is done in e.g. the PATR formalism (Shieber, forthcoming).
With ingenuity, the effects of function application, composition and so on can be simulated using
logical variables within a feature system. More simple predicate-argumen~ structure can of course
be built directly.

(iii) assigning prosodic contours on the basis of syntactic and lexical structure, by associating
values for relative prominence and direction of pitch movement to the components of a constituent.
Unification ties in all these values in such a way that the absolute pitch value of some constituent
may ultimately depend on that of some higher level constituent, or of some some other phrase
some distance away. To the extent that prosody is syntax driven at all, this is a theoretically clean
way of deriving default intonation contours from the parse tree of a sentence.

U n i f i c a t i o n a s a c o n t r i b u t i o n to l inguist ic t h e o r y

It should be clear from the foregoing that there are at least two different ways in which we could
assess the notion of unification, and unification grammars. Given a particular notion of unification
as incorporated in a linguistic theory (say, that defined in GKPS85), we can ask whether it enables
us to express linguistic generalisations clearly, and whether it meshes in satisfactorily with other
mechanisms used within that theory (for example, default feature specifications, or cooccurrence
restrictions). In short, we are assessing unification as a claim about human linguistic ability.
Depending on the formal properties of the type of unification at issue, this may or may not be a
meaningful thing to do: if we have a system that can do anything, it is not news to be told it is
adequate for syntactic description.

In fact, it strikes me as most unlikely that everything one would want to say about the syntac-
tic structure of language would turn out to be expressible cleanly within one particular flavour o["
unification grammar (pace LFG, FUG, GPSG). Even if this did turn out to be the case, it would
actually be mildly disturbing, given current dogma about modularity, to find that a mechanism
conceived of originally for syntax turned out to be so easily adaptable for other possibly unrelated
kinds of symbolic manipulation. [t is almost certain that any theory with unification as a compo-
nent will be capable of simulating most of the features of any other such theory, when regarded
merely as a notation. Unification is a very powerful symbol manipulation tool, apart from anything
else. Thus arguments about whether XUG is better that YUG, for many values of X and Y, are
liable to be as ultimately unproductive (except perhaps of entertaining rhetoric) as most other
competitive linguistic arguments.

Uni f ica t ion g r a m m a r s as a l inguis t ic lingua frar~ca

In my view, a more useful way of thinking about unification, from the point of view of com-
putational linguistics, at least, is to see it as merely a useful computational procedure with a well
defined semantics and efficient implementations. It seems to me that the real role of unification

43

in grammatical formalisms will be to provide a kind of normal form of guaranteed computa t ional
tractability, or perhaps better, an assembly language into which different linguistic theories can be
compiled. Take the example of feature percolation given above: as far as the linguist is concerned,
the first s tatement involving explicit equalities says everything there is to say about when a tree is
or is not well formed. The linguistic theory need not be commit ted to any of the concepts presup-
posed in the translation to the second format where the equations are implemented via unification:
for example, the notion of a logical variable need not figure in the linguistic theory at all, although
it must figure in the implementation.

Thus the relation between a prototypical unification g rammar of the type outlined above, and
a particular linguistic theory, would be akin to that between the compiled code which executes a
program, and the original raw form of the program (or even some higher level description}. We have
already seen that many different linguistic theories can be translated into a unification g rammar
format: the original insights and theoretical content of the theories is presumably independent of
this translation. The grammarian says what he wants to say about the structure of the language,
in some high level declarative formalism, and for the purposes of parsing or generation, this high
level description is compiled out into a lower level, simple unification formalism, for which there
exist well understood computat ional in~;erpretations.

This compilation process serves several purposes: the practical one of ensuring that you can
actually do something with the grammar: parse, or generate sentences. A second purpose, some-
what akin to the requirement of Turing machine reducibility on psychological theories, is achieved
by the fact that the existence of such a compilation serves as a guarantee that the original theory
is consistent, and has a coherent computat ional interpretation. {The version of GPSG in GKPS85
turns out to have some problematic features in this respect}. Finally, in supplying such a normal
form, a unification formalism provides a rational basis for th~ comparison of different g rammat -
ical theories: you have to compare like with like, and this can more easily done via translation
into a common format. This is an aspect of unification formalisms which has been explored for
formalisms like LFG and GPSG using the PATR fot:malism by the CSL[foundations of g rammar
group (Shieber 1985}.

References
Bresnan, J. (ed} 1982 The Mental Representation of Grammatical Relations, Cambridge, Mass:

MIT Press.
Gazdar , G., Klein, E., Pullum, G. and Sag, I. 1985, Generalised Phrase Structure Grammar,

Oxford: Basil Blackwell
Kay, M. 1979 Functional Grammar, in Proceedings of 5th annual meeting of the Berkeley

Linguistics Society, ed. C. Chiarello et al, University of California, Berkeley, 142-158.
Pereira, F. and Warren, D. 1980 Definite Clause Grammars for Language Analysis, Artificial

Intelligence 13, 231-278.
Ritchie G. D. 1984 A Rational Reconstruction of the Proteus Sentence Planner, in Proceedings

of the 10th International Conference on Computat ional Linguistics/22nd Annual meeting of the
Association for Computat ional Linguistics: Standord, ACL, 327-329.

Ritchie G. D. 1986 The computational complezity of sentence derivation in functional unifica-
tion grammar, in proceedings of the l l th International Conference on Computat ional Linguistics,
Bonn: ACL, 584-586.

Shieber, S. M. 1985 Separating Linguistic Analyses from Linguistic Theories, in Transcripts
of the Alvey/ICL workshop on Linguistic Theory and Computer Applications, ed. P Whitelock
et al., Centre for Computat ional Linguistics, University of Manchester Institute of Science and
Technology.

Shieber, S. M. (forthcoming} An Introduction to Unification-Based Approaches to Grammar,
University of Chicago Press, Chicago, Illinois.

44

