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1 Unification Technology 

In this discussion, I am wearing the humble hat of a "symbolic systems engi- 
neer" who has been involved in building artifacts, unification-based grammar 
formalisms, that might be used to describe certain aspects of some natural 
languages. In the same way a physicist might see the calculus as one of 
many technologies she needs in her scientific pursuits, and mathematicians 
as excessively glorified engineers, so it may well be reasonable for a linguist 
to look upon computational linguists of my formal persuasion as engineers 
building generic language-description tools. 

One needs to be clear about the role of mathematical tools in scien- 
tific pursuits. Most differential equations one might write correspond to no 
physically-realizable system. The calculus imposes only very broad, weak 
constraints on the class of systems it can describe, eg. differentiability of 
state functions and trajectories. Similarly, there is no reason to believe 
grammar formalisms can impose strong lingustically-motivated constraints 
on the classes of languages they can describe. 

Unification-based grammar formalisms are thus a subject of inquiry re- 
lated to but independent from linguistic theory. The kinds of questions 
one asks about a formalism are then those from formal language theory 
(generative power, recognition complexity) and programming language de- 
sign (semantics, expressive capabilities, implementation algorithms and data 
structures). 
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2 U n i f i c a t i o n  in A b s t r a c t  

In a unification framework we deal with a domain of descriptions P tha t  are 
used to classify objects from some class under  analysis 0 ,  u t terances  and 
their  f ragments  in the case tha t  concerns us here. Classification is given by 
a description relation ~ between objects in 0 and elements of P. If d is a 
[partial] description of e, we write e ~ d, e satisfies (or is described by) d. 
The set of all objects tha t  satisfy a description d is wri t ten  [dl. 

Descriptions are in general partial, that  is, a description d may in general 
be extended to a more specific (more informative) description d I. With  suit- 
able technical  assumptions,  this gives a partial  order d ~ d' on descriptions. 
In terms of the description relation ~ ,  d E d' iff for every object e, e ~ d 
whenever e ~ d ~. 

Two descriptions d and d' are compatible if there is a description d" such 
tha t  d _C d" and d ~ _C d", tha t  is if d and d' can both be extended to a single 
description more informative than both.  

If two descriptions d and d ~ are compatible,  it is reasonable to assume 
tha t  there is a least specific description d U d' more specific tha t  both d and 
d'. In other  words, d U d' contains all the information in d and d', bu t  no 
more. For historical reasons, d t.J d' is called the unification of d and d'. In 
more s tandard  mathemat ica l  terminology, d u d' is the join of d and d'. 

In terms of the description relation, if e ~ d  it d', e ~ d and e ~  d'. 
Fur thermore ,  we want  unification to behave like logical conjunction: if e ~ d 
and e ~ d', e ~ d U d'. Thus lid U d'~ = [[d] n [d'~ holds for any compatible  
descriptions d and d'. 

The domains of objects, descriptions and the description relation are 
usually infinite, even though there may be some way of finitely characterizing 
the description relation. Such a characterization is a grammar .  

To write grammars,  we need to be able to constrain entities to satisfy 
arbitrari ly complex descriptions without  giving the descriptions in full. Our 
main ins t ruments  for this are parameterized descriptions and rules. 

A parameter ized description d(pl,. . . ,pk) is not a description itself, but  
ra ther  an encoding of a function from k-tuples of descriptions to descrip- 
tions. An object e satisfies such a parameter ized description iff there are 
descriptions f l , . . . ,  fk such tha t  e satisfies d( f l , . . . ,  f~). Given a family of 
parameter ized descriptions (di)iel  with parameters  (Pi)i~s and a set C of 
constraints involving the parameters ,  a family of objects (ei)ie I satisfies the 
parameter ized descriptions relative to the constraints iff there are descrip- 
tions (fi)ieJ tha t  can be uniformly replaced for the parameters  in such a 
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way that  e~ ~ di ( ( f j ) jeJ)  and all the constraints in C are satisfied. 
In current unification-based formalisms, a grammar is a set of inductive 

rules with the general form 

El : d l ' " E , ,  : dn 

/ ( E l , . . . ,  E , )  : d 
if C 

where the El are object variables, d and the d~ are parameterized descrip- 
tions, C is a set of conditions on the parameters, and f is a structural 
composition function on objects. Given an appropriate notion of allowed 
derivation - -  a tree with nodes labelled by object-description pairs e : d in 
which each node satisfies a rule - -  the grammar is sound with respect to a 
description relation ~ iff the root e : d of every derivation allowed by the 
grammar obeys the condition e ~ d. 

The main technical question at this level is whether a given vocabu- 
lary of constraints and rules really define the description relation, that  is, 
whether the rules are well-founded with respect to the structural decom- 
position of elements of C) given by the structural composition functions f 
and whether there is a least description relation compatible with the deriva- 
tions allowed by the grammar. This question has been answered in detail 
for definite-clause-based grammar formalisms (in which descriptions are just 
logical terms), but the situation is much less clear for more complicated do- 
mains (eg. those with disjunctive constraints) and classes of constraints (eg. 
LFG's constraint equations). 

The preceding discussion may be summarized as follows. Descriptions 
classify objects (strings, utterance fragments). Rules give the description 
of a compound object in terms of descriptions of its parts. Grammatical  
analysis is the derivation of a description for an object according to the 
rules of a grammar that  axiomatizes the description relation. 

3 C o m p u t a t i o n  

The discussion of the previous section concerned the denotational seman- 
tics of a grammar formalism. The denotational semantics gives a rigorous 
specification of what a grammar does. However, from a computational point 
of view we are also interested in how a grammar does what it does. This 
question can be posed at two levels: at the more abstract level of oper- 
ational semantics, the problem is how to give abstract procedures (proof 
procedures) that  construct derivation trees yielding classifications of objects 
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(utterances); at the more concrete level, what  data  structures and algorithms 
are required for efficient analysis (classification, proof generation). 

In some cases, for example in DCGs or PATR-II, the formalism itself 
is only semi-decidable, so the procedure given by the operational semantics 
may not  terminate when it is asked to classify an object with a description 
it does not satisfy. However, for reasonable classes of grammars in those 
formalisms, as well as for all grammars in LFG, the classification (analysis) 
problem is decidable. 

Even though LFG as well as all offiine parsable DCGs and PATR-II 
grammars are decidable, it has been shown that  they are intractable (NP- 
complete). The sources of this intractability are rather interesting, and lead 
to the question of locality which I will discuss in the next section. 

We should not take the undecidability or intractability of unification- 
based formalisms as fatal flaw any more than we take the same properties 
as fatal flaws in a programming language. From an engineering point of view, 
grammar  formalisms are just  programming languages for grammar  writing 
in which it is of course possible to write intractable or even nonterminat ing 
programs. 

Finally, at the most concrete level, we have the question Of what  
data  structures and algorithms are in practice most  useful for analysis in 
unification-based formalisms. The problem here is rather more difficult than 
that  for simpler formalisms such as CFGs. 

At an abstract  operational level, derivations classifying a given s~ring 
can be build very much in the same way as derivations in a context-free 
grammar.  However, in contrast  with CFGs, we have to satisfy not  only lo- 
cal identity conditions between nonterminals but also rule constraints, which 
may have global consequences for the choice of descriptions in the deriva- 
tion. In the typical incremental derivation procedures currently in use, rule 
applications assign to objects parameterized descriptions whose parameters 
may then be filled in by by unifications as specified by constraints and other 
rule applications. Alternative derivation paths assign different values to pa- 
rameters,  requiring some mechanism to segregate the assignments. It is easy 
to construct  grammars that  require space exponential on input  length for 
storing alternative descriptions of the parts of the input  even though the 
recognition problem for the grammars in question is clearly linear time with 
a specialized algorithm. This problem may well be related to the question 
of locality which I discuss below. 
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4 Locality 

The intractability of existing unification-based formalisms seems to have 
something to do with lack o/locality: constraints on description parameters 
are weak enough to allow the construction of (exponentially many) partial 
derivations for a string, but strong enough to conspire in rejecting almost all 
of those derivations. Basically, constraints chain together to constrain pa- 
rameters arbitrarily far apart in a derivation. Lack of locality impinges also 
on the implementation data structures, as it allows rule applications to give 
alternative values to parameters arbitrarily deep inside a derivation, thus 
requiring a costly copying or structure-sharing mechanism to keep separate 
the alternative derivations. 

Most grammars written in practice do not seem to suffer from lack of 
locality. However, it is not very clear why this is so and it is not easy to 
recognize lack of locality in a grammar. Even from an engineering point of 
view, it would be useful to have precise criteria for locality in a grammar, 
with suitable consequences in the complexity department.  If locality criteria 
could be embodied in formal constraints on allowable grammars, we would 
be able to design restricted formalisms with good complexity properties. 

The locality question has a more philosophical angle. Nonlocal gram- 
mars lead to nondeterministic recognizers. The description of a part of an 
utterance is supposed to represent the information contributed by that  part 
to the utterance interpretation i~rocess. Lack of locality means that  the 
processor is unable to identify the exact informational contribution of an 
utterance element without considering the whole utterance. This is rather 
unsatisfactory, as one might expect that  the informational contribution of 
an object is precisely what can be learned from the presence of the object 
without regard to context. Lack of locality in a grammar thus suggests 
that  we have not been successful in our classification of objects as to their 
information-carrying properties. Somehow, correct classification and de- 
terminism seem to go together. Current unification-based formalisms are 
expressive enough to describe a great variety of languages, but they do not 
seem to make all the classificatory distinctions that  are needed to pin down 
the informational contributions of objects. Alternatively, there may well be 
a negative result lurking here that  shows the impossibility of exact classifica- 
tion of informational content; in this case we should be able to find natural 
situations in which nonlocality emerges. 
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