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ABSTRACT 

This paper surveys a number of kinds of 
default reasoning in Ar t i f i c ia l  Intelligence, spec- 
i f i ca l l y ,  default assignments to variables, the 
closed world assumption, the frame default for 
causal worlds, exceptions as defaults, and negation 
in Ar t i f i c ia l  Intelligence programming languages. 
Some of these defaults provide clear representa- 
tional and computational advantanges over their 
corresponding f i r s t  order theories. Finally, the 
paper discusses various d i f f i cu l t ies  associated 
with default theories. 

I f  I don't know I don't know 
I think I know 

I f  I don't know I know 
I think I don't know 

R.D. Laing, Knots 

I. INTRODUCTION 

Default reasoning is commonly used in natural 

language understanding systems and in Ar t i f i c ia l  

Intelligence in general. We use the term "default 

reasoning" to denote the process of arriving at 

conclusions based upon patterns of inference of 

the form "In the absence of any information to the 

contrary, assume..." In this paper, we take this 

pattern to have the more formal meaning " I f  certain 

information cannot be deduced from the given know- 

ledge base, then conclude..." Such reasoning rep- 

resents a form of plausible inference and is 

typically required whenever conclusions must be 

drawn despite the absence of total knowledge about 

a world. 

In order to f i x  some of these ideas, we begin 

by surveying a number of instances of default 

reasoning as they are commonly invoked in A.I. 

Specifically, we discuss default assignments to 

variables, the clo~ed world assumption, the frame 

default for causal worlds, exceptions as defaults, 

and negation in A.I. programming languages. We shall 

see that these may all be formalized by introducing 

a single default operator ~ where #W is taken 

to mean "W is not deducible from the given know- 

ledge base". 

In addition, we shall discover that the closed 

world and frame defaults provide clear representa- 

t ional and computational advantages over their  cor- 

responding f i r s t  order theories. The former elim- 

inates the need for an expl ic i t  representation of 

negative knowledge about a world, while the la t ter  

eliminates the so-called frame axioms for dynamic 

worlds. 

Finally, we discuss various problems which 

arise as a result of augmenting f i r s t  order logic 

with a default operator. 

2. SOME INSTANCES OF DEFAULT REASONING IN A.I. 

The use of default reasoning in A.I. is far 

more widespread than is commonly realized. The 

purpose of this section is to point out a variety 

of seemingly dif ferent situations in which such 

reasoning arises, to accent common patterns which 

emerge when defaults are formalized, and to indi- 

cate certain representational and computational 

advantages of default reasoning. 

2.1 Default Assignments to Variables 

A number of knowledge representation schemes, 

e.g. FRL [Roberts and Goldstein 1977], KRL [Bobrow 

and Winograd 1977], exp l ic i t ly  provide for the 

assignment of default values to variables (slots, 

terminals). For example, in KRL the unit for a 

person in an air l ine travel system has the form: 
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[Person UNIT Basic 

<hometown{(a Ci ty )  PaloAl to;  DEFAULT}> 

] 

We can view th is  dec lara t ion as an i ns t ruc t i on  to 

the KRL i n te rp re te r  to carry  out the fo l low ing :  

I f  x is a person, then in the absence of  any i n f o r -  

mation to the contrary ,  assume hometown(x)=PaloAlto, 

or phrased in a way which makes e x p l i c i t  the fac t  

that  a de fau l t  assignment is  being made to a 

var iab le :  

I f  x is  a person and no value can be determined fo r  

the var iab le  y such that  hometown(x)=y, then assume 

y=PaloAlto. 

Notice that  in assigning a de fau l t  value to a var-  

i ab le ,  i t  is  not s u f f i c i e n t  to f a i l  to f ind  an ex- 

p l i c i t  match for  the var iab le  in the data base. 

For example, the non existence in the data base of  

a fac t  of  the form hometown(JohnDoe)=y fo r  some 

c i t y  y does not necessar i ly  permit  the de fau l t  

assignment y=PaloAlto. I t  might be the case that  

the fo l low ing  informat ion is  ava i l ab le :  

(x/EMPLOYER)(y/PERSON)(z/CITY)EMPLOYS(x,y) 

^ loca t ion(x )=z  ~ hometown(y)=z I 

i . e .  a person's hometown is the same as his or her 

employer. In th is  case the de fau l t  assignment 

y=PaloAlto can be made only i f  we f a i l - t o  deduce the 

existence of  an employer x and c i t y  z such that  

EMPLOYS(x,JohnDoe) A loca t ion(x )=z  

In general then, de fau l t  assignments to var iab les  

are permitted only as a result of failure of some 

attempted deduction. We can formulate a general 

inference pattern for the default assignment of 

values to variables: 

For a l l  x I . . . . .  x n in classes T 1 . . . . .  Tn respect ive ly ,  

i f  we f a i l  to deduce (Ey/e)P(x I . . . . .  Xn,Y) then in -  

fe r  the de fau l t  statement 

i Throughout th is  paper we shal l  use a typed log ica l  
representat ion language. Types, e.g. EMPLOYER, 
PERSON, CITY correspond to the usual categories 
of  IS-A h ie rarch ies .  A typed universal  quan t i f i e r  
l i k e  (x/EMPLOYER) is read " fo r  a l l  x which belong 
to the class EMPLOYER" or simply " fo r  a l l  employ- 
ers x" .  A typed e x i s t e n t i a l  q u a n t i f i e r  l i k e  
(Ex/CITY) is read " there is  a c i t y  x" .  The nota- 
t ion derives from that used by Woods in his "FOR 
function" [Woods 1968]. 

P(x I . . . . .  Xn,<defaul t  value fo r  y>) 

or more succ inc t l y ,  

(Xl/TI)-.-(Xn/T n) 

(EY/e)P(Xl . . . . .  Xn'Y) (DI) 

P(x I . . . . .  Xn,<defaul t  value fo r  y>) 

Here ~ is  to be read " f a i l  to deduce", e and the 

T's are types, and P(x I . . . . .  Xn,Y) is any statement 

about the var iab les  x I . . . . .  Xn,Y. There are some 

serious d i f f i c u l t i e s  associated with j us t  what ex- 

a c t l y  is  meant by " ~ "  but we shal l  defer these 

issues for  the moment and r e l y  instead on the 

reader 's i n t u i t i o n .  The de fau l t  ru le  fo r  home 

towns can now be seen as an instance of  the above 

pat tern :  

(x/PERSON) ~ (Ey/ClTY)hometown(x)=y 
hometown(x)=PaloAlto 

2.2 THE CLOSED WORLD ASSUMPTION 

I t  seems not genera l ly  recognized that  the 

reasoning components o f  many natural  language 

understanding systems have de fau l t  assumptions 

b u i l t  in to  them. The representat ion o f  knowledge 

upon which the reasoner computes does not exp l i c -  

i t l y  ind ica te  cer ta in  de fau l t  assumptions. Rather, 

these defau l ts  are rea l i zed  as par t  o f  the code of  

the reasoner, or ,  as we shal l  say, fo l low ing  

[Hayes 1977], as part  o f  the reasoner's process 

s t ruc tu re .  The most common such de fau l t  corresponds 

to what has elsewhere been re fer red to as the 

closed world assumption [Re i te r  1978]. In th is  

section we describe two commonly used closed world 

de fau l ts .  

2.2.1 Hierarchies 

As an i l l u s t r a t i o n  of  the class of  closed 

world de fau l t s ,  consider standard taxonomies 

(IS-A h ie rarch ies)  as they are usua l ly  represented 

in the A . I .  l i t e r a t u r e ,  fo r  example the fo l low ing :  

THING 

ANIMATE INANIMATE 

MAMMAL REPTILE 

DOG CAT 

This has, as i t s  f i r s t  order log ica l  representat ion,  

the fo l l ow ing :  
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(x)DOG(x) ~ MAMMAL(x) l 

(x)CAT(x) ~ MAMMAL(x) I (2.1) 
(x)MAMMAL(x) ~ ANIMATE(x) 

etc. 

Now i f  Fido is known to be a dog we can conclude 

that Fido is animate in either of two essentially 

isomorphic ways: 

I. I f  the hierarchy is implemented as some sort of 

network, then we infer ANIMATE(fido) i f  the class 

ANIMATE lies "above" DOG i.e. there is some pointer 

chain leading from node DOG to node ANIMATE in the 

network. 

2. I f  the hierarchy is implemented as a set of f i r s t  

order formulae, then we conclude ANIMATE(fido) i f  

we can forward chain (modus ponens) with DOG(fido) 

to derive ANIMATE(fido). This forward chaining 

from DOG(fido) to ANIMATE(fido) corresponds exactly 

to following pointers from node DOG to node ANIMATE 

in the network. 

Thus far, there is no essential difference be- 

tween a network representation of a hierarchy with 

i ts pointer-chasing interpreter and a f i r s t  order 

representation with i ts forward chaining theorem 

proving interpreter. A fundamental distinction 

arises with respect to negation. As an example, 

consider how one deduces that Fido is not a rept i le.  

A network interpreter wi l l  determine that the node 

REPTILE does not l ie  "above" DOG and wi l l  thereby 

conclude that DOGs are not REPTILEs so that 

~REPTILE(fido) is deduced. On the other hand, a 

theorem prover wi l l  try to prove ~REPTILE(fido). 

Given the above f i r s t  order representation, no such 

proof exists. The reason is clear - nothing in 

the representation (2.1) states that the categories 

MAMMAL and REPTILE are disjoint.  For the theorem 

prover to deal with negative information, the 

knowledge base (2.1) must be augmented by the 

following facts stating that the categories of 

the hierarchy are dis joint :  

(x)ANIMATE(x) ~ ~INANIMATE(x) l 

(x)MAMMAL(x) ~ IREPTILE(x) I (2.2) 
(x)DOG(x) ~ ~CAT(x) 

I t  is now clear that a f i r s t  order theorem proving 

interpreter  can establish ~REPTILE(fido) by a pure 

forward chaining proof procedure from DOG(fido) 

using (2.1) and (2.2). However, unlike the ear l ie r  

proof of ANIMATE(fido), th is proof of~REPTILE(fido) 

is not isomorphic to that 9enerated by the network 

interpreter. (Recall that the network interpreter 

deduces ~REPTILE(fido) by fai l ing to find a pointer 

chain l inking DOG and REPTILE). Moreover, while 

the network interpreter must contend only with a 

representation equivalent to that of (2.1), the 

theorem prover must additionally u t i l i ze  the nega- 

tive information (2.2). Somehow, then, the process 

structure of the network interpreter impl ic i t ly 

represents the negative knowledge (2.2), while 

computing only on declarative knowledge equivalent 

to (2.1). 

We can best distinguish the two approaches by 

observing that two dif ferent logics are involved. 

To see this, consider modifying the theorem prover 

so as to simulate the network process structure. 

Since the network interpreter t r ies,  and fa i l s ,  to 

establish a pointer chain from DOG to REPTILE using 

a declarative knowledge base equivalent to (2.1), 

the theorem prover can likewise attempt to prove 

REPTILE(fido) using only (2.1). As for the net- 

work interpreter, this attempt wi l l  f a i l .  I f  we 

now endow the theorem prover with the additional 

inference rule: 

" I f  you fai l  to deduce REPTILE(fido) then conclude 

~REPTILE(fido)" 

the deduction of ~REPTILE(fido) w i l l  be isomorphic 

to that of the network in terpreter .  More generally, 

we require an inference schema, applicable to any 

of the monadic predicates MAMMAL, DOG, CAT, etc. of 

the hierarchy: 

" I f  x is an individual and P(x) cannot be deduced, 

then infer  ~P(x)" 

or in the notation of the previous section 

(x) - ~  (D2) 

What we have argued then is that the process 

structure of a network interpreter  is formally 

equivalent to that of a f i r s t  order theorem prover 

augmented by the a b i l i t y  to use the inference 

schema (D2). In a sense, a network interpreter  is 

the compiled form of such an augmented theorem 

prover. 

There are several points worth noting: 

I.  The schema (D2) is not a f i r s t  order rule of 

inference since the operator ~ is not a f i r s t  

order notion. ( I t  is a meta not ion.) Thus a theorem 
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prover which evokes (D2) in order to establ ish 

negative conclusions by fa i l u re  is not performing 

f i r s t  order deductions. 

2. The schema (D2) has a s imi lar  pattern to the 

defaul t  schema (DI). 

3. In the presence of the defaul t  schema (D2), 

the negative knowledge (2.2) ,  which would be 

necessary in the absence of (D2), is not required. 

As we shall see in the next section, th is property 

is a general character is t ic  of the closed world 

defaul t ,  and leads to a s ign i f i can t  reduction in 

the complexity of  both the representation and 

processing of knowledge. 

2.2.2 The Closed World Default 

The schema (D2) is actual ly  a special case of 

the fol lowing more general defaul t  schema: 

~P(x I . . . . .  x n) 
(X l /~ l ) . , . (Xn /~  n) (D3) 

~P(x I . . . . .  x n) 

I f  (D3) is in force for  a l l  predicates P of some 

domain, then reasoning is being done under the 

closed world assumption [Rei ter  1978]. In most 

A. l .  representation schemes, hierarchies are 

treated as closed world domains. The use of the 

closed world assumption in A . l .  and in ordinary 

human reasoning extends beyond such hierarchies,  

however. As a simple example, consider an a i r l i n e  

schedule for a d i rec t  Ai r  Canada f l i g h t  from 

Vancouver to New York. I f  none is found, one 

assumes that no such f l i g h t  ex is ts .  Formally, we 

can view the schedule as a data base, and the query 

as an attempt to establ ish DIRECTLY-CONNECTS(AC, 

Van,NY). This f a i l s ,  whence one concludes 

~DIRECTLY-CONNECTS(AC,Van,NY) by an appl icat ion of 

schema (D3). Such schedules are designed to be 

used under the closed world assumption. They con- 

tain only posi t ive information; negative inform- 

ation is in ferred by defaul t .  There is one very 

good reason for making the closed world assumption 

in th is set t ing.  The number of negative facts 

vast ly exceeds the number of posi t ive ones. For 

example, Ai r  Canada does not d i rec t l y  connect 

Vancouver and Moscow, or Toronto and Bombay, or 

Moscow and Bombay, etc. etc. I t  is t o t a l l y  un- 

feasible to e x p l i c i t l y  represent a l l  such negative 

information in the data base, as would be required 

under a f i r s t  order theorem prover, I t  is 

important to not ice,  however, that the closed 

world assumption presumes perfect  knowledge about 

the domain being modeled. I f  i t  were not known, 

for  example, whether Air  Canada d i rec t l y  connects 

Vancouver and Chicago, we would no longer be jus t -  

i f i ed  in making the closed world assumption with 

respect to the f l i g h t  schedule. For by the absence 

of th is  fact  from the data base, we would conclude 

that Ai r  Canada does not d i r ec t l y  connect 

Vancouver and Chicago, v io la t ing  our assumed state 

of ignorance about th is fact .  

The f l i g h t  schedule i l l u s t r a tes  a very common 

use of the closed world defaul t  rule for  purely 

extensional data bases. In par t i cu la r ,  i t  i l l u s -  

t rates how th is  defaul t  factors out the need for 

any e x p l i c i t  representation of negative facts.  

This resu l t  holds for  more general data bases. As 

an example, consider the ubiquitous blocks world, 

under the fol lowing decomposition hierarchy of 

objects in that world: 

OBJECT 

BLOCK TABLE 

CUBE PYRAMID 

Let SUPPORTS(x,y) denote "x d i rec t l y  supports y" 

and FREE(x) denote "x is f ree" i . e .  objects may be 

placed upon x. Then the fol lowing general facts 

hold: 

(x/OBJECT)(y/TABLE)~SUPPORTS(x,y) ( I )  

(x/OBJECT)~SUPPORTS(x,x) (2) 

(x/PYRAMID)(y/BLOCK)~SUPPORTS(x,y) (3) 

(x y/BLOCK)SUPPORTS(x,y) 

~SUPPORTS(y,x) (4) 

(x/PYRAMID)nFREE(x) (5) 

(x y/BLOCK)(z/TABLE)SUPPORTS(x,y) 

~SUPPORTS(z,y) (6) 

(x/CUBE)FREE(x) 

(y/BLOCK)~SUPPORTS(x,y) (7) 

(x/CUBE)(y/BLOCK)~SUPPORTS(x,y) 

FREE(x) (8) 

(x/TABLE)FREE(x) (9) 

Consider the fol lowing scene 
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This is representable by 

SUPPORTS(T, C1) SUPPORTS(T,C2) 
(10) 

SUPPORTS(CI,PI) SUPPORTS(C2,C3) 

SUPPORTS(T,P2) 

together with the following negative facts 

~SUPPORTS(CI,C2) ~SUPPORTS(C2,CI) / 
-SUPPORTS(C3,CI) ~SUPPORTS(CI,P2) ( I I )  

~SUPPORTS(C3,PI) ~SUPPORTS(C3,P2) 

~SUPPORTS(CI,C3) ~SUPPORTS(C2,PI) 

Notice that virtually all of the knowledge about the 

blocks domain is negative, namely the negative 

specific facts (11), together with the negative 

facts(1)-(7) I. This is not an accidental feature. 

Most of what we know about any world is negative. 

Now a f i rs t  order theorem prover must have 

access to all of the facts (1)-( l l ) .  For example, 

in proving~SUPPORTS(C3,C2) i t  must use (4). Con- 

sider instead such a theorem prover endowed with 

the additional abil i ty to interpret the closed 

world default schema (D3). Then, in attempting a 

proof of ~SUPPORTS(C3,C2) i t  tries to show that 

SUPPORTS(C3,C2) is not provable. Since 

SUPPORTS(C3,C2) cannot be proved, i t  concludes 

~SUPPORTS(C3,C2), as required. 

I t  should be clear intuitively that in the 

presence of the closed world default schema (D3), 

none of the negative facts (I)-(7), (11) need be 

represented explicit ly nor used in reasoning. This 

can be proved, under fair ly general condition~ 

[Reiter 1978]. One function, then, of the closed 

world default is to "factor out" of the represen- 

tation all negative knowledge about the domain. I t  

is of some interest to compare the blocks world 

representation (1)-( l l )  with those commonly used in 

blocks world problem-solvers (e.g.[Winograd 1972, 

Warren 1974]). These systems do not represent explic- 

i t l y  the negative knowledge (I)-(7), ( l l )  but in- 

stead usethe closed world default for reasoning 

about negation. (See Section 3 below for a dis- 

cussion of negation in A.I. programming languages.) 

Although the closed world default factors out 

negative knowledge for answering questions about a 

domain, this knowledge must nevertheless be avail- 

i The nOtion of a negative fact has a precise defin- 
ition. A fact is negative i f f  all of the l i terals 
in its clausal form are negative. 

able. To see why, consider an attempted update of 

the example blocks world scene with the new "fact" 

SUPPORTS(C3,C2). To detect the resulting inconsis- 

tency requires the negative fact (4). In general 

then, negative knowledge is necessary for maintain- 

ing the integrity of a data base. A consequence of 

the closed world assumption is a decomposition of 

knowledge into positive and negative facts. Only 

positive knowledge is required for querying the 

data base. Both positive and negative knowledge 

are required for maintaining the integrity of the 

data base. 

2.3 DEFAULTS AND THE FRAME PROBLEM 

The frame problem [Raphael 1971] arises in the 

representation of dynamic worlds. Roughly speaking, 

the problem stems from the need to represent those" 

aspects of the world which remain invariant under 

certain state changes. For example, moving a par- 

ticular object or switching on a light will not 

change the colours of any objects in the world. 

Painting an object will not affect the locations of 

the objects. In a f i rs t  order representation of 

such worlds, i t  is necessary to represent explici~y 

all of the invariants under all state changes. 

These are referred to as the frame axioms for the 

world being modeled. For example, to represent the 

fact that painting an object does not alter the 

locations of objects would require, in the situa- 

tional calculus of [McCarthy and Hayes 1969] a 

frame axiom something like 

(x z/OBJECT)(y/POSITION)(s/STATE)(C/COLOUR) 

LOCATION(x,y,s) m LOCATION(x,y,paint(z,C,s)) 

The problem is that in general we will require a 

vast number of such axioms e.g. object locations 

also remain invariant when lights are switched on, 

when i t  thunders, when someone speaks etc. so there 

is a major dif f iculty in even articulating a de- 

ductively adequate set of frame axioms for a given 

world. 

A solution to the frame problem is a represen- 

tation of the world coupled with appropriate rules 

of inference such that the frame axioms are neither 

represented explicit ly nor used explicit ly in 

reasoning about the world. We will focus on a 
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proposed solut ion by [Sandewall 1972] 1 . A re lated 

approach is described in [Hayes 1973]. Sandewall 

proposes a new operator, UNLESS, which takes form- 

ula W as argument. The intended in terpre ta t ion  of 

UNLESS(W) is "W can not be proved" i .e .  i t  is 

ident ical  to the operator F/ of  this paper. 

Sandewall proposes a single "frame inference ru le"  

which, in the notation of this paper, can be para- 

phrased as fol lows: 

For a l l  predicates P which take a state variable 

as an argument 

(Xl/TI)...(Xn/Tn)(S/STATE)(f/ACTION-FUNCTION) 

~ P ( X l  . . . . .  Xn ' f (x l  . . . . .  Xn'S)) (D4) 

P(x I . . . . .  Xn,f(x I . . . . .  Xn,S)) 

I n t u i t i v e l y ,  (D4) formalizes the so-cal led "STRIPS 

assumption" [Waldinger 1975]: Every action (state 

change) is assumed to leave every re la t ion un- 

affected unless i t  is possible to deduce otherwise. 

This schema can be used in the fol lowing way, say 

in order to establ ish that cube33 is at location 

a f te r  box7 has been painted blue: 

To establ ish LOCATlON(cube33,~,paint(box7,blue,s)) 

fa i l  to prove~LOCATlON(cube33,~,paint(box7,blue,s)) 

There are several observations that can be 

made: 

I.  The frame inference schema (D4) has a pattern 

s imi lar  to the defaul t  schemata (D2) and (D3) of 

ea r l i e r  sections of  th is paper. I t  too is a 

defaul t  schema. 

2. The frame schema (D4) is in some sense a dual 

of  the closed world schema (D3). The former per- 

mits the deduction of a posi t ive fact  from fa i l u re  

to establ ish i t s  negation. The l a t t e r  provides 

for  the deduction of  a negative fact  from fa i l u re  

to derive i t s  posi t ive counterpart. This dua l i ty  

is preserved with respect to the knowledge 

"factored out" of  the representation. Whereas the 

frame defaul t  el iminates the need for  certain kinds 

of  posi t ive knowledge (the frame axioms), the 

closed world defaul t  factors out the e x p l i c i t  rep- 

resentation of negative knowledge. 

2.4 DEFAULTS AND EXCEPTIONS 

A good deal of  what we know about the world is 

1 [Kramosil 1975] claims to have proved that 
Sandewa11's approach is e i ther  meaningless or 
equivalent to a f i r s t  order approach. See Section 
4 for  a discussion of th is  issue. 

"almost always" t rue,  with a few exceptions. For 

example, a l l  birds f l y  except for  penguins, 

ostr iches,  f ledg l ings ,  etc. Given a par t i cu la r  

b i rd ,  we w i l l  conclude that i t  f l i e s  unless we 

happen to know that is sa t i s f i es  one of  these excep- 

t ions. Nevertheless, we want i t  true of birds " in 

general" that they f l y .  How can we reconc i le these 

apparently con f l i c t i ng  points of view? The natural 

f i r s t  order representation is inconsistent:  

(x/BIRD)FLY(x) "In general, birds f l y "  

(x)PENGUIN(x) ~ BIRD(x)"Penguins are birds 

(x/PENGUIN)~FLY(x) which don' t  f l y . "  

An a l te rnat ive  f i r s t  order representation exp l ic -  

i t l y  l i s t s  the exceptions to f l y ing  

(x/BIRD)~PENGUIN(x) ^~OSTRICN(x) ^ . . .  

FLY(x) 

But with th is representat ion, we cannot conclude of  

a "general" b i rd ,  that i t  can f l y .  To see why, 

consider an attempt to prove FLY(tweety) where a l l  

we know of tweety is that she is a bird.  Then we 

must establ ish the subgoal 

-PENGUIN(tweety) ^ ~OSTRICH(tweety) ^ . . .  

which is impossible given that  we have no fur ther  

information about tweety. We are blocked from con- 

cluding that tweety can f l y  even though, i n t u i -  

t i ve l y  we want to deduce j us t  that.  In e f fec t ,  we 

need a defaul t  rule of the form 

(x/BIRD) # (PENGUIN(x) V OSTRICH(x) V . . .  ) 
FLY(x) 

With th is rule of inference we can deduce 

FLY(tweety), as required. Notice, however, that 

whenever there.are exceptions to a "general" fact  

in some domain of knowledge we are no longer free 

to a r b i t r a r i l y  st ructure that knowledge. For ex- 

ample, the fol lowing hierarchy would be unaccept- 

able, where the dotted l ink  indicates the existence 

of an exception 

ANIMAL 

FLY CRAWL 

BAT BIRD 

PENGUIN ROBIN 

Clearly there is no way in th is hierarchy of estab- 

l i sh ing that penguins are animals. For h4erarchies 

the constra int  imposed by exceptions is eas i ly  
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articulated: I f  P and Q are nodes with P below Q, 

and i f  (x)P(x) p Q(x) is true without exception, 

then there must be a sequence of solid links con- 

necting P and Q. For more general kinds of know- 

ledge the situation is more problematic. One must 

be careful to ensure that chains of implications do 

not unwittingly inheri t  unintended exceptions. 

3. DEFAULTS AND "NEGATION" IN A.I. 
PROGRAMMING LANGUAGES 

I t  has been observed by several authors [Hayes 

1973, Sandewall 1972, Reiter 1978] that the basicde- 

fault opera tor  ~ has,as its"procedural equivalent" 

the negation operator in a number of A.I. programming 

languages e.g. THNOT in MICROPLANNER [Hewitt 1972, 

Sussman et al.1970],.NOT in PROLOG [Roussel 1975]. 

For example, in MICROPLANNER, the command 

(THGOAL <pattern>) can be viewed as an attempt to 

prove <pattern> given a data base of facts and 

theorems. (THNOT(THGOAL <pattern>)) then succeeds 

i f f  (THGOAL <pattern>) fai ls i .e. i f f  <pattern> is 

not provable, and this of course is precisely the 

interpretation of the default operator ~ . 

Given that "negation" in A.I. procedural 

languages corresponds to the default operator and 

not to logical negation, i t  would seem that some of 

the crit icism often directed at theorem proving 

from within the A.I. community is misdirected. For 

the so-called procedural approach, often proposed 

as an alternative to theorem proving as a represen- 

tation and reasoning component in A.I. systems, is 

a realization of a default logic, whereas theorem 

provers are usually realizations of a f i r s t  order 

logic, and as we have seen, these are dif ferent 

logics. 

In a sense, the so-called procedural vs. 

declarative issue in A.I, might better be phrased 

as the default vs. f i r s t  order logic issue. Many 

of the advantages of the procedural approach can 

be interpreted as representational and computa- 

tional advantages of the default operator. There 

is a fa i r  amount of empirical evidence in support 

of this point of view, primarily based upon the 

successful use of PROLOG [Roussel 1975] - a pure 

theorem prover augmented with a "THNOT" operator - 

for such diverse A.I. tasks as problem solving 

[Warren 1974], symbolic mathematics [Kanoui 1976], 

and natural language question-answering [Colmeraurer 

1973]. 

On the theoretical level, we are just begin- 

ning to understand the advantages of a f i r s t  order 

logic augmented with the default operator: 

i .  Default logic provides a representation language 

which more fa i th fu l ly  reflects a good deal of 

common sense knowledge than do traditional logics. 

Similarly, for many situations, default reasoning 

corresponds to what is usually viewed as common 

sense reasoning. 

2. For many settings, the appropriate default 

theories lead to a signif icant reduction in both 

representational and computational complexity with 

respect to the corresponding f i r s t  order theory. 

Thus, under the closed world default, negative 

knowledge about a domain need not exp l ic i t l y  be 

represented nor reasoned with in querying a data 

base. Similarly under the frame default, the usual 

frame axioms are not required. 

There are, of course, other advantages of the 

procedural approach - specif ical ly,  exp l ic i t  con- 

trol over reasoning - which are not accounted for 

by the above logical analysis. We have dist in- 

guished the purely logical structure of such rep- 

resentational languages from their process structure, 

and have argued that at least some of their success 

derives from the nature of the logic which they 

realize. 

4. SOME PROBLEMS WITH DEFAULT THEORIES 

Given that default reasoning has such wide- 

spread applications in A.I. i t  is natural to define 

a default theory as a f i r s t  order theory augmented 

by one or more inference schemata l ike (Dl), (D2) 

etc. and to investigate the properties of such 

theories. Unfortunately, some such theories display 

peculiar and in tu i t ive ly  unacceptable behaviours. 

One d i f f i cu l ty  is the ease with which incon- 
~A 

sistent theories can be defined, for example B 

coupled with a knowledge base with the 

single fact IB. Another, pointed out by [Sandewall 

1972] is that the theorems of certain default 

theories wi l l  depend upon the order in which they 

are derived. As an example, consider the theory 

~A ~B 
B A 

Since A is not provable, we can infer B. Since B 
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is now proved, we cannot infer A, so this theory 

has the single theorem B. I f  instead, we had 

started by observing that B is not provable, then 

the theory would have the single theorem A. De- 

fault  theories exhibiting such behaviour are clearly 

unacceptable. At the very least, we must demand of 

a default theory that i t  satisfy a kind of 

Church-Rosser property: No matter what the order 

in which the theorems of the theory are derived, 

the resulting set of theorems wi l l  be unique. 

Another d i f f i cu l t y  arises in modeling dynam- 

ica l ly  changing worlds e.g. in causal worlds or in 

text understanding where the model of the text 

being bui l t  up changes as more of the text is assim- 

i lated. Under these circumstances, inferences 

which have been made as a result of a default 

assumption may subsequently be fa ls i f ied by new in- 

formation which now violates that default assump- 

tion. As a simple example, consider a travel con- 

sultant which has made the default assumption that 

the t ravel ler 's  starting point is Palo Alto and has, 

on the basis of this, planned al l  of the details of 

a t r ip .  I f  the consultant subsequently learns that 

the starting point is Los Angeles, i t  must undo at 

least part of the planned t r i p ,  specif ical ly the 

f i r s t  (and possibly last) leg of the plan. But how 

is the consultant to know to focus just on these 

changes? Somehow, whenever a new fact is deduced 

and stored in the data base, al l  of the facts which 

rely upon a default assumption and which supported 

this deduction must be associated with this new 

fact. These supporting facts must themselves have 

their default supports associated with them, and 

so on. Now, should the data base be updated with 

new information which renders an instance of some 

default rule inapplicable, delete al l  facts which 

had been previously deduced whose.support sets 

relied upon this instance of the default rule. 

There are obviously some technical and implementa- 

tion details that require art iculat ion, but the 

basic idea should be clear. A related proposal for 

dealing with beliefs and real world observations is 

described in [Hayes 1973]. 

One way of viewing the role of a default theo~ 

is as a way of impl ic i t l y  further completing an 

underlying incomplete f i r s t  order theory. Recall 

that a f i r s t  order theory is said to be complete 

i f f  for a l l  closed formulae W, wither W or ~W is 

provable. Most interesting mathematical theories 

turn out to be incomplete - a celebrated result 

due to Godel. Most of what we know about the world, 

when formalized, wi l l  yield an incomplete theory 

precisely because we cannot know everything - there 

are gaps in our knowledge. The effect of a default 

rule is to impl ic i t l y  f i l l  in some of those gaps by 

a form of plausible reasoning. In particular, the 

effect of the closed world default is to fu l l y  com- 

plete an underlying incomplete f i r s t  order theory. 

However, i t  is well known that there are insurmount- 

able problems associated with completing an incom- 

plete theory l ike arithmetic. Although i t  is a 

t r i v i a l  matter conceptually to augment the axioms 

of arithmetic with a default rule --~ where W is 

any closed formula, we wi l l  be no further ahead 

because the non theorems of arithmetic are not re- 

cursively enumerable. What this means is that 

there is no way in general that, given a W, we 

can establish that W is not a theorem even i f  W 

happens not to be a theorem. This in turn means 

that we are not even guaranteed that an arbitrary 

default rule of inference is effective i .e.  there 

may be no algorithm which wi l l  inform us whether or 

not a given default rule of inference is applica~e~ 

From this we can conclude that the theories of a 

default theory may not be recursively enumerable. 

This situation is in marked contrast to what norm- 

a l ly  passes for a logic where, at the very least, 

the rules of inference must be effective and the 

theorems recursively enumerable. 

Finally, i t  is not hard to see that default 

theories fa i l  to satisfy the extension property 

[Hayes 1973] which al l  "respectable" logics do sat- 

isfy.  (A logical calculus has the extension prop- 

erty i f f  whenever a formula is provable from a set 

P of premises, i t  is also provable from any set P' 

such that P ~ P'.) 

[Kramosil 1975] attempts to establish some 

general results on default theories. Kramosil 

"proves" that for any such theory, the default 

rules are irrelevant in the sense that either the 

theory wi l l  be meaningless or the theorems of the 

theory wi l l  be precisely the same as those obtain- 

able by ignoring the default rules of inference. 

Kramosil's result, i f  correct, would invalidate the 
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main point of this paper, namely that default theor- 

ies play a prominent role in reasoning about the 

world. Fortunately, his "proof" rel ies on an incor- 

rect def in i t ion of theoremhood so that the problem 

of characterizing the theorems of a default theory 

remain open. 

5. CONCLUSIONS 

Default reasoning may well be the rule,  rather 

than the exception, in reasoning about the world 

since normally we must act in the presence of incom- 

plete knowledge. Moreover, aside from mathematics 

and the physical sciences, most of what we know 

about the world has associated exceptions and 

caveats. Conventional logics, such as f i r s t  order 

logic,  lack the expressive power to adequately rep- 

resent the knowledge required for reasoning by de- 

fau l t .  We gain this expressive power by introducing 

the default operator. 

In order to provide an adequate formal (as 

opposed to heur is t ic)  foundation for default reason- 

ing we need a well ar t iculated theory of default 

logic. This requires, in part ,  a theory of the 

semantics of default logic,  a suitable notion of 

theoremhood and deduction, and conditions under which 

the default inference rules are effect ive and the 

set of theorems unique. Since in any rea l i s t i c  do- 

main, a l l  of the default schemata of Section 2 w i l l  

be in force (together, no doubt, with others we have 

not considered) we require a deeper understanding of 

how these d i f fe ren t  schemata interact .  F inal ly ,  

there is an in t r igu ing relat ionship between certain 

defaults and the complexity of the underlying repre- 

sentation. Both the closed world and frame defaults 

imp l i c i t l y  represent whole classes of f i r s t  order 

axioms. Is this an accidental phenomemon or is some 

general principal involved? 
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