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ABSTRACT

This paper surveys a number of kinds of
default reasoning in Artificial Intelligence, spec-
ifically, default assignments to variables, the
closed world assumption, the frame default for
causal worlds, exceptions as defaults, and negation
in Artificial Intelligence programming languages.
Some of these defaults provide clear representa-
tional and computational advantanges over their
corresponding first order theories. Finally, the
paper discusses various difficulties associated
with default theories.

If I don't know I don't know
I think I know
If I don't know I know
I think I don't know

R.D. Laing, Knots
1. INTRODUCTION

Default reasoning is commonly used in natural
language understanding systems and in Artificial
Intelligence in general. We use the term "default
reasoning” to denote the process of arriving at
conclusions based upon patterns of inference of
the form "In the absence of any information to the
contrary, assume..." In this paper, we take this
pattern to have the more formal meaning "If certain
information cannot be deduced from the given know-
ledge base, then conclude..." Such reasoning rep-
resents a form of plausible inference and is
typically required whenever conclusions must be
drawn despite the absence of total knowledge about

a world.

In order to fix some of these ideas, we begin
by surveying a number of instances of default
reasoning as they are commonly invoked in A.I.
Specifically, we discuss default assignments to
variables, the closed world assumption, the frame
default for causal worlds, exceptions as defaults,

210

and negation in A.I. programming languages. We shall
see that these may all be formalized by introducing
a single default operator K where H W is taken
to mean "W is not deducible from the given know-
ledge base".

In addition, we shall discover that the closed
world and frame defaults provide clear representa-

‘tional and computational advantages over their cor-

responding first order theories. The former elim-
inates the need for an explicit representation of
negative knowledge about a world, while the latter
eliminates the so-called frame axioms for dynamic

worids.

Finally, we discuss various problems which
arise as a result of augmenting first order logic
with a default operator.

2. SOME INSTANCES OF DEFAULT REASONING IN A.I.

The use of default reasoning in A.I. is far
The
purpose of this section is to point out a variety
of seemingly different situations in which such

more widespread than is commonly realized.

reasoning arises, to accent common patterns which
emerge when defaults are formalized, and to indi-
cate certain representational and computational
advantages of default reasoning.

2.1 Default Assignments to Variables

A number of knowledge representation schemes,
e.g. FRL [Roberts and Goidstein 19773, KRL [Bobrow
and Winograd 19771, explicitly provide for the
assignment of default values to variablies (slots,
terminals). For example, in KRL the unit for a
person in an airline travel system has the form:



[Person UNIT Basic

<hometowﬁ{(a City) PaloAlto; DEFAULT}>

]

We can view this declaration as an instruction to
the KRL interpreter to carry out the following:

If x is a person, then in the absence of any infor-
mation to the contrary, assume hometown(x)=PaloAlto,
or phrased in a way which makes explicit the fact
that a default assignment is being made to a
variable:

If x is a person and no value can be determined for
the variable y such that hometown(x)=y, then assume
y=PaloAlto.

Notice that in assigning a default value to a var-
iable, it is not sufficient to fail to find an ex-
plicit match for the variable in the data base.

For example, the non existence in the data base of
a fact of the form hometown(JohnDoe)=y for some
city y does not necessarily permit the default
assignment y=PaloAlto. It might be the case that
the following information is available:

(x/EMPLOYER)(y/PERSON) {z/CITY)EMPLOYS(x,y)
A Tocation(x)=z > hometown(y)=z1

i.e. a person's hometown is the same as his or her
employer. In this case the default assignment
y=PaloAlto can be made only if we fail to deduce the

existence of an employer x and city z such that
EMPLOYS(x,JohnDoe) A location(x)=z

In general then, default assignments to variables
are permitted only as a result of failure of some
attempted deduction.

We can formulate a general

inference pattern for the default assignment of
values to variables:

For all Xpseee in classes Tysen-
if we fail to deduce (Ey/e)P(xl,...
fer the default statement

X ,T,. respectively,

n
,xn,y) then in-

! Throughout this paper we shall use a typed logical
representation language. Types, e.g. EMPLOYER,
PERSON, CITY correspond to the usual categories
of IS-A hierarchies. A typed universal quantifier
Tike (x/EMPLOYER) is read "for all x which belong
to the class EMPLOYER" or simply "for all employ-
ers x". A typed existential quantifier like
(Ex/CITY) is read "there is a city x". The nota-
tion derives from that used by Woods in his "FOR
function" [Woods 19681].
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P(x],...
or more succinctly,

,xn,<defau1t value for y>)

(Xl/T])...(Xn/Tn)
H (Ey/e)P(x],...
P(x],...

sX5Y)

sX, »<default value for y>)

(01)

Here
t's are types, and P(Xl"“
EEPRFS SR
serious difficulties associated with just what ex-
but we shall defer these

is to be read "fail to deduce", 6 and the
,xn,y) is any statement
about the variables x There are some
actly is meant by " "
issues for the moment and rely instead on the
reader's intuition. The default rule for home

towns can now be seen as an instance of the above

pattern:

+ (Ey/CITY)hometown(x)=y
hometown{x)=PaloAlto

(x/PERSON)

2.2 THE CLOSED WORLD ASSUMPTION

It seems not generally recognized that the
reasoning components of many natural language
understanding systems have default assumptions
built into them.
upon which the reasoner computes does not explic-
Rather,
these defaults are reaiized as part of the code of

The representation of knowledge
itly indicate certain default assumptions.

the reasoner, or, as we shall say, following
[Hayes 19771, as part of the reasoner's process
structure. The most common such default corresponds
to what has elsewhere been referred to as the
closed world assumption [Reiter 19781. In this
section we describe two commonly used closed world

defaults.

2.2.1 Hierarchies

As an illustration of the class of closed
world defaults, consider standard taxonomies
(IS-A hierarchies) as they are usually represented

in the A.I. literature, for example the following:

THING

ANIMATE INANIMATE

MAMMAL  REPTILE
DOG CAT

This has, as its first order logical representation,
the following:



(x)DOG(x) > MAMMAL(x)
(x)CAT(x) > MAMMAL (x)
(x)MAMMAL (x) > ANIMATE(x)
etc.

(2.1)

Now if Fido is known to be a dog we can conclude
that Fido is animate in either of two essentially
isomorphic ways:

1. If the hierarchy is implemented as some sort of
network, then we infer ANIMATE(fido) if the class
ANIMATE lies "above" DOG i.e. there is some pointer
chain leading from node DOG to node ANIMATE in the
network.

2. If the hierarchy is implemented as a set of first
order formulae, then we conclude ANIMATE(fido) if
we can forward chain (modus ponens) with DOG(fido)
to derive ANIMATE(fido). This forward chaining
from DOG(fido) to ANIMATE(fido) corresponds exactly
to following pointers from node DOG to node ANIMATE
in the network.

Thus far, there is no essential difference be-
tween a network representation of a hierarchy with
its pointer-chasing interpreter and a first order
representation with its forward chaining theorem
proving interpreter. A fundamental distinction
arises with respect to negation. As an example,
consider how one deduces that Fido is not a reptile.
A network interpreter will determine that the node
REPTILE does not 1ie "above" DOG and will thereby
conclude that DOGs are not REPTILEs so that
“REPTILE(fido) is deduced. On the other hand, a
theorem prover will try to prove =REPTILE(fido).
Given the above first order representation, no such
proof exists.
the representation (2.1) states that the categories
MAMMAL and REPTILE are disjoint.

prover to deal with negative

The reason is clear - nothing in

For the theorem
information, the
knowledge base (2.1) must be augmented by the
following facts stating that the categories of
the hierarchy are disjoint:

(x)ANIMATE(x) > =INANIMATE(x)

(x)MAMMAL (x) = AREPTILE(x)
(x)DOG(x) > =CAT(x)

(2.2)

It is now clear that a first order theorem proving
interpreter can establish ~REPTILE(fido) by a pure
forward chaining proof procedure from DOG(fido)
using (2.1) and (2.2). However, unlike the earlier
proof of ANIMATE(fido), this proof of »~ REPTILE(fido)
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is not isomorphic to that generated by the network
interpreter. (Recall that the network interpreter
deduces ~REPTILE(fido) by failing to find a pointer
chain linking DOG and REPTILE).
the network interpreter must contend only with a

Moreover, while

representation equivalent to that of (2.1), the
theorem prover must additionally utilize the nega-
tive information (2.2). Somehow, then, the process
structure of the network interpreter implicitly
represents the negative knowledge (2.2), while
computing only on declarative knowledge equivalent

to (2.1).

We can best distinguish the two approaches by
observing that two different logics are involved.
To see this, consider modifying the theorem prover
so as to simulate the network process structure.
Since the network interpreter tries, and fails, to
establish a pointer chain from DOG to REPTILE using
a declarative knowledge base equivalent to (2.1),
the theorem prover can likewise attempt to prove
REPTILE(fido) using only (2.1). As for the net-
work interpreter, this attempt will fail. If we
now endow the theorem prover with the additional
inference rule:

"If you fail to deduce REPTILE(fido) then conclude
~REPTILE(fido)"

the deduction of ~REPTILE(fido) will be isomorphic
to that of the network interpreter. More generally,
we require an inference schema, applicable to any
of the monadic predicates MAMMAL, DOG, CAT, etc. of
the hierarchy:

"If x is an individual and P(x) cannot be deduced,
then infer -P(x)"

or in the notation of the previous section

P(x)
“P{x

(x) (D2)

What we have argued then is thal the process
structure of a network interpreter is formally
equivalent to that of a first order theorem prover
augmented by the ability to use the inference
schema (D2).
the compiled form of such an augmented theorem

In a sense, a network interpreter is

prover.

There are several points worth notihg:
1. The schema (D2) is not a first order rule of
inference since the operator H is not a first
order notion. (It is a meta notion.) Thus a theorem



prover which evokes (D2) in order to establish
negative conclusions by failure is not performing
first order deductions.

2. The schema (D2) has a similar pattern to the
default schema (D1).

3. In the presence of the default schema (D2),
the negative knowledge (2.2), which would be
necessary in the absence of (D2}, is not required.
As we shall see in the next section, this property
is a general characteristic of the closed world
default, and leads to a significant reduction in
the complexity of both the representation and
processing of knowledge.

2.2.2 The Closed World Default

The schema (D2) is actually a special case of
the following more general default schema:

HP(xl,..

ﬂP(xl,...,xn)

.,xn)
(xl/rl)...(xn/rn)

(D3)
If (D3) is in force for all predicates P of some
domain, then reasoning is being done under the

closed world assumption [Reiter 19781. In most

A.I. representation schemes, hierarchies are
The use of the
closed world assumption in A.I. and in ordinary

treated as closed world domains.
human reasoning extends beyond such hierarchies,
however. As a simpie example, consider an airline
schedule for a direct Air Canada flight from
Vancouver to New York. If none is found, one
assumes that no such flight exists. Formally, we
can view the schedule as a data base, and the query
as an attempt to establish DIRECTLY-CONNECTS(AC,
Van,NY). This fails, whence one concludes
~DIRECTLY-CONNECTS(AC,Van,NY) by an application of
schema (D3). Such schedules are designed to be
used under the closed world assumption. They con-
tain only positive information;
ation is inferred by default. There is one very
good reason for making the closed world assumption

in this setting.

negative inform-

The number of negative facts
vastly exceeds . the number of positive ones. For
example, Air Canada does not directly connect
Vancouver and Moscow, or Toronto and Bombay, or
Moscow and Bombay, etc. etc. It is totally un-
feasible to explicitly represent all such negative
information in the data base, as would_be required

under a first order theorem prover. It is
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important to notice, however, that the closed
world assumption presumes perfect knowledge about
the domain being modeled. If it were not known,
for example, whether Air Canada directly connects
Vancouver and Chicago, we would no longer be just-
ified in making the closed world assumption with
respect to the flight schedule. For by the absence
of this fact from the data base, we would conclude
that Air Canada does not directly connect

Vancouver and Chicago, violating our assumed state

of ignorance about this fact.

The flight schedule illustrates a very common
use of the closed world default rule for purely
extensional data bases.
trates how this default factors out the need for
any explicit representation of negative facts.
This result holds for more general data bases. As

In particular, it illus-

an example, consider the ubiquitous blocks world,
under the following decomposition hierarchy of
objects in that world:

OBJECT

BLOCK TABLE

CUBE  PYRAMID

Let SUPPORTS(x,y) denote "x directly supports y"
and FREE(x) denote "x is free" i.e. objects may be

placed upon x. Then the following general facts

hold:
(x/OBJECT) (y/TABLE )aSUPPORTS (X, y) (1)
(x/OBJECT)~SUPPORTS (X, x) (2)
(x/PYRAMID) (y/BLOCK)¥SUPPORTS (x,y) (3)
(x y/BLOCK)SUPPORTS(x,y) =

< SUPPORTS(y,x) (4)
(x/PYRAMID)~FREE(x) (5)
(x y/BLOCK') (z/TABLE)SUPPORTS(x,y) >

=SUPPORTS(z,y) (6)
(x/CUBE)FREE(x) >

(y/BLOCK)2SUPPORTS (x,y) (7)
(x/CUBE) (y/BLOCK)aSUPPORTS (x,y) >

FREE(x) (8)
(x/TABLE)FREE(x) (9)

Consider the following scene

Pl C3

C1 c2

A
T



This is representable by

SUPPORTS(T,C1)  SUPPORTS(T,C2) (10)
SUPPORTS(C1,P1) SUPPORTS(C2,C3)
SUPPORTS{T,P2)
together with the following negative facts
~SUPPORTS(C1,C2) -~SUPPORTS(C2,C1)
“SUPPORTS(C3,C1) -SUPPORTS(C1,P2) (11)
SUPPORTS(C3,P1) =SUPPORTS(C3,P2)

)

“SUPPORTS(C1,C3) - SUPPORTS(C2,P1)

Notice that virtually all of the knowledge about the
blocks domain is negative, namely the negative
specific facts (11), together with the negative
facts(1)-(7)1.
Most of what we know about any world is negative.

This is not an accidental feature.

Now a first order theorem prover must have
access to all of the facts (1)-(11). For example,
in proving ~SUPPORTS(C3,C2) it must use (4). Con-
sider instead such a theorem prover endowed with
the additional ability to interpret the closed
world default schema (D3). Then, in attempting a
proof of ~SUPPORTS(C3,C2) it tries to show that
SUPPORTS(C3,C2) is not provable. Since
SUPPORTS(C3,C2) cannot be proved, it concludes
“SUPPORTS(C3,C2), as required.

It should be clear intuitively that in the
presence of the closed world default schema (D3),
none of the negative facts (1)-(7), (11) need be
represented explicitly nor used in reasoning. This
can be proved, under fairly general conditions
[Reiter 19783. One function, then, of the closed
world default is to "factor out" of the represen-
tation all negative knowledge about the domain.
is of some interest to compare the blocks world
representation (1)-(11) with those commonly used in
blocks world problem-solvers (e.g.[Winograd 1972,
Warren 1974]). These systems do not represent explic-
itly the negative knowledge (1)-(7), (11) but in-
stead use” the closed world default for reasoning
about negation. (See Section 3 below for a dis-
cussion of negation in A.I. programming languages.)

It

Although the closed world default factors out
negative knowledge for answering questions about a
domain, this knowledge must nevertheless be avail-

1 Thg notion of a negative fact has a precise defin-
ition. A fact is negative iff all of the literals
in its clausal form are negative.
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able. To see why, consider an attempted update of
the example biocks world scene with the new "fact"
SUPPORTS(C3,C2).
tency requires the negative fact (4).
then, negative knowledge is necessary for maintain-

To detect the resulting inconsis-
In general
ing the integrity of a data base. A consequence of
the closed world assumption is a decomposition of
knowledge into positive and negative facts. Only
positive knowledge is required for querying the
data base. Both positive and negative knowledge
are required for maintaining the integrity of the

data base.

2.3 DEFAULTS AND THE FRAME PROBLEM

The frame probiem [Raphael 1971] arises in the
representation of dynamic worlds. Roughly speaking,
the problem stems from the need to represent those
aspects of the world which remain invariant under
certain state changes. For example, moving a par-
ticular object or switching on a light will not
change the colours of any objects in the world.
Painting an object will not affect the locations of
the objects. In a first order representation of
such worlds, it is necessary to represent explicitly
all of the invariants under all state changes.

These are referred to as the frame axioms for the
world being modeled. For example, to represent the
fact that painting an object does not alter the
locations of objects would require, in the situa-
tional calculus of [McCarthy and Hayes 19691 a

frame axiom something like

(x z/O0BJECT)(y/POSITION)(s/STATE)}(C/COLOUR)
LOCATION(x,y,s) > LOCATION(x,y,paint(z,C,s))

The problem is that in general we will require a
vast number of such axioms e.g. object locations
also remain invariant when 1ights are switched on,
when it thunders, when someone speaks etc. so there
is a major difficulty in even articulating a de-
ductively adequate set of frame axioms for a given
world.

A solution to the frame problem is a represen-
tation of the world coupled with appropriate rules
of inference such that the frame axioms are neither
represented explicitly nor used explicitly in

reasoning about the world. We will focus on a



A related
Sandewall

proposed solution by [Sandewall 197211.
approach is described in [Hayes 19731].
proposes a new operator, UNLESS, which takes form-
ula W as argument. The intended interpretation of
UNLESS(W) is "W can not be proved" i.e. it is
identical to the operator # of this paper.
Sandewall proposes a single "frame inference rule"
which, in the notation of this paper, can be para-
phrased as follows:

For all predicates P which take a state variable
as an argument

(X]/T])...(Xn/rn)(S/STATE)(f/ACTION—FUNCTION)
HWP(Xl,...
P(x],..

Intuitively, (D4) formalizes the so-called "STRIPS
assumption" [Waldinger 1975]: Every action (state
change) is assumed to leave every relation un-

affected unless it is possible to deduce otherwise.

,xn,f(x],...,xn,s))

(D4)

.,xn,f(x],...,xn,s))

This schema can be used in the following way, say
in order to establish that cube33 is at location A
after box7 has been painted blue:

To establish LOCATION(cube33,A,paint(box7,blue,s)})
fail to prove~LOCATION(cube33,x,paint(box7,blue,s))

There are several observations that can be
made:
1. The frame inference schema (D4) has a pattern
similar to the default schemata (D2) and (D3) of
earlier sections of this paper. It too is a
default schema.
2. The frame schema (D4) is in some sense a dual
of the closed world schema (D3). The former per-
mits the deduction of a positive fact from failure
to establish its negation. The Tatter provides
for the deduction of a negative fact from failure
to derive its positive counterpart. This duality
is preserved with respect to the knowledge
"factored out" of the representation. Whereas the
frame default eliminates the need for certain kinds
of positive knowledge (the frame axioms), the
closed world default factors out the explicit rep-

resentation of negative knowledge.

2.4 DEFAULTS AND EXCEPTIONS
A good deal of what we know about the world is

I [Kramosil 19751 claims to have proved that
Sandewall's approach is either meaningless or
equivalent to a first order approach. See Section
4 for a discussion of this issue.
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"almost always" true, with a few exceptions. For
example, all birds fly except for penguins,
ostriches, fledglings, etc. Given a particular
bird, we will conclude that it flies unless we
happen to know that is satisfies one of these excep-
Nevertheless, we want it true of birds "in

general” that they fly.

tions.
How can we reconcile these
apparently conflicting points of view? The natural

first order representation is inconsistent:

(x/BIRD)FLY(x) "In general, birds fly"
(x)PENGUIN(x) > BIRD(x) "Penguins are birds
{x/PENGUIN)~FLY(x) which don't fly."

An alternative first order representation explic-
itly Tists the exceptions to flying

{x/BIRD)"PENGUIN(xX) A ~OSTRICH{x) A ... >
FLY(x)

But with this representation, we cannot conclude of
a "general" bird, that it can fly. To see why,

consider an attempt to prove FLY(tweety) where all
we know of tweety is that she is a bird.

must establish the subgoal

Then we

“PENGUIN(tweety) a “OSTRICH(tweety) A ...

which is impossible given that we have no further
information about tweety. We are blocked from con-
cluding that tweety can fly even though, intui-

tively we want to deduce just that.

need a default rule of the form

In effect, we

+ (PENGUIN(x) V OSTRICH(x) V ... )

(x/BIRD) FLY ()

With this rule of inference we can deduce
FLY{tweety), as required. Notice, however, that
whenever there_ are exceptions to a "general" fact
in some domain of knowledge we are no longer free
to arbitrarily structure that knowledge. For ex-
ample, the following hierarchy would be unaccept-
able, where the dotted Tink indicates the existence

of an exception

ANIMAL
CRAWL
BAT  BIRD
PENGUIN ROBIN

Clearly there is no way in this hierarchy of estab-
lishing that penguins are animals. For hierarchies

the constraint imposed by exceptions is easily



articulated: If P and Q are nodes with P below Q,
and if (x)P(x) > Q(x) is true without exception,
then there must be a sequence of soiid 1links con-
necting P and Q. For more general kinds of know-
ledge the situation is more problematic. One must
be careful to ensure that chains of implications do
not unwittingly inherit unintended exceptions.

3. DEFAULTS AND "NEGATION" IN A.I.
PROGRAMMING LANGUAGES

It has been observed by several authors [Hayes
1973, Sandewall 1972, Reiter 1978] that the basic de-
fault operator . has,as its "procedural equivalent"
the negation operator in a number af A.I. programming
Yanguages e.g. THNOT in MICROPLANNER [Hewitt 1972,
Sussman et al. 19701, NOT in PROLOG [Roussel 1975].
For example, in MICROPLANNER, the command
(THGOAL <pattern>) can be viewed as an attempt to
prove <pattern> given a data base of facts and
theorems. (THNOT(THGOAL <pattern>)) then succeeds
iff (THGOAL <pattern>) fails i.e. iff <pattern> is
not provable, and this of course is precisely the
interpretation of the default operator « .

Given that "negation" in A.I. procedural
languages corresponds to the default operator and
not to logical negation, it would seem that some of
the criticism often directed at theorem proving
from within the A.I. community is misdirected. For
the so-called procedural approach, often proposed
as an alternative to theorem proving as a represen-
tation and reasoning component in A.I. systems, is
a realization of a default logic, whereas theorem
provers are usually realizations of a first order
Togic, and as we have seen, these are different
logics.

In a sense, the so-called procedural vs.
declarative issue in A.I, might better be phrased
as the default vs. first order logic issue. Many
of the advantages of the procedural approach can
be interpreted as representational and computa-
tional advantages of the default operator. There
is a fair amount of empirical evidence in support
of this point of view, primarily based upon the
successful use of PROLOG [Roussel 197531 - a pure
theorem prover augmented with a "“THNOT" operator -
for such diverse A.I. tasks as problem solving
[Warven 19747, symbolic mathematics [Kanoui 19761,
and natural language question-answering [Colmeraurer

19731.

On the theoretical level, we are just begin-
ning to understand the advantages of a first order
logic augmented with the default operator:

1. Default logic provides a representation language
which more faithfully reflects a good deal of
common sense knowledge than do traditional logics.
Similarly, for many situations, default reasoning
corresponds to what is usually viewed as common
sense reasoning.

2. For many settings, the appropriate default
theories lead to a significant reduction in both
representational and computational complexity with
respect to the corresponding first order theory.
Thus, under the closed world default, negative
knowledge about a domain need not explicitly be
represented nor reasoned with in querying a data
base. Similarly under the frame default, the usual
frame axioms are not required.

There are, of course, other advantages of the
procedural approach - specifically, explicit con-
trol over reasoning - which are not accounted for
by the above logical analysis. We have distin-
guished the purely logical structure of such rep-
resentational languages from their process structure,
and have argued that at Teast some of their success
derives from the nature of the logic which they
realize.

4. SOME PROBLEMS WITH DEFAULT THEORIES

Given that default reasoning has such wide-
spread applications in A.I. it is natural to define
a default theory as a first order theory augmented
by one or more inference schemata like (D1), (D2)
etc. and to investigate the properties of such
theories. Unfortunately, some such theories display
peculiar and intuitively unacceptable behaviours,

One difficulty is the ease with which incon-
sistent theories can be defined, for example J§A
coupled with a knowledge base with the
single fact 4B. Another, pointed out by [Sandewall
19721 is that the theorems of certain default
theories will depend upon the order in which they

are derived. As an example, consider the theory
HA B
B A

Since A is not provable, we can infer B. Since B



is now proved, we cannot infer A, so this theory
has the single theorem B. If instead, we had
started by observing that B is not provable, then
De-
fault theories exhibiting such behaviour are clearly
unacceptable. At the very least, we must demand of
a default theory that it satisfy a kind of
Church-Rosser property: No matter what the order

in which the theorems of the theory are derived,

the theory would have the single theorem A.

the resulting set of theorems will be unique.

Another difficulty arises in modeling dynam-
ically changing worlds e.g. in causal worlds or in
text understanding where the model of the text
being built up changes as more of the text is assim-
ilated.
which have been made as a result of a default

Under these circumstances, inferences

assumption may subsequently be falsified by new in-
formation which now violates that default assump-
tion. As a simple example, consider a travel con-
sultant which has made the default assumption that
the traveller's starting point is Palo Alto and has,
on the basis of this, planned all of the details of
a trip.
the starting point is Los Angeles, it must undo at
least part of the planned trip, specifically the
first (and possibly last) leg of the plan. But how
is the consultant to know to focus just on these

If the consultant subsequently learns that

changes? Somehow, whenever a new fact is deduced
and stored in the data base, all of the facts which
rely upon a default assumption and which supported
this deduction must be associated with this new
fact.
their default supports associated with them, and
"Now, should the data base be updated with

new information which renders an instance of some

These supporting facts must themselves have

SO on.

default rule inapplicable, delete all facts which
had been previously deduced whose.support sets
relied upon this instance of the default rule.
There are obviously some technical and implementa-
tion details that require articulation, but the
basic idea should be clear. A related proposal for
dealing with beliefs and real world observations is

described in [Hayes 19731.

One way of viewing the role of a default theory
is as a way of implicitly further completing an
underlying incomplete first order theory. Recall

that a first order theory is said to be complete
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iff for all closed formulae
provable.

W, wither W or AW is
Most interesting mathematical theories
turn out to be incomplete - a celebrated result
due to Godel. Most of what

when formalized, will yield

we know about the world,
an incomplete theory

precisely because we cannot know everything - there
The effect of a default

rule is to implicitly fill in some of those gaps by

are gaps in our knowledge.

a form of plausible reasoning.
effect of the closed world default is to fully com-

In particular, the

plete an underlying incomplete first order theory.
However, it is well known that there are insurmount-
able problems associated with completing an incom-
plete theory Tike arithmetic. Although it is a
trivial matter conceptually to augment the axioms
of arithmetic with a default rule l%ﬂ where W is
any closed formula, we will be no further ahead
because the non theorems of arithmetic are not re-
What this means is that

there is no way in general that, given a W, we

cursively enumerable.

can establish that W is not a theorem even if W
happens not to be a theorem. This in turn means
that we are not even guaranteed that an arbitrary
default rule of inference is effective i.e. there
may be no algorithm which will inform us whether or
not a given default rule of inference is applicable!
From this we can conclude that the theories of a
default theory may not be recursively enumerable.
This situation is in marked contrast to what norm-
ally passes for a logic where, at the very least,
the rules of inference must be effective and the
theorems recursively enumerable.

Finally, it is not hard to see that default
theories fail to satisfy the extension property

[Hayes 19731 which all "respectable" logics do sat-
isfy. (A logical calculus has the extension prop-
erty iff whenever a formula is provable from a set
P of premises, it is also provable from any set P'

such that P ¢ P'.)

[Kramosil 19751 attempts to establish some
general results on default theories. Kramosil
"proves" that for any such theory, the default
rules are irrelevant in the sense that either the
theory will be meaningless or the theorems of the
theory will be precisely the same as those obtain-
able by ignoring the default rules of inference.

Kramosil's result, if correct, would invalidate the



main point of this paper, namely that default theor-
ies play a prominent role in reasoning about the
world. Fortunately, his "proof" relies on an incor-
rect definition of theoremhood so that the problem
of characterizing the theorems of a default theory

remain open.
5. CONCLUSIONS

Default reasoning may well be the rule, rather
than the exception, in reasoning about the world
since normally we must act in the presence of incom-
plete knowledge. Moreover, aside from mathematics
and the physical sciences, most of what we know
about the world has associated exceptions and
caveats. Conventional logics, such as first order
logic, lack the expressive power to adequately rep-
resent the knowledge required for reasoning by de-
fault. We gain this expressive power by introducing
the default operator.

In order to provide an adequate formal (as
opposed to heuristic) foundation for default reason-
ing we need a well articulated theory of default
logic. This requires, in part, a theory of the
semantics of default logic, a suitable notion of
theoremhood and deduction, and conditions under which
the default inference rules are effective and the
set of theorems unique. Since in any realistic do-
main, all of the default schemata of Section 2 will
be in force (together, no doubt, with others we have
not considered) we require a deeper understanding of
how these different schemata interact. Finally,
there is an intriguing relationship between certain
defaults and the complexity of the underlying repre-
sentation. Both the closed world and frame defaults
implicitly represent whole classes of first order
axioms. Is this an accidental phenomemon or is some

general principal involved?
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