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I. The Role of a Knowledge Network for an 
Intelligent Machine 

The kinds of intelligent computer 
assistants that we would like to be able 
to construct are very much like 
intelligent organisms in their own right. 
Imagine for a moment an intelligent 
organism trying to get along in the world 
(find enough food, stay out of trouble, 
satisfy basic needs, etc.). The most 
valuable service played by an internal 
knowledge base for such an organism is to 
repeatedly answer questions like "what's 
going on out there?", "can it harm me?", 
"how can I avoid/placate it?", "Is it good 
to eat?", "Is there any special thing I 
should do about it?", etc. To support 
this kind of activity, a substantial part 
of the knowledge base must be organized as 
a recognition device for classifying and 
identifying situations in the world. The 
major purpose of this situation 
recognition is to locate internal 
procedures which are applicable 
(appropriate, permitted, mandatory, etc.) 
to the current situation. 

In constructing an intelligent 
computer assistant, the roles of knowledge 
are very similar. The basic goals of food 
getting and danger avoidance are replaced 
by goals of doing what the user wants and 
avoiding things that the machine has been 
instructed to avoid. However, the 
fundamental problem of analyzing a 
situation (one established either 
linguistically or physically or by some 
combination of the two) in order to 
determine whether it is one for which 
there are procedures to be executed, or 
one which was to be avoided (or one which 
might lead to one that is to be avoided), 
etc. is basically the same. For example, 
one might want to instruct such a system 
to remind the user in advance of any 
upcoming scheduled meetings, to inform him 
if he tries to assign a resource that has 
already been committed, to always print 
out messages in reverse chronological 
order (when requested), to assume that 
"the first" refers to the first day of the 
upcoming month in a future scheduling 
context and the first day of the current 
month in a past context, etc. 

The principal role of the knowledge 
network for such a system is essentially 
to serve as a "coat rack" upon which to 
hang various pieces of advice for the 
system to execute. Thus the notion of 
procedural attachment becomes not just an 
efficiency technique, but the main purpose 
for the existence of the network. This 
does not necessarily imply, however, that 
the procedures involved consist of 
low-level machine code. They may instead, 
and probably usually will, be high level 
specifications of things to be done or 
goals to be achieved. The principal 
structure that organizes all of these 
procedures is a conceptual taxonomy of 
situations about which the machine knows 
something. 

TO support the above uses of 
knowledge, an important characteristic 
required of an efficient knowledge 
representation seems to be a mechanism of 
inheritance that will permit information 
to be stored in its most general form and 
yet still be triggered by any more 
specific situation or instance to which it 
applies. Moreover, the nodes in the 
network (or at least a major class of 
nodes) should be interpretable as 
situation descriptions. One of the most 
fundamental kinds of information to be 
stored in the knowledge base will be rules 
of the form "if <situation description> is 
satisfied then do <action description>", 
or "if <situation description> then expect 
<situation description>". Situation 
descriptions are in general 
characterizations of classes of situations 
that the machine could be in. They are 
not complete descriptions of world states, 
but only partial descriptions that apply 
to classes of world states. (The machine 
should never be assumed or required to 
have a complete description of a world 
state if it is to deal with the real 
world.) A situation in this partial sense 
is defined by the results of certain 
measurements, computations, or recognition 
procedures applied to the system's input. 
Examples of situations might be "You have 
a goal to achieve which is an example of 
situation Y", "You are perceiving an 
object of class Z", "The user has asked 
you to perform a task of type W", etc. 
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More specific situations might be: 
"trying to schedule a meeting for three 
people, two of which have busy schedules", 
"about to print a message from a user to 
himself", "about to refer to a date in a 
recent previous year in a context where 
precision but conciseness is required". 

The major references to this 
conceptual taxonomy by the intelligent 
machine will be attempts to identify and 
activate those situation descriptions that 
apply to its current situation or some 
hypothesized situation in order to 
consider any advice that may be stored 
there. Note that "considering advice of 
type X" is itself an example of a 
situation, so that this process can easily 
become recursive and potentially 
unmanageable without appropriate care. 

Conceptually, one might think of the 
process of activating all of the 
descriptions that are satisfied by the 
current situation as one of taking a 
description of the current situation and 
matching it against descriptions stored in 
the system. However, there are in general 
many different ways in which the current 
situation might be described, and it is 
not clear how one should construct such a 
description. 

Moreover, until it is so recognized, 
a situation consists of a collection of 
unrelated events and conditions. The 
process of recognizing the elements 
currently being perceived as an instance 
of a situation about which some 
information is known consists of 
discovering that those elements can be 
interpreted as filling roles in a 
situation description known to the system. 
In fact, the process of creating a 
description of the current situation is 
very much like the process of parsing a 
sentence, and inherently uses the 
knowledge structure of the system like a 
parser uses a grammar in order to 
construct the appropriate description. 
Consequently, by the time a description of 
the situation has been constructed, it has 
already been effectively matched against 
the descriptions in the knowledge base. 

2. Parsing Situations 

As suggested above, the process of 
recognizing that a current situation is an 
instance of an internal situation 
description is similar to the process of 
parsing a sentence, although considerably 
more difficult due to a more open ended 
set of possible relationships among the 
"constituents" of a situation. That is, 
whereas the principal relationship between 
constituents in sentences is merely 
adjacency in the input string, the 
relationships among constituents of a 
situation may be arbitrary (e.g. events 
preceding one another in time, people, 

places, or physical objects in various 
spatial relationships with each other, 
objects in physical or legal possession of 
people, people in relationships of 
authority to other people, etc.) However, 
the basic characteristic of parsers, that 
the objects recognized are characterized 
as structured objects assembled out of 
recognizable parts according to known 
rules of assembly, is shared by this task 
of situation recognition. 

Note that it is not sufficient merely 
to characterize a situation as a member of 
one of a finite number of known classes. 
That is, where it is not sufficient for a 
parser to simply say that its input is an 
example of a declarative sentence (one 
wants to be able to ask what the subject 
is, what the verb is, whether the sentence 
has past, present or future tense, etc.), 
in a similar way it is insufficient to 
merely say that an input situation is an 
example of someone doing something. One 
must generate a detailed description of 
who is doing what to whom, etc. 

It is also not sufficient to 
characterize a situation as a single 
instance of an existing concept with 
values filled in for empty slots. In 
general, a situation description must be a 
composite structured object, various 
subparts of which will be instances of 
other concepts assembled together in ways 
that are formally permitted, in much the 
same way that the description of a 
sentence is put together from instances of 
noun phrases, clauses, and prepositional 
phrases. The specific instance built up 
must keep track of which constituents of 
the specific situation fill which roles of 
the concepts being recognized. Moreover, 
it cannot do so by simply filling in the 
slots of those general concepts, since a 
general concept may have multiple 
instantiations in many situations. 
Rather, new structures representing 
instances of those concepts must be 
constructed and pairings of constituent 
roles from the concept and role fillers 
from the current situation must be 
associated with each new instance. 

3. ~he Process of Situation Recognition 

The process of situation recognition 
consists of detecting that a set of 
participants of certain kinds stand in 
some specified relationship to each other. 
In general, when some set of participants 
is present at the sensory interface of the 
system (immediate input plus past memory), 
the task of determining whether there is 
some situation description in memory that 
will account for the relationships of 
those inputs is not trivial. If the total 
number of situation descriptions in the 
system is sufficiently small, all of them 
can be individually tested against the 
input to see if any are satisfied. If the 
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number of such descriptions is 
sufficiently large, however, this is not 
feasible. 

Alternatively, if there is some 
particular participant that by virtue of 
its type strongly suggests what situation 
descriptions it might participate in, then 
an index from this participant might 
select a more manageable set of situation 
descriptions to test. Even in this case, 
however, the number of situations in which 
the constituent could participate may 
still be too large to test efficiently. 
In the most difficult situation, no single 
participant in the input is sufficiently 
suggestive by itself to constrain the set 
of possible patterns to a reasonable 
number. However, it may still be that the 
coincidence of several constituents and 
relationships may suffice, providing that 
the coincidence can be detected. It is 
this problem of coincidence detection that 
I believe to be crucial to solving the 
general situation recognition problem. 

As an example, consider the following 
fragment of a protocol of a commander 
giving commands to an intelligent display 
system: 

Cdr : Show me a display of the 
eastern Mediterranean. 
[computer produces display] 

Cdr: Focus in more on Israel and 
Jordan. 
[computer does so] 

Cdr: Not that much; I want to be 
able to see Port Said and the 
Island of Cyprus. 

In the first clause of the third command 
of this discourse, (i.e. "not that much"), 
there is no single word that is strongly 
suggestive of the interpretation of the 
sentence. Moreover, there is nothing 
explicit to suggest the relationship of 
this clause to the one that follows the 
semicolon. The latter, if interpreted in 
isolation, would merely be a request for a 
display, or perhaps a succession of two 
displays, while in the context given, it 
is a request to modify a previous display. 

There are two methods that I believe 
may be sufficient, either individually or 
in combination, to model coincidence 
detection. One is the use of factored 
know!ed@e structures that merge common 
parts of alternative hypotheses. The 
other involves the use of a markable 
classification structure in which the 
individual" recognit{on predicates 
triggered by the ongoing discourse will 
leave traces of their having fired, so 
that coincidences of such traces can be 
efficiently detected. I have been 
investigating a structure which I call a 
"taxonomic lattice", that combines some 
features of both methods. 

3;1 Factored Knowledge Structures 

Given a knowledge-based system with 
large numbers of situation-action rules, 
where it is infeasible to find the rules 
that match a given situation by 
systematically considering each rule, one 
needs to have some way of reducing the 
computational load. As mentioned before, 
one approach is to index the rules 
according to some salient feature that 
will be easily detectable in the input 
situation and can then be used to find a 
much more limited set of rules to apply. 
This has been done in many systems, 
including the LUNAR system for natural 
language question answering [Woods, 1973, 
1977]. In that system, rules for 
interpreting the meanings of sentences 
were indexed according to the verb of the 
sentence and rules for interpreting noun 
phrases were indexed by the head noun. 
Although this approach reduces the number 
of rules that need to be considered, it 
has several limitations still. The first 
is that there may be some values of the 
index key for which there are still a 
large number of rules to consider. In the 
case of the LUNAR system, for example, the 
verb "be" had a large number of rules to 
account for different senses of the word. 
Another is that there can be certain 
constructions for which there is no single 
easily detected feature that is strongly 
constraining as to possible meaning. In 
this case, there is no useful index key 
that can be used to select a sufficiently 
constrained set of rules to try. 

Another limitation of this indexing 
approach as the range of language becomes 
more fluent is that in certain elliptical 
sentences, the constraining key may be 
ellipsed, and although one can have the 
rules indexed by other keys as well, the 
remaining ones may not sufficiently 
constrain the set of rules that need to be 
considered. Finally, even when the set of 
rules has been constrained to a relatively 
small set, there is frequently a good deal 
of sharing of common tests among different 
rules, and considering each rule 
independently results in repeating these 
tests separately for each rule. 

One approach to solving all of the 
above problems is to use what I have been 
calling a "factored knowledge structure" 
for the recognition process. In such a 
structure, the common parts of different 
rules are merged so that the process of 
testing them is done only once. With such 
structures, one can effectively test all 
of the rules in a very large set, and do 
so efficiently, but never consider any 
single rule individually. At each point 
in a factored knowledge structure, a test 
is made and some information gained about 
the input. The result of this test 
determines the next test to be made. As 
each test is made and additional 
information accumulated, the set of 
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possible rules that could be satisfied by 
the input, given the values of the tests 
so far made, is gradually narrowed until 
eventually only rules that actually match 
the input remain. Until the end of this 
decision structure is reached, however, 
none of these rules is actually considered 
explicitly. This principle of factoring 
together common parts of different 
patterns to facilitate shared processing 
is the basic technique that makes ATN 
grammars [Woods, 1970] more efficient in 
some sense than ordinary phrase structure 
grammars. It has also been used by the 
lexical retrieval component of the BBN 
speech understanding system [Woods et al., 
1976; Wolf and Woods, 1977] and accounts 
for the efficiency of the finite state 
grammar approach of the CMU Harpy system 
[Lowerre, 1976]. A recent innovative use 
of this principle appears in Rieger's 
"trigger trees" for organizing spontaneous 
computations [Rieger, 1977]. 

Whether factored together or not, the 
task of accessing rules is not a simple 
one. One problem is that rules don't 
match the input letter-for-letter: rather, 
they have variables in them with various 
restrictions on what they can match. For 
example a rule might say that whenever an 
access is made to a classified file, then 
a record of the person making the request 
should be made. The description, "an 
access to a classified file" needs to be 
matched against the user's request (or 
some subpart of it) and in that match, the 
description "a classified file" will be 
matched against some specific file name. 
In this kind of situation, there is no 
natural ordering of the rules, analogous 
to the alphabetical ordering of words, 
that will help in finding the rules that 
are satisfied by the given situation. Nor 
is a structure as simple as the dictionary 
tree above adequate for this case. 

Another problem is that a given 
situation may be matched by several rules 
simultaneously with differing degrees of 
generality. For example, there may be a 
rule that says "whenever access is made to 
a top secret file (more specific than 
classified), then check the need-to-know 
status of the user for that information 
and block access if not satisfied". In 
the case of a request to a top secret 
file, both of the above rules must be 
found, while in the case of an ordinary 
classified file, only the first should. 
The actual input, however, will not 
explicitly mention either "top-secret" or 
"classified", but will merely be some file 
name that has many attributes and 
properties, among which the attribute 
"classified" is not particularly salient. 

3.2 Markable Classification Structures 

Another technique that holds promise 
for situation recognition is the use of a 
markable classification structure in which 
coincidences of relatively non-salient 
events can be detected. The keystone of 
this approach is a technique that Quillian 
proposed for modeling certain aspects of 
human associative memory [Quillian, 1966, 
1968]. Quillian's technique of "semantic 
intersection" consisted of propagating 
traces of "activation" through a semantic 
network structure so that connection paths 
relating arbitrary concepts could be 
detected. For example, his system was 
able to connect concepts such as "plant" 
and "nourishment" by discovering the 
"chain" equivalent to "plants draw 
nourishment from the soil". If the 
appropriate information were in the 
network, this technique would also find 
chains of indirect connections such as 
"Plants can be food for people" and 
"People draw nourishment from food." The 
method was capable of finding paths of 
arbitrary length. 

The problem of finding connections 
between concepts in a knowledge network is 
like the problem of finding a path through 
a maze from a source node to some goal 
node. At the lowest level, it requires a 
trial and error search in a space that can 
be large and potentially combinatoric. 
That is, if one element of the input could 
be connected to k different concepts, each 
of which would in turn be connected to k 
others, and so on, until finally a concept 
that connected to the goal was discovered, 
then the space in which one would have to 
search to find a path of length n would 
contain k n paths. However, if one started 
from both ends (assuming a branching 
factor of k also in the reverse 
direction), one could find all the paths 
of l~Dgth n/2 from either end in only 
2.kn/z . 

If one then had an efficient way to 
determine whether any of the paths from 
the source node connected with any of the 
paths from the goal node, such a search 
from both ends would have a considerable 
savings. This can be done quite 
efficiently if the algorithm is capable of 
putting marks in the structure of the maze 
itself (or some structure isomorphic to 
it), so that it can tell when reaching a 
given node whether a path from the source 
or the goal has already reached that node. 
However, without such ability to mark the 
nodes of the maze, the process of testing 
whether a given path from the source can 
hook up with a path from the goal would 
involve a search through all the paths 
from the goal individually, and a search 
down each such path to see if the node at 
the end of the source path occurred 
anywhere on that path. If this were 
necessary, then all of the advantage of 
searching from both ends would be lost. 
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The use of the graph structure itself to 
hold marks is thus critical to gaining 
advantage from this algorithm. 
Essentially, the nodes of the graph serve 
as rendezvous points where paths that are 
compatible can meet each other. The 
coincidence of a path from the source 
meeting a path from the goal at some node 
guarantees the discovery of a complete 
path without any path requiring more than 
a simple test at the corresponding node in 
the graph as each link is added to the 
path. 

What is needed for situation 
recognition in a generalization of 
Quillian's semantic intersection technique 
in which the source and goal nodes are 
replaced by a potentially large number of 
concept nodes, some of which are 
stimulated by immediate input, and some of 
which are remembering recent activation in 
the past. Moreover, what is significant 
is not just simple paths between two 
nodes, but the confluence of marks from 
multiple sources in predetermined 
patterns. Moreover, unlike Quillian, who 
considered all connections identically in 
searching for paths, we will consider 
marker passing strategies in which marks 
can be passed selectively along certain 
links. Recently, Fahlman [1977] has 
presented some interesting formal machine 
specifications of Quillian-type spreading 
activation processes which have this 
characteristic. 

4. The Structure of Concepts 

In building up internal descriptions 
of situations, one needs to make use of 
concepts of objects, substances, times, 
places, events, conditions, predicates, 
functions, individuals, etc. Each such 
internal concept will itself have a 
structure and can be represented as a 
configuration of attributes or parts, 
satisfying certain restrictions and 
standing in specified relationships to 
each other. Brachman [1978] has developed 
a set of epistemologically explicit 
conventions for representing such concepts 
in a "Structured Inheritance Network", in 
which interrelationships of various parts 
of concepts to each other and to more 
general and more specific concepts are 
explicitly represented. The essential 
characteristic of these networks is their 
ability to represent descriptions of 
structured objects of various degrees of 
generality with explicit representation of 
the inheritance relationships between 
corresponding constituents of those 
structures. A concept node in Brachman's 
formulation consists of a set of dattrs (a 
generalization of the notions of 
attribute, part, constituent, feature, 
etc.) and a set of structural 
relationships among them. Some of these 
dattrs are represented directly at a given 
node, and others are inherited indirectly 

from other nodes in the network to which 
they are related. 

Let us assume that each concept that 
the system understands is represented as a 
node in one of these structured 
inheritance networks. The network, as a 
whole, then serves as a conceptual 
taxonomy of all possible "entities" that 
the system can perceive or understand. 
Each node in this taxonomy can be thought 
of as a micro schema for the recognition 
of instances of that concept. Each has a 
set of dattrs with individual restrictions 
and a set of structural conditions that 
relate the dattrs to one another. These 
restrictions and structural conditions may 
themselves be defined in terms of other 
concepts defined by other micro schemata, 
and so on until a level of primitively 
defined, directly perceivable concepts is 
reached. 

Each concept in the taxonomy can be 
thought of as having a level of 
abstractness defined as the maximum depth 
of nesting of its constituent structure. 
Instances of primitively defined concepts 
have level 0, constellations of those 
concepts have level i, a concept having 
level 1 and lower concepts as dattrs has 
level 2,, and so on. If a taxonomy 
contained only level 0 and level 1 
concepts, then the situation recognition 
problem would be greatly simplified, since 
one never needs to recognize portions of 
the input as entities that participate as 
constituents of larger entities. The 
general problem, however, requires us to 
do exactly that. More seriously, the 
general case requires us to recognize a 
concept some of whose dattrs may have 
restrictions defined in terms of the 
concept itself. This is true, for 
example, for the concept of noun phrase in 
a taxonomy of syntactic constructions. 
Such recursively defined concepts have no 
maximum level of abstractness, although 
any given instance will only involve a 
finite number of levels of recursion. 
This potential for recursive definition 
must be kept in mind when formulating 
algorithms for situation recognition. 

5. The Need for Inheritance Structures 

AS a result of having different 
levels of abstraction in one's taxonomy, 
an input situation will often satisfy 
several situation, descriptions 
simultaneously, no one of which will 
account for all of the input nor supplant 
the relevance of the others. For example, 
adding a ship to a display is 
simultaneously an example of changing a 
display and of displaying a ship. Advice 
for both activities must be considered. 
Moreover, a single description may have 
several different instantiations in the 
current situation, with situation 
descriptions becoming arbitrarily complex 
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by the addition of various qualifiers, by 
the conjunction and disjunction of 
descriptions, etc. For example, one might 
want to store advice associated with the 
situation [wanting to display a large ship 
at a location on the screen that is within 
one unit distance from either the top, 
bottom, or side of the screen when the 
scale of the display is greater than 
1:1000]. Finally, situation descriptions 
may subsume other descriptions at lower 
levels of detail, and advice from both may 
be relevant and may either supplement or 
contradict each other. For example, 
displaying an aircraft carrier is a 
special case of displaying a ship, and 
there may be specific advice associated 
with displaying carriers as well as more 
general advice for displaying any ship. 
Thus, conventions will be required to 
determine which advice takes precedence 
over the other if conflicts arise. 

The organization of large numbers of 
such situation descriptions of varying 
degrees of generality so that all 
descriptions more general or more specific 
than a given one can efficiently be found 
is one thing we require of an intelligent 
computer assistant. In order to build and 
maintain such a structure, it is important 
to store each rule at the appropriate 
level of generality, relying on a 
mechanism whereby more specific situations 
automatically inherit information from 
more general ones. That is, when one 
wants to create a situation description 
that is more specific than a given one in 
some dimension, one does not want to have 
to copy all of the attributes of the 
general situation, but only those that are 
changed. Aside from conserving memory 
storage, avoiding such copying also 
facilitates updating and maintaining the 
consistency of the data base by avoiding 
the creation of duplicate copies of 
information that then may need to be 
independently modified and could 
accidentally be modified inconsistently. 

For example, one may want to store 
advice about displaying geographical 
features, about displaying such features 
that cover an area, about displaying 
bodies of water, about displaying lakes, 
etc. Thus, information about finding the 
area covered by a feature would be stored 
at the level of dealing with such 
area-covering features, information about 
displaying water in a certain color would 
be stored at the level of displaying 
bodies of water, and information about 
having inlets and outlets would be stored 
at the level of lakes. In any specific 
situation that the system finds itself, 
many such concepts at different levels of 
generality will be satisfied, and the 
advice associated with all of them becomes 
applicable. That is, any more specific 
concept, including that of the current 
situation, inherits a great deal of 
information that is explicitly stored at 
higher levels in the taxonomy. 

In the case of the situation 
descriptions that we are dealing with, 
even the specification of what dattrs a 
given concept possesses is stored at the 
most general level and inherited by more 
specific concepts. Thus, for example, the 
descriptions of attribute dattrs for color 
and weight are stored for a general 
concept of physical object. These dattrs 
are then inherited by any more specific 
concepts of physical objects, such as 
planes, ships, desks, and pencils. 

6. ~e T a x o n o m i c  Lattice 

I believe that a general solution to 
the situation recognition problem can be 
obtained by the use of a classification 
structure in which traces of individual 
elements of complex concepts can intersect 
to facilitate the discovery of 
coincidences and connections that may not 
be strongly inferable from constraining 
expectations. The structure that I 
propose to use is a version of Brachman's 
structured inheritance networks, in which 
descriptions of all potentially relevant 
situations are stored with explicit 
indications of general subsumption of one 
situation by another, and explicit 
indications of the inheritance of dattrs 
and of advice by one concept from another. 
This structure, which I have called a 
taxonomic lattice, is characterized by a 
mult~t6de of situation descriptions at 
different levels of generality. 

We say that a situation description 
Sl subsumes a description $2 if any 
situation satisfying $2 will also satisfy 
SI. In this case, S1 is a more general 
description than $2, and is placed higher 
in the taxonomy. For example, [displaying 
a portion of country] is a more specific 
situation than [displaying a geographical 
area], which is in turn more specific than 
[displaying a displayable entity]. All of 
these are subsumed by a general concept 
[purposive activity], which in turn is 
more specific than [activity]. Moreover, 
a given description can subsume many 
incomparable descriptions and can itself 
be subsumed by many incomparable 
descriptions. For example, an instance of 
[displaying a geographical area] is also 
an instance of [accessing a geographical 
area], [displaying information], and 
[using the display[, and may possibly also 
be an instance of [responding to a user 
command]. 

The space of possible situation 
descriptions forms a lattice under the 
relation of subsumption. At the top of 
the lattice is a single, most general 
situation we will call T, which is always 
satisfied and can be thought of as the 
disjunction of all possible situations. 
Anything that is universally true can be 
stored here. Conversely, at the bottom of 
the lattice is a situation that is never 
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satisfied, which we call NIL. It can be 
thought of as the conjunction of all 
possible (including inconsistent) 
situations. Assertions of negative 
existence can be stored here. 

At the "middle" level of the lattice 
are a set of primitive perceptible 
predicates -- descriptions whose truth in 
the world are directly measurable by the 
"sense organs" of the system. All classes 
above this level are constructed by some 
form of generalization operation, and all 
classes below are formed by some form of 
specialization. At some point 
sufficiently low in the lattice, one can 
begin to form inconsistent descriptions by 
the conjunction of incompatible concepts, 
the imposition of impossible restrictions, 
etc. There is nothing to prevent such 
concepts from being formed; indeed, it is 
necessary in order for the organism to 
contemplate, store, and remember their 
inconsistency. 

There are a number of specific 
relationships that can cause one situation 
description to subsume another. A given 
situation description can be made more 
general by relaxing a condition on a 
dattr, by eliminating the requirement for 
a dattr, by relaxing the constraints of 
its structural description, or by 
explicitly disjoining it (or'ing it) with 
another description. A given description 
can be made more specific by tightening 
the conditions on a dattr, by adding a 
dattr, by tightening the constraints of 
its structural description, or by 
explicitly conjoining (and'ing) it with 
another description. These operations 
applied to any finite set of situation 
descriptions induce a lattice structure of 
possible situation descriptions that can 
be formed by combinations of the elements 
of the initial set. We refer to this 
structure as the virtual lattice induced 
by a given set of situation descriptions. 
Note that only a finite portion of this 
lattice need be stored with explicit 
connections from more specific to more 
general concepts. By processing this 
explicit lattice, one can test any given 
description for membership in the virtual 
lattice and assimilate any new situation 
description into the explicit lattice in 
the appropriate place corresponding to its 
position in the virtual lattice. 

In operation, any situation 
description about which information is 
explicitly stored will be entered into the 
explicit lattice. Any situation that the 
machine can understand is in some sense 
already in the virtual lattice and needs 
only be "looked up" in it. One task we 
have set for ourselves to develop 
efficient algorithms to tell whether a 
given situation can be understood in terms 
of the concepts of the lattice and if so, 
to construct its corresponding description 
and explicitly record its relations to 
other concepts in the explicit lattice. 

7. An Example 

As an example of the situation 
recognition process using marker 
propagation in a taxonomic lattice, let us 
consider a simple case of interpreting the 
intent of a simple English sentence. The 
example chosen is not complex enough to 
require all of the machinery discussed, 
but is presented here to illustrate the 
mechanism. The major features of the 
situation recognition mechanism only 
become critical in interpreting commands 
that require several sentences to build 
up, or which depend on the current context 
in complex ways, but such situations are 
difficult to illustrate. 

For our example, suppose that the 
system contained a concept for requests to 
display a geographical region, and the 
user's input request were "Show me the 
eastern end of the Mediterranean." The 
concept [request] contains dattrs for the 
requestor, the requestee, a description of 
the state that the requestor desires, a 
form of request (demand, order, polite 
request, expression of preference, etc.), 
and perhaps others. Requests can take 
many forms. Assume that we have stored in 
the system a rule that s@ys "Any sentence 
of the form: 'show me NP' is a request to 
display that NP." This rule could be 
stored in the lattice as a piece of advice 
associated with the concept "A sentence of 
the form: 'show me NP'," in such a way 
that when a sentence of the indicated form 
was found, an instance of a display 
request would be created. At that point, 
this resulting display request would be 
placed in the lattice in such a way that 
all more general concepts of which it is 
an instance would be activated, and in 
particular, the concept of a request to 
display a geographical region would be 
activated. 

The parsing of the original sentence 
can either be done by an ATN grammar, or 
by a version of the taxonomic lattice 
itself (one that characterizes a taxonomy 
of sentence types). Let us assume here 
that it is done by an ATN grammar that is 
closely coupled to a taxonomic lattice, 
with the ATN representing the syntactic 
information about sentence form and the 
taxonomic lattice representing general 
semantic information. As the ATN grammar 
picks up constituents of the sentence, it 
reaches states where it makes hypotheses 
about the syntactic roles that those 
constituents play in the sentence (e.g. 
"this is the subject", "this is the verb", 
etc.). Such hypotheses are then entered 
into the lattice, where they begin to 
activate the recognition conditions of 
concepts in the network. For example, in 
the taxonomic lattice there is a concept 
of an imperative sentence whose subject is 
the system, whose verb is "show", whose 
indirect object is the user and whose 
direct object is a displayable object. 
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As the parsing proceeds, the ATN will 
make assertions about the sentence it is 
building up, and it will not only be 
building up syntactic representations of 
constituents of the sentence, but will 
also be building up representations of 
possible meanings of those constituents. 
In particular, it will be building up a 
list of those concepts in the lattice of 
which the current constituent may be a 
restriction or instance and a list of the 
dattr-value pairings that have been found 
so far. If a parse path succeeds (i.e. 
reaches a POP arc), then a node in the 
taxonomic lattice corresponding to that 
hypothesis will be found or constructed. 
This node will have links to more general 
and more specific concepts, and will have 
its constituents linked to appropriate 
dattrs of those concepts. At the point 
when this concept node is 
found/constructed, a process of activation 
spreading will be launched in the lattice 
to find any advice that may be inherited 
by that concept. This process will also 
leave "footprints" in the lattice that 
will facilitate the detection of concepts 
of which the current one may itself be a 
dattr (or part of a structural condition). 

In the example above, when the parser 
has parsed the initial portion of the 
sentence "show me", it has built up in its 
internal registers the information 
corresponding to the hypothesis that the 
sentence is an imperative, with subject 
"you" and indirect object "me". Moreover, 
it knows that (in input sentences) "you" 
refers to the system itself, while "me" 
refers to the speaker. It also knows that 
the main verb is the verb "show". Let us 
suppose that at this point, the parser 
decides to activate the corresponding 
taxonomic lattice nodes for the concepts 
[the system], [the user], and [the verb 
show] (possibly with pointers to the 
syntactic hypothesis being constructed 
and/or the labels SUBJECT, OBJECT, VERB, 
respectively). Ignoring for now whatever 
information or advice may be found 
associated with these concepts or their 
generalizations, the footprints that they 
leave in the network will intersect at a 
node [display request] which has dattrs 
for requestor, requestee, form of request, 
and requested thing. They also intersect 
at other concepts such as [imperative 
sentence], [active sentence], [action], 
and a more specific kind of display 
request [region display request], whose 
requested thing is a geographical region. 
This latter concept was created and 
inserted into the lattice precisely to 
hold advice about how to display 
geographical regions, and to serve as a 
monitor for the occurrence of such 
situations. Fig. 1 is a fragment of a 
taxonomic lattice showing the concepts of 
interest. (For details of the notation, 
see Brachman [1978], Woods and Brachman 
[1978].) 

When the final noun phrase has been 
parsed and given an interpretation, the 
footprints that its activation leaves in 
the network will awaken the [region 
display request] node, which will then be 
fully satisfied, and the parser will 
create a corresponding instance node, with 
appropriate bindings for its dattrs. In 
processing the noun phrase, the parser 
will discover the adjective "eastern" and 
the noun "Mediterranean" and will activate 
the corresponding nodes in the taxonomic 
lattice. The concept [east] is an 
instance of [direction], which, among 
other things, is the restriction for a 
dattr of a concept [directionally 
determined subregion] that defines the 
meaning of such concepts as "north eastern 
Idaho". Another dattr of this same 
concept has the restriction [geographical 
region], which is on the superc chain from 
Mediterranean. Hence, footprints from 
"eastern" and "Mediterranean" will 
intersect at the concept [directionally 
determined subregion], causing an instance 
of that concept to be constructed as a 
possible meaning of the noun phrase. The 
[directionally determined subregion] 
concept itself has a superc connection to 
[geographical region], which happens to be 
the restriction for the "requested thing" 
dattr of the concept [region display 
request] which has already received marks 
for its other dattrs. Thus, the 
intersection of footprints from the 
various constituents of the sentence at 
this concept node has served to select 
this node out of all the other nodes in 
the network. Since the more general 
concept [display request] is on a superc 
chain from [region display request], it 
will also be activated, and advice from 
both places will be considered. 

8 .  C o n c l u s i o n  

In situation recognition, the nodes 
of a taxonomic lattice structure serve as 
rendezvous points where footprints from 
various constituent elements of a concept 
can meet. This facilitates the detection 
of coincidences of related events, which 
in many cases will not be suggestive in 
isolation. The implementation of the 
kinds of operations described above 
involves a system of marker passing 
conventions for propagating the various 
"footprints" around the network, detecting 
coincidences, creating instance nodes, and 
propagating further markers when 
coincidences are found. A major portion 
of our current research involves the 
discovery of effective conventions for 
such marker passing operations. Other 
issues include working out conventions for 
how far markers should propagate 
(amounting to decisions as to where to 
rendezvous), deciding how much information 
a mark carries with it and to what extent 
marks are inherited, developing ways to 
allow a node to remember partial 
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intersections of marks in such a way that 
it can incrementally extend them as 
additional marks accumulate, identifying 
implications of the marker passing 
strategies on representational 
conventions, etc. 
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