
THE COMMONSENSE ALGORITHM
AS A BASIS FOR COMFUTER MODELS

OF HUMAN MEMORY, INFERENCE, BELIEF
AND CONTEXTUAL LANGUAGE COMPREHENSION

Chuck Rieger
Department of Computer Science

University of Maryland

ABSTRACT
The notion of a commonsense
algorithm is presented as a basic
data structure for modeling human
cognition. This data structure
unifies many current ideas about
human memory and information

processing. The structure is
defined by specifying a set of
proposed cognitive primitive links
which, when used to build up large
structures of actions, states,
statechanges and tendencies,
provide an adequate formalism for
expressing human plans and
activities, as well as general
mechanisms and computer algorithms.
The commonsense algorithm is a type
of framework (as Minsky has defined
the term) for representing
algorithmic processes, hopefully
the way humans do.

I. INTRODUCTION AND MOTIVATION

It is becoming increasingly evident to
human intelligence model builders and
theorists that, in order to characterize
human knowledge and belief as computer data
structures and processes, it is necessary to
deal with very large, explicitly unified
structures rather than smaller, ununified
fragments. The reason for this seems to be
that the original experiences which caused
the structures and processes to exist in the
first place come in chunks themselves;
knowledge is never gained outside of some
context, and in gaining some piece of
knowledge X in context C, X and C become
inseparable. This suggests that it is
meaningless to model "a piece of knowledge"
without regard for the larger structures of
which it is a part. If our goal is to build
a robot which behaves and perceives in
manners similar to a human, this means that
the process by which the robot selects a
piece of knowledge as being applicable to
the planning, executory, inferential or
interpretive process at hand at the moment
is a function not only of the specific
problem, but also of the larger context in
which that instance of planning, execution,
inference or interpretation occurs. If, for
example, our robot sees his friend with a
wretched facial expression, the inference he
makes about the reasons for his friend's
misery will reflect the larger picture of
which he is aware at the time: his friend
has just returned from a trip to purchase
opera tickets vs. his friend has Just eaten
the cache of mushrooms collected yesterday
vs The same pervasiveness of context
exists in the realm of the robot's
interpretations of visual perceptions: the
very same object (visible at eye level) will

18o

be perceived out of the corner of his eye in
one situation as the cylindrical top of his
electric coffee grinder (he is at home in
his kitchen), but as the flasher of a police
car (he is speeding on the freeway) in
another. This suggests that at every
moment, some fairly large swatch of his
knowledge about the world somehow has found
its way to the foreground to exert its
influence; as our robot moves about,
swatches must fade in and out, sometimes
coalescing, so that at any moment, just the
right one is standing by to help guide acts
of planning, infePence and perception.

Marvin Minsky has captured this whole
idea very neatly in his widely-circulated
"Frames" paper [MI]. While this paper
describes an overall approach to modeling
human memory, inference and beliefs, we
still lack any specific formulation of the
ingredients which make up the large,
explicitly-unified structures which seem to
underlie many higher-level human cognitive
functions. It is the purpose of this paper
to define the notion "commonsense algorithm"
(CSA) and to propose the CSA as the basic
Cognitive structure which underlies the
human processes of planning, inference and
contextual interpretation of meaning.

I do not have a complete theory yet:
the intent of this paper is to record a
memory dump of ideas accumulated over the
past few months and to show how they can
unify my past ideas on inference and memory,
as well as the ideas of others.

II. THE SCOPE OF THE CSA'S APPLICABILITY

Most of human knowledge can be
classified as either static or dvnamic. For
example, a person's static knowledge of an
automobile tells him its general physical
shape, size, position of steering wheel,
wheels, engine, seats, etc.; these are the
abstract aspects of a car which, although
many differ in detail from car to car, are
inherently unchanging. They are in essence
the physical definition of a car. On the
other hand, a person s dynamic knowledge of
a car tells him the functions of the various
components and how and why to coordinate
them when the car is applied to some goal.
The static knowledge tells the person where
to expect the steering wheel to be when he
gets in; the dynamic knowledge tells him how
to get in in the first place, and what to do
with the wheel (and why) once he is in. For
a robot immersed in a highly kinematic
world -- physically, psychologically and
socially -- a very large part of his beliefs
and knowledge must relate to dynamics: how
he can effect changes in himself and his
world, and how he perceives other robots
effecting changes. It is the purpose of the
CSA to capture the dynamics of the world in
belief structures which are amenable to
computer manipulation of plans, inference
and contextual interpretation.

It should be stressed that the phrase
"dynamics of the world" is intended in its
broadest possible sense. As will be
elaborated upon in a later section, the

I
I
I
I
I
I
i
I
i
II
I

phrase is intended to encompass such
seemingly diverse robot/human activities as:

I. communicating with another
robot/human (e.g., how to transfer
information, instill wants,
convince, etc.)

2. getting about in the world
3. building things (both physical and

mental) and understanding the
operation of things already built
by others

4. conceiving, designing .and
implementing computer programs and
other commonsense algorithms (a
special form of building)

5. interpreting sequences of
perceptions (e.g., language
utterances) in context

6. making contextually meaningful
inferences from perceptions

I am convinced that all such dynamics
of the world can and should be expressed in
a uniform CSA formalism built around a
relatively small number of cognitively
primitive ingredients.

III. EVOLUTION OF THE CSA IDEA

The next section will define a CSA as a
network-like structure consisting of events
tied together by primitive links. Taken as
a whole, the CSA specifies a process: how to
get something done, how something works,
etc. A computer scientist's first reaction
to this type of structure is "Oh yes, that's
an AND/OR problem-reduction graph" (see
Nilsson [NI] for example). Figure I shows
an AND/OR graph for how to achieve the goal
state "a McDonald's hamburger is in P's
stomach." Edges with an arc through them
specify AND successors of a node (subgoals,
all of which achieved imply the parent node
has been achieved); edges with no arc
through them specify OR successors
(subgoals, any one of which being sufficient
to achieve the parent goal).

AND/OR graphs have been demonstrated
adequate in practice for guiding various
aspects of problem-solving behavior in
existing robots (see [$I] for example).
However, they are intuitively not
theoretically adequate structures for
representing general knowledge of world
dynamics: their principal deficiency is that
they are ad-hoc constructions which express
neither the implicit conceptual
relationships among their components, nor
the inherent types of their components.
Because of this, there is no constraint on
their organization, and this means that two
AND/OR graphs which accomplish or model the
same thing might bear very little
resemblance to one-another when in fact they
are conceptually very similar. This may be
little more than a nuisance in practice, but
it is undesirable in principle because it
makes learning, reasoning by analogy,
sharing of subgoals, etc. tedious if not
impossible in a generalized problem solver.

A refinement of the notion of an AND/OR
graph introduces the concepts of causality
and enablement, and actions and states
(statechanges); edges in the graph are
distinguished as either causal or enabling,
the nodes are distinguished as either
actions or states, and the graph obeys the
syntactic contraints:

(a) actions cause states
(b) states enable actions

Bob Abelson [AI] was among the first to
employ these historically very old concepts
in the framework of a computer model of
human belief, and since then, numerous
computer-oriented systems of knowledge
reDresentation (e.g., Schank's conceptual
deDendency[S2], Schmidt's models of personal
causation [$4]), as well as systems of
inference (Rieger [RI], Charniak [CI]) have
found these four concepts to be vital to
meaning representation and inference. In
some sense, enablement, causality, states
and actions seem to be cognitive primitives.
Figure 2 is a refinement of Figure I which
makes explicit the nature of each node and
each connecting arc, and hence the
underlying gross conceptual structure of the
algorithm.

While the inclusion of these four
concepts (and their resulting syntactic
constraints) in the basic paradigm makes for
a theoretically more coherent
representation, the scheme is still too
coarse to capture the kinds of detailed
knowledge of algorithms people possess. The
following section proposes an extended
framework of event types and event
connectors based on these four notions and
some others. These event types and
connectors will be regarded as
model-primitives which hopefully are in
correspondence with "psychological
primitives" in humans.

IV. DEFINITION OF THE COMMONSENSE ALGORITHM

In the new formalism, a CSA consists of
nodes of five types:

I. WANTS
2. ACTIONS
3. STATES
4. STATECHANGES
5. TENDENCIES

The first four types are not new (see [$3]
for example), and will not be covered here
beyond the following brief mention. A WANT
is some goal state which is desired by a
potential actor. An action is something an
(animate) actor does or can do: it is
enabled by certain states (certain
conditions which must be true in order for
the action to begin and/or proceed), and in
turn causes other states (discrete) or
statechanges (continuous) to occur. Actions
are characterized by an actor, a
model-primitive action, a time aspect, a
location aspect, and a conceptual case
framework which is specific to each
model-primitive action. States are
characterized by an object, an attribute, a

181

value and a time aspect; statechanges are
characterized by an object, a continuous
state scale (temperature, degree of anger,
distance, etc.), a time aspect and beginning
and end points on the scale.

It is the notion of a tendency which is
new and which serves to unify a class of
problems which have been continually
experienced in representing processes.
Basically, a tendency is an actorless
action. Tendencies are characterized by
specifying a set of enabling conditions ,and
a set of result states and/or statechanges.
Whenever the enabling conditions are
satisfied, the tendency, by some unspecified
means, causes the states and statechanges
specified as the tendency's results. Hence,
a tendency may be regarded as a special type
of non-purposive action which must occur
whenever all its enabling conditions are
satisfied. Contrasting the notion of a
tendency with the notion of an action yields
a rather compact definition of what makes a
"volitional" action volitional: a volitional
action is an action which need not occur
even though all its physical enabling
conditions are met. The reason it may not
occur is, of course, that the actor does not
desire it to occur; tendencies have no such
desires.

The abstract notion of a tendency is
meant to be general-purpose, to characterize
a wide variety of phenomena which are not
actions, but action-like. Examples of
tendencies are:

I. GRAVITY, PRESSURE, MAGNETISM,
ATOMIC-FISSION, HEAT-FLOW, and the host
of other physical principles.
Commonsense GRAVITY might be captured
as follows:**

((TYPE . TENDENCY)
(REFERENCE-NAME . GRAVITY)
(ENABLEMENTS . (UNSUPPORTED OBJ)

(LESSP (DISTANCE OBJ EARTH)
(ORDERMILES))

(RESULTS . (STATECHANGE OBJ VELOCITY X
X+d (LOC OBJ)
(LOC EARTH)))

2. human biological functions: a tendency
to GROW-HUNGRY, GROW-SLEEPY, GROW-OLDER
(sole enabling condition is the passage
of time!), GROW-LARGER, etc. For
example:

((TYPE . TENDENCY)
(REFERENCE-NAME GROW-HUNGRY)
(ENABLEMENTS . (iNOT (LOC NUTRIENTS

STOMACH))
(DURATION * ORDERHOURS)))

(RESULTS . (WANT P (INGEST P NUTRIENTS
MOUTH STOMACH))))

3. human psychological functions: the
tendency to GROW-LONELY, the tendency
to FORGET, etc. For example:

**The LISP notation reflects some
concurrent thinking on how a
commonsense algorithm system might
actually be engineered. A forthcoming

report will describe progress toward
implementing the ideas in this paper. 182

((TYPE • TENDENCY)
(REFERENCE-NAME . GROW-LONELY)
(ENABLEMENTS ((ALONE P)

iDURATION * ORDERDAYS))
(RESULTS . (WANT P (COMMUNICATE P

X))))
((TYPE . TENDENCY)
(REFERENCE-NAME . FORGET)
(ENABLEMENTS . (INHEAD ITEM P)

((UNREFERENCED ITEM P)
(DURATION * ORDER??)))

(RESULTS (STATECHANGE ITEM
REFERENCE-DIFFICULTY X X+d))

Tendencies, thus characterized, will
play an important role in modeling
algorithmic processes via CSA's. In fact,
adopting the notion of a tendency as a model
primitive points out a rather ubiquitous
principle: humans spend a large amount of
time in planning either how to overcome
tendencies which stand in the way of their
goals, or how to harness them at the proper
times in place of an action (e.g., dropping
the large rock on the coconut). Although a
tendency's primary use is at the edge of the
world model, where things happen simply
because "that's the way things are", it will
probably be desirable to have the ability to
regard as tendencies things which in fact
can be explained. Characterizing something
as a tendency even though it may be
reduceable to further algorithms is probably
one tactic a human employs when confronted
with the analysis of very complex, olny
partially understood processes. Even though
something ~ be further explained, the
system of representation should allow that
something to be treated as though it were a
tendency.

Tendencies have numerous aspects which
will require explicit characterization in a
computer model. Two such aspects relate to
(I) the inherent rapidity with which a
tendency exerts itself and (2) the
tendency's periodicity, if any. That is,
how quickly does a person become hungry
(slope of curve), how long does it take to
forget something, how rapidly does an object
accelerate, how fast does the water flow
through the nozzle, etc.? If the tendency is
periodic, what are the parameters describing
its periodicity? The primitive CSA links
described in the next section will serve in
part to capture such aspects, but they are
not yet adequate.

The CS~ nrimitive Lin~ Using these
five event-types as building blocks (WANTS,
ACTIONS, STATES, STATECHANGES, TENDENCIES),
the goal is to be able to express the
dynamics of just about anything, be it a
physical device, a psychological tactic
employed by one person on another, how a
person purchases a McDonald's hamburger, or
how a computer program functions or was
constructed. There are 25 primitive links
in the current formulation. They will only
be defined here, leaving Justificaion and
details of their use for the examples which
will follow, and for subsequent papers on
the subject. In the following definitions,
W, A, S, SC and T will stand for WANT,
ACTION, STATE, STATECHANGE and TENDENCY,
respectively.

I
I
!

l
I
I
i
I
i
I
i
I
I
I
I
i
I
I
I

TYPE I: ONE-SHOT CAUSALITY fA -r~

l Action A or tendency T causes state S. 7 The action or tendency need occur only once;
thereafter S will persist until altered by another

j action or tendency. For any given S, there will
ordinarily be numerous alternative A's or T's in the
algorithmic base which would provide the one-shot
causality.

l TYPE 2: CONTINUOUS CAUSALITY

I Action or tendency A,T's continuing existence
continually causes state or statechange S,SC.

Whether one-shot or continuous causality is
required to maintain S or SC is both a function of S or

• SC and its particular environment in a particular
algorithm (i.e., what other tendencies and actions are

i influencing it). Again, there will ordinarily be
numerous actions or tendencies in the algorithmic base
which could provide continuous causality for any given
state or statechange.

I TYPES 3,4: GATED ONE-SHOT AND CONTINUOUS CAUSALITY

A,T causes S,SC either one-shot or continuously, [
i providing that all states in [S] are satisfied. ! ~4--'~

The flow of causality cannot occur unless states
specified by [S] exist. That is, even though A,T is
occuring and there is a potential causal relationship ~r
between A,T and S,SC, the relationship will not be

i realized until the gating states become true.

TYPE 5: ONE-SHOT ENABLEMENT

l State S's one-time existence allows action A or
tendency T to proceed.

Thereafter, A,T's continuation is no longer a
function of S. A,T will ordinarily have numerous
one-shot enablements, in which case, all must be
satisfied in order for A or T to proceed. '

State S's continued presence is requisite to
action A's or tendency T's continuance.

i S's removal causes A or T to halt. Any given A or
T will ordinarily have numerous continuous enablements,
in which case all must reamin true in order for A or T
to proceed.

TYPE 7: CAUSAL STATE COUPLING

States $I, S2 or statechangges SCI, SC2 are
causally coupled; because of this coupling, changes in
$I or SCI are synonomous with changes in $2 or SC2.
This link provides a way of capturing the relatedness
of various aspects of the same situation.

TYPE 8: GATED CAUSAL STATE COUPLING

State $2 or statechange
(causally coupled to) $I
states in [S] are true.

SC2 is synonymous with
or SCI, provided that all

This link is similar to ungated state coupling, except
for the existence of factors which could disrupt the
coupling. To illustrate, the flow of a fluid into a
container (a statechange in location of the water) is
synonymous with an increase in the amount of water in

183

the container (another statechange), but only providing
that there is no souL~ce of exit from the container's
bottom.

TYPE 9,10,11,12:
GATED/NON-GATED)

BYPRODUCT (0NE-SHOT/CONTINUOUS,

State S or statechange SC is a causal byproduct of
action A, relative to goal state Sg or SCg.

That is, the actor of A, wishing to achieve state
Sg or statechange SCg also produces state S or
statechange SC. The byproduct link 'is truly a causal
link; what is and is not a by product must obviously
relate to the motive of the actor in performing the
action. Where gated, all states in [S] must be
satisfied in order for the byproduct to occur.

TYPE 13: ORIGINAL INTENT

Want W is the original desire (goal state) of an
actor. W is external to the CSA in that its origin is
not explicable within the CSA itself; it is the outside
directive which motivated the invocation of some acton.
Within an algorithm for achieving some goal,
motivations are explicable: every subaction is, by its
nature, designed to produce subgoal states which, taken
together, meet the original intent.

TYPE 14: ACTION CONCURRENCY

Actions AI,...,An must be concurrently executed.
This link will arise in the dynamics of an actual

plan, rather than be stored originally in the
algorithmic base explicitly. As plans evolve and the
actor learns concurrency by rote, the link will begin
to appear in the algorithmic base as well. Action
concurrency is nearly always caused by multiple
enabling states for some other action, all of which
must be continually present, or one-time synchronized
as a collection of one-shot enablements.

TYPE 15: DYNAMIC ANTAGONISM

State $I or statechange SCI is antagonistic to
state $2 or statechange SC2 along some dimension.

This link relates two states Or statechanges which
are opposites in some sense; typically the antagonism
link will make explicit the final link in some sort of
feedback cycle in an algorithm. The link is hard to
describe outside the context of an example; examples
will appear in the next section.

TYPE 16: MOTIVATING DYNAMIC ~NTAGONISM

As with ordinary dynamic antagonism, $I, $2 are
antagonistic states. Typically, $2 is required as an
enabling state (continuous) for some action, but that
action, or some other action, produces $I as a
byproduct; this gives rise to the need for another
corrective action A which can suppress the byproduct,
therby preserving the original required enablement.
This link is intended to capture the execution dynamics
of a situation in which antagonistic states are
expected to arise. That is, it will provide a
representation wherein antagonisms can be anticipated
in advance of the SCA's actual execution. An example
of motivating dynamic antagonism is included in the
next section.

184

II
i
I
I
i
I
!

I

i

I
I
I
i
I
I
1
I
I
I

TYPE 17: GOAL-REALIZATION COUPLING

State S is an alternative way of expressing
original goal W or subgoal Sg.

This link supplies a way of specifying termination
criteria for CSA's involving repretition. Its use is
illustrated in one of the examples~

TYPE 18: COMPOUND GOAL STATE DEFINITION

State S is a shorthand for expresing the set of
goal states SI,...,Sn.

This link allows a "situation" to be characterized
as a collection of goal states. When all goal states
are satisfied, the situation is satisfied. An example
of a compound goal state would be: "get the kids ready
for the car trip", where this means a set of things
rather than one thing.

TYPES 19,20,21,22: DISENABLEMENT
GATED/NON-GATED)

(ONE-SHOT/CONTINUOUS,

Action A or tendency T one-shot/continually causes
state S or statechange SC not to exist.

These four forms are shorthands for causality in
conjunction with antagonism. They will be principally
useful for representing acts of disenabling unwanted
tendencies.

TYPE 23: REPETITION UNTIL THRESHOLD

Action A or tendency T occurs repeatedly until
state S becomes true.

This link provides for the repeated application of
an action or tendency. Normally, the action or
tendency will, directly or indirectly, causally produce
a statechange along some scale; this statechange will
eventually threshold at state S.

TYPE 24: INDUCEMENT

State S's or statechange SC's existence induces
want W in a potential actor.

Origins of wants can be explicitly represented via
this link. Typically, W will be a stabe which is
antagonistic to S or SC. For example, if the
temperature is too high in the room, the want is that
the temperature become lower; if the tendency,
PRESSURE, has been enabled, allowing blood to flow out
of P's body, the induced want is that this tendency be
disenabled, and hence that the antagonism of one of
PRESSURE's enabling states start to exist.

TYPE 25: OPTIMIZATION MARKER

State S is an enabling condition for action A, and
this relationship makes possible an optimization during
the execution of A in a particular environment.

When several actions arise in a plan, they may share
enabling states. This means that when the plans are
considered together, some of the states needed for one
action may coincide with those needed for another. The
optimization marker allows this phenomenon to be
recorded. Its interpretation is: when state S becomes
true, consider performing acton A~ because action A
also has S as an enabling state. ~ denotes a savings.

185

D

These are the commonsense algorithm
primitive links. It is felt that they are
conceptually independent enough of
one-another so that unique algorithms will
be forced into unique, or at least similar,
representations under this formalism.
Although it is the eventual intent of the
theory to be able to capture all the nuances
of intentional human problem-solving
behavior, there is no real feeling yet for
the completeness of this set of links in
this regard; all that can be said now is
that they do seem to suggest a reasonable
approach to representing large classes of
purposive human behavior. The adequacy of
these primitives for representing devices
and mechanisms, on the other hand, is easier
to see, at least intuitively; the links seem
to be adequate for some fairly complex
"purposive" mechanisms. Accordingly, the
first example of their use will be to
characterize a mechanism very dear to most
of us.

V. EXAMPLES OF COMMONSENSE ALGORITHMS

EXAMPLE I. Operation of g reverse-trap
toilet [Figure 3]

As a first test of the theory, the
reverse-trap toilet is a relatively
demanding mechanism. It is a complex
feedback mechanism which is the product of
some rather sophisticated human
problem-solving. It is therefore
interesting both in its own right and as a
tangible manifestation of human-concocted
causality and enablement. By one simple
action, a complex sequence of tendencies is
unleasehed; the sequence not only stops
itself, but restores the system to its
initial state, and does something useful in
the process.

The English description of the
schematic of Figure 4 is as follows: The
trip handle is pushed down, one-shot causing
the flush-ball to be raised; this one-shot
enables the tendency to float, in turn
continually causing the float ball to remain
raised. The float ball's being raised is
synonomous with the flush valve being open,
and this openness continuously enables the
tendency of gravity to move water from the
tank to the bowl beneath (as long as water
remains in the tank, of course.) This
movement of water is synonomous with two
other state changes: a decrease of water
height in the tank, and an increase of water
height in the bowl. The increase of bowl
water height thresholds when the water
reaches waste channel lip level, at which
time it begins providing continuous
enablement for gravity to move the water
into the waste channel; this movement
thresholds when the channel fills, providing
the beginning of continuous enablement of
the tendency capillary action. This
tendency, in turn, sustains the flow of
water from the bowl to the waste channel,
continually moving waste water into the
sewer. This action ceases when the bowl
becomes empty. Meanwhile, the tendency
gravity is continually moving water from the
tank to the bowl. This is synonomous with a

186

decrease in tank water height, and this
decrease thresholds at point X, synonomous
with the fresh water supply valve opening.
This opening enables the tendency pressure
to move water from the fresh water line into
the tank; this is synonomous with an
increase in tank water height, but only
providing that the flush valve is closed
(this will have to wait for the movement of
waste from tank to bowl to cease). When the
tank water height finally begins its
increase, this increase will threshold at
point X again, this time being synchronous
with the ball cock supply valve's being
closed, stopping the fresh water and hence
the tank water height increase. At this
point, the system has become quiescent
again. (Note: in the actual simulation
which will be performed, flow rates, or more
generally, rates of statechanges, will be
incorporated.)

EXAMPLE 2. Sawing a hoard in half to
decrease its length (Figure 5)

Figure 5 is a bare-bones representation
Of a purposive human process: sawing a board
in two using a handsaw. This CSA
illustrates the concepts of motivating
dynamic antagonsim, original intent and
byproduct with respect to a goal. The
schematic of Figure 5 is only a fragment of
the larger algorithm; many enabling states
and byproducts, as well as their
compensatory actions have been omitted. In
this CSA, the act of sawing for the purpose
of decreasing the board's length produces,
among others, the byproduct of the board's
moving. Since a stationary board is a gate
condition on the flow of causality from the
sawing action to the statechange in cut
depth, the two states joined by the
motivating dynamic antagonsim link form an
antagonistic pair, indicating in advance of
actual execution that it will be necessary
to perform a compensatory action: hold the
wood down. If we were to illustrate more of
this algorithm, it might be found that
holding the wood down would require more
hands than were available. This would
provide another dynamic antagonsim which
would motivate the engagement of another
compensatory action, such as "call for
help," "go to a vise," etc.

It should again be pointed out that
points of antagonism could alternatively be
detected at the execution time of the CSA
and compensatory solutions dynamically
fabricated. This would likely occur via
some sort of interrupt mechanism. But the
antagonsim link allows for planning ahead
(e.g. when two arbitrary algorithms are
selected to accomplish a task, their
coexistence will probably not always be
without antagonism -- this allows the
planning mechanism to anticipate and solve
such antagonisms before execution). Also,
after a successful plan involving
antagonisms has actually been executed, this
link provides a means of recording once and
for all the compensating actions which were
performed.

I
I
I
I
I
I
I

EXAMPLE 3. Vicious cycles <Figure 6)

Consider tendencies such as fire and
forgetfulness. Both roughly follow the
paradigm: a tendency has state S as a
continuous enablement, and produces the same
state as continuous causality. Once
started, such a system is self-sustaining.
In the case of fire, a one-shot causing
action causes a statechange in temperature
which thresholds at the point of the
material's combustion temperature; this
enables the tendency to burn, which in turn
produces as a continual byproduct heat,
causing a vicious cycle. In forgetting, the
tendency to forget X is enabled by not
referencing X for periods of time; but as X
grows more forgotten, it becomes less
referenceable. Here, dynamic antagonism
lies at the root of the vicious cycle.

EXAMPLE 4. Description (synthesis) of
computer algorithm (Figure 7)

Suppose the goal is to compute the
average of a table of numbers,
TABLE(1),...,TABLE(n). Figure 7 shows both
how to conceive of the algorithm and how the
algorithm will actually run. As a computer
algorithm, this is not as fully explicit as
might be desired: it lacks explicit
iteration and explicit termination criterion
testing. These will have to be worked out
before the theory adequately handles
repetition.

i

Causal gating seems to play a central
role in this sort of computer algorithm.
Intuitively, this is the case because,
though a computer instruction typically has
no physical enabling conditions (it could be
issued at any time), desired effects can be
achieved only by tying the syntax of
instruction causality to the semantics of
logical causality. For example, the flow of
causality from the action "fetch location
SUM to ACI" to the logical semantic state
"partial sum in ACI" can take place only if
location SUM logically contains the actual
partial sum at that point! Otherwise,
garbage is fetched.

The relationships of certain types of
causal gating and state coupling (e.g. the
valve closing because the float has risen in
the toilet tank) are not completely apparent
yet. Perhaps state coupling is a shorthand
for an implicit sequence of gated
causalities between two statechanges. On
the other hand, state coupling between two
states, as opposed to statechanges, seems to
be a concept which is independent of gated
causality. To illustrate; "a nail through
two pieces of wood" (state I) has to be
regarded as state-coupled to "the pieces of
wood are joined" (state 2, a description of
the same situation, but at a different
level):

187

~WOODI, WOOD2~

- _L_

T
 ooo ,

JOINED ~/

In this type of situation, the state
coupling concept is required at this level
to stop the representation of some sort of
inexplicable "micro-causality" when it
transcends the model's knowledge of the
world.

VI. ALTERNATIVE ACTION SELECTION

In looking at devices and simple
processes such as sawing a board in half,
there have been few choices; the causality
and enablement are in a sense already built
in or strongly prescribed. In a real
planning environment on the other hand,
there will ordinarily be numerous
alternative actions which could causally
produce some desired goal state, providing
all gating conditions could be met. For
example, if the goal of a planner is to
produce a statechange in his location to
some specified point, the various subplans
of walking, driving a car, hitching a ride,
bicycling, taking a plane, etc. all suggest
themselves as potentially relevant, some
more than others. The one the planner
actually selects will be a function of more
than Just the relative costs of each
alternative; the selection will also relate
to the inherent applicability, or
reasonableness of the plan, based on the
sDecif%cs of where his destination is
relative to his current location, weather
conditions, etc. Of course, all the
relevant factors could eventually be
discovered by simulating each alternative
plan before choosing, watching out for
undesirable or suboptimal events. For
example, in simulating the walking,
hitchhiking or bicycling plans, the planner
finds himself outside for potentially long
durations. Hence, if it is raining, the
cost is judged high. If the distance is
less than a mile, or is indoors, simulation
of the airplane plan leads to some absurdly
high costs and perhaps some unsolvable
antagonisms. Certainly, a degree of such
forward simulation must occur in planning;
however, it seems that the process of
selecting among alternative actions is,
intuitively, more unified than just a
collection of forward simulations.

For this reason, the model of CSA's
incorporates the notion of a selector,
denoted by the construction:

SEL is a place where heuristics, as well as
forward simulation control can reside, The
heuristics test relevant dimensions
(e.g. distance, weather conditions, etc.) of
the context in which the state or
statechange is being sought (either for
execution of some larger plan, or for
interpreting what another might do in some
context). Based on the outcomes of such
tests, the SELector chooses one alternative
action as most reasonable. Currently, the
selector function is imagined to exist
"outside" the CAS formalism as 'an
unrestricted program which runs and decides.
Eventually, since it is one goal of the CSA
formalism to be able to represent arbitrary
decision processes (these are, after all,
just other algorithms), the SELector
function should simply reference other CSA's
which carry out the heuristic testing. In
other words, defer the "intelligence" in
selecting an alternative at this level to
unintelligent CSA's at the next level, and
SO on.

VII. LEVELS OF RESOLUTIONS IN CSA'S

The algorithmic content of a CSA can be
described at many different levels of
resolution. For example, the "action" "take
a plane to San Francisco" is quite a bit
higher in level and more abstract than the
action "grasp a saw". In the former, the
act of taking a plane somewhere is not
really an action at all, but rather a
description of an entire set of actions,
themselves related in a CSA; "take a plane
to San Francisco" is a high level surrogate
for a low level collection of true actions
in the sense of actually performing physical
movements, etc. in the real world (things
like grasping a saw, reaching into pants
pocket for some money, and so on).

Another example of resolution level
differences relates to how enabling states
for actions are characterized. For example,
in (A2) Abelson employs the primitive (OKFOR
object application), as in (OKFOR AUTO
TRAVEL). The question here is, what is the
relationship between this high level
description of OKness and the specifics of
what OKFOR means for any given object? That
is, for a car, OKFOR means "gas in tank",
"tires inflated", "battery charged",...,
whereas (OKFOR TOILET FLUSHING) means quite
a different set of things. The basic issue
is: should the memory plan and interpret in
the abstract realm of OKFORedness, then
instantiate with details later, or must the
details serve as the primary planning basis,
with the abstract ideas being reserved for
other higher level processes such as
reasoning by analogy, generalization and so
forth? There is probably no cut-and-dried
answer; however, the tendency in a CSA
system would be to favor the details over
the abstract. But the CSA representation is
intended to be flexible enough to accomodate
both the abstract and the concrete. The
idea of state coupling is an illustration of
this.

188

VIII. THE THEORY HAS ONLY JUST BEGUN

A later version of this paper will
contain more examples of the CSA, including
its use in language context problems. The
theory is by no means complete; to
illustrate:

(I) Is there such a thing as gated
enablement? The answer seems to be
"yes", since it seems reasonable to
regard enablement as a flow which
can be cut off in much the same way
as causality. Perhaps an example
of gated enablement is when the
horses begin their race at the
racetrack: the start gate's being
open is a one-shot enablement for
the horse to run, but only if the
horse is in the box to start with!
If he's not in the box, the gate's
position isn't relevant as an
enablement to run; its flow is
severed.

(2) What kinds of time and sequencing
information need to be incorporated
in the formalism? For example,
causality can be either abrupt or
gradual: taking medicine for an
ulcer provides a conceptually
gradual statechange in the
stomach's condition, whereas
surgery provides a conceptually
abrupt cure! This suggests the need
for classifying statechanges on
some discrete conceptual scale.
Another inadequacy of the present
model is its inability to specify
time sequencing; adoption of some
traditional flowchart concepts will
probably prove adequate for this.

(3) There is no convenient way to model
decision-making processes on the
part of the planner of a CSA. This
will have to be developed.

IX. APPLICATIONS OF THE CSA

On the brighter side, the CSA provides
a unified basis for problem-solving-related
cognitive models. Specifically, I believe
it shores up, under one basic data
structure, the ideas presented in my own
past research in conceptual memory and
inference (RI,R2) and in conceptual overlays
(R3) which suggests a meaning context
mechanism for language comprehension based
around CSA's. I want to conclude by listing
anticipated applicaions of CSA's. The
applications have been divided into two
categories: general (those which are central
to some major theoretical issues in language
understanding and problem-solving), and
specific (those which provide some local
insights into memory organization).

General ApPlications

I. As the basis for active Rroblem-solv~ng

The CSA supplies an algorithmic format
wherein plans can be conceived, synthesized
and executed. One immediate goal of

I

I

I

I
I
I
I
!

I
i
I

i

I

research should be to construct a
commonsense algorithm1 interpreter which
could "execute" the contents of portions of
its own CSA memory in order to effect
actions of moving about, communicating, and
so forth.

2. As the basis for conceptual inference

In (RI), which describes a theory of
conceptual memory and inference, sixteen
classes of conceptual inference were
identified as the logical foundation of'a
language-based meaning comprehension system.
Interestingly enough (but not surprising),
nine of those inference classes correspond
directly to traversals of CAS primitive
links. In the theory of (RI), every
language stimulus, represented in conceptual
form via Schank's conceptual dependency
notation (S2), was subjected to a
spontaneous expansion in "inference space"
along the sixteen dimensions corresponding
to the sixteen inference classes. Making an
inference in that model corresponds to
identifying each perception as a step in one
or more CSA's, then expanding outward from
those points along the CSA links
breadth-first. Although there is certainly
a class of more goal-directed conceptual
inference, this kind of spontaneous
expansion seems necessary to general
comprehension, and the CSA is a natural
formalism to use. The nine classes of
inference which relate directly to CSA links
are:

I. causative
2. resultative
3. motivational
4. enablement
5. function
6. enablement-prediction
7. missing enablement
8. intervention
9. action-prediction

3. As the basis for the conceptual
representation o_~f language.

A very large percentage of what people
communicate deals with algorithms, the how
and why of their activities in the world.
Schank's conceptual dependency framework
does a good job at representing rather
complex utterances which reference
underlying actions, states and statechanges.
This theory of CSA's extends this framework
to accomodate larger chunks of experience
and language to begin dealing with
paragraphs and stories instead of isolated
sentences.

4. As the basis for modelin~ mechanisms

Every man-made mechanism, as well as
every naturally-occurring biological system,
is rich in algorithmic content. As
illustrated in a previous example, CSA's can
do a respectable job at characterizing
complex servo- and feedback mechanisms. It
is not hard to envision the CSA as a basis
for physiological models in such an
application as medical diagnosis. Since all
biological systems are purposively
constructed mechanisms in the evolutionary

189

sense, representing such mechanisms in terms
of causality, enablement, byproducts,
thresholds, etc. is quite meaningful.

5. As a basis for modeling dynamic
meaning context i__nn language
comprehension and general perception

(R3) describes an expectancy-based
system called "conceptual overlays" which
can impose high-level, contextual
interpretations on sentences by consulting
its algorithmic base. In that paradigm,
some stimuli (i.e. meaning graphs resulting
from a conceptual parser " which receives
language utterances as input) activate
action overlays, while other stimuli fit
into previously activated action overlays.
Since an overlay is a collection of pointers
to CSA's in the algorithmic base which have
been predicted as likely to occur next, to
"fit into" is to identify subsequent input
as steps in the various algorithms actors
have been predicted to engage. For example,
knowing what the sentence "John asked Mary
for the keys" means contextually is quite a
bit more simply understanding the "picture"
this utterance elicits (its conceptual
dependency representation). If we know that
John was hungry:

John hadn't eaten in days.
John asked Mary for the car keys.

we activate an overlay which expects that
John will engage CSA's which will alleviate
his inferred hunger; needing car keys fits
nicely as a continuous enablement in several
of these algorithms. Of course, the virtue
of such a system is that it allows the
high-level interpretation of a sentence to
change as a function of its contextual
environment:

John had some hamburger stuck
in his teeth.

John asked Mary for the car keys.

Change the expectancies, and the
interpretation changes!

6. As ~he basis for
computer al~orlthm synthesis
~nd

Since a computer algorithm is a
relatively direct reflection of a
programmer's internal model of an
algorithmic process, it seems reasonable
that both the processes of synthesis and
final implementation be represented in the
same terms as his internal model. The
present theory only suggests an approach; it
is not yet adequate for general computer
algorithms. But it seems that the idea of a
CSA might be very relevant to recent
research in the area of automatic
programming, at least as a basis of
representation.

7. As ~ basis o__ff g self-model

If a CSA interpreter can indeed be
defined, and if indeed the CSA can
eventually capture any computer algorithm,
then creating a self-model amounts to

specifying the CSA interpreter in terms of
CSA's. For example, an act of communication
amounts to the communication of enough
referential information (features of
objects, times, etc.) to enable the
comprehender to identify, in his own model,
the concepts being communicated. The
how-to-communicate algorithm which the CSA
interpreter employs could itself be a CSA.

8. As a basis for investigation
of algorithm learning

If we posit the existence of a small
set of primitive CSA links and make the
assumption that these are either part of the
brain's hardware, or learned implicitly as
soon as the intellect begins perceiving, we
have a basis from which to study how a child
learns world dynamics. For example, how,
and at what point, does the toddler know
that he must grasp the cup in an act of
continuous enablement before he can lift it
to his mouth, and how does he know it must
be at his mouth before he can successfully
drink? Perhaps algorithmic knowledge
develops from random experimentation within
the syntactic constraints imposed by the set
of CSA primitive links.

Specific CSA Applications

I. For representing the functions of objects

As with mechanisms, any man-made object
is made for a purpose. Translated to CSA's,
this means that part of every
purposively-constructed object's definition
is a set of pointers into the algorithm base
to CSA's in which the object occurs. This
is true for all objects from pencils, to
furnaces, to window shades, to a bauble
which provided its constructor amusement, to
newspapers. An object in memory can be
completely characterized (in the abstract)
by a set of intrinsic features (shape, size,
color, etc) and this set of pointers to
CSA's.

2. For representing people's professions

To say (ISA JOHNI PLUMBER) skirts what
it means to be a plumber. Rather, to be a
plumber means to engage plumbing algorithms
as a principal source of income. Thus, a
profession can be defined by a set of
pointers to the CSA's which are
characteristic of that profession. This
makes it possible to observe someone at work
and identify his profession, to compare
professions, etc.; these would not be
possible if CSA's were not the basis of
representation.

3. For detecting and explaining
anomalous situations and potentially
antagonistic states

A person notices a license plate yearly
sticker on upside down; a person notices two
fire engines approaching an intersection,
rushing to a fire; at the intersection, one
turns left, the other turns right; a person
notices that the rain that morning will

190

interfere with the picnic plans that
afternoon. How do such situations get
judged "anomalous", and how does the
perceiver try to explain or cope with them?
The answer undoubtedly relates to
expectancies and a knowledge of algorithms
for putting things on one-another, getting
somewhere in a hurry and antagonistic states
when eating outdoors. By playing experience
against CSA's we discover things which would
not otherwise be discovered.

4. For filling in missing information

If a person is perceiving in a noisy or
incomplete environment, having CSA's
available to guide his interpretations of
perceptions provides enough momentum to fill
in missing details, scarcely noticing their
absence. If John is hammering a nail into
the wall with his hand on the backswing, but
the object in his hand is occluded, it
requires very little effort to surmise that
it is a hammer. If we believe that Mary is
going to McDonald's to buy a hamburger, but
she comes back into the house saying "It
won't start", we have a pretty good idea
"it" refers to the car. This application of
CSA's corresponds to the notion of a
specification inference in (RI).

X. CONCLUSIONS

Instead of a conclusion, I will simply
state the order in which research along CSA
lines should, and hopefully will at the
University of Maryland, progress:

I. Reimplementation of the conceptual
overlays prototype system described in (R3)
to reflect the new CSA ideas and replace the
ad-hoc AND/OR graph approach described in
that report.

2. Implementation of a mechanism simulator
which could accept, in CSA terms, the
definition of a complex mechanism
(electronic circuit or toilet), simulate it,
respond to artificially-induced
malfunctions, and answer questions about the
mechanism's cause and effect structure.

3. Engineering of a new total conceptual
memory, along the lines of the original one
of (RI), but incorporatng CSA's and the new
idea of a tendency. This would involve
reimplementing the inference mechanism and
various searchers.

4. Development of a CSA interpreter which
could not only use CSA's as data structures
in the various cognitive processes, but also
could execute them to drive itself.

5. Applying CSA's to medical diagnosis and
automatic programming.

6. Investigating the problem of story
comprehension via conceptual overlays and
CSA's. Perhaps also investigating
generation of stories (e.g. the story of
the trip to McDonald's) or the generation of
a description of a complex electronic
circuit, encoded as a CSA, in layman's
terms.

XI. ACKNOWLEDGEMENTS

My thanks to the members of the
Commonsense Algorithm Study Group at the
University of Maryland: Bob Eberlein, Milt
Grinberg, Bob Kirby, Phil London and Tom
Skillman. They have provided considerable
intellectual stimulation. We hope to
continue as a group and eventually issue a
working paper and computer system.

REFERENCES

(AI) Abelson, R., "The Structure of Belief
Systems," in Schank and Colby (eds.),
Computer Models of Thought and
Language, W.H. Freeman, 1973

(A2) Abelson, R., "Frames for Understanding
Social Actions," Paper for Carbonell
Conference, Pajarro Dunes CA, May 1974.

(CI) Charniak, E., "Toward a Model of
Children's Story Comprehension,"
Doctoral dissertation, M.I.T., AI
TR-266, 1972.

(MI) Minsky, M., "A Framework for
Representing Knowledge," M.I.T. AI
TR-306, 1974.

(NI) Nilsson, N., Probelm Solving Methods i__nn
Artificial Intelligence, McGraw Hill,
1971.

(RI) Rieger, C., "Conceptual Memory: A
Theory and Computer Program for
Processing the Meaning Content of
Natural Language Utterances," Doctoral
dissertation, Stanford Univ. AI Memo
233, 1974.

(R2) Rieger, C., "Understanding by
Conceptual Inference," American Journal
of Computational Linguistics (in
press), 1975. (Also available as Univ.
of Maryland Technical Report #353)

(R3) Rieger, C., "Conceptual Overlays: A
Mechanism for the Interpretation of
Sentence Meaning in Context," to appear
in Proceedings 4IJCAI 1975. (Also
available as Univ. of Maryland
Technical Report #354)

($I) Sacerdoti, E., "Planning in a Hierarchy
of Abstraction Spaces," in Proceedings
3IJCAI 1973.

($2) Schank, R., "Identifications of
Conceptualizations Underlying Natural
Language", in Schank and Colby,
Computer Models of Thought and
Language, W.H. Freeman, 1973.

($3) Schank, R., Goldman, N., Rieger, C.,
and Riesbeck, C., "Primitive Concepts
Underlying Verbs of Thought," Stanford
Univ. AI Memo 162, 1972.

($4) Schmidt, C., and D'Addamio, J., "A
Model of the Common-Sense Theory of
Intention and Personal Causation,"
Proceedings 3IJCAI, 1973.

191

Figure !

Unrestricted AND/OR graph for getting a
McDonald's hamburger into stomach.

e.,~\e.

Figure 2

Hamburger algorithm, with actions, states,
causality and enablement explicit.

6~6~r o~ ?uo#T~

L~t. ~A~If, Q.: IvPPI.Y
LtN~- "r~ TA~V~

tank from ~ / /
trip _ # float

~ j ~ / ~ J ~anolellf~ ~ arm

supply II1 dis-
_ ~ ~ _ ~ , channel valve Ill harge

I I I ~ pe
supply |~ flush

stewOer plpe~_ ValeV ~

i t r i p ~ f'~,refi I l

- %] o at~i/i

c
TAN K

FIGURE 3
A reverse-trap toilet.

, i m , ,

ll!ft

I "~ Over.fl ow
' ~ ' - ') p, pe
• ~flush ball

K

~Bk~6 c~c~ sutp6y Fuu~ ~F t ~ b

V ~ # ~ .

v~Lv~

Bo~L. 1"o w~rs~n~
G,'Z~W, T7

~. w ~,~J~

wWr~ F~

15owu 6J~TF.~ H ¢ 1 6 . ~

o~rr~ L~P ~F wksl~

FIGURE 4
O~eration of the reverse-trap toilet.

192

I
I
I
I
I

I _ _

I
I
I
I
I
I
I
I

OF I,~o0

I (oe,,.,,~. (Co~t~UouS

J r ~ ,

WooO

'F igure 5
_ _ . +

Sawing a board in half to decrease i ts length.

193

I T ~ , ~ , ~ ' ~ . ~ ~ I T;~- ~ , . '
k / ~ • o - I - - - - - " I , T~ ~ . |

I
I
I

COMBUSTION

, I

I
|

~ ~ ' " ~

!
!

I
FORGETFULNESS !

FIGURE 6

Vicious Cycles.
!

I
194 !

ts ~ j / tc

2,£ I~
~F-.O

Nf.x.T P~

t~E~T TA~LF_

DJVII>(,4c~. J ~c Z.

l
l l l l

FIGURE 7

Computer algorithm to compute the
average of TABLE(1),...,TABLE(N)
expressed as a commonsense algorithm.

(NOTE: Initialization has not been shown. The assumptions are
that AC3 begins with zero, that ACI begins with zero,
and that N and TABLE(1),...,TABLE(N) exist in core.)

