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ABSTRACT 
The notion of a commonsense 
algorithm is presented as a basic 
data structure for modeling human 
cognition. This data structure 
unifies many current ideas about 
human memory and information 

processing. The structure is 
defined by specifying a set of 
proposed cognitive primitive links 
which, when used to build up large 
structures of actions, states, 
statechanges and tendencies, 
provide an adequate formalism for 
expressing human plans and 
activities, as well as general 
mechanisms and computer algorithms. 
The commonsense algorithm is a type 
of framework (as Minsky has defined 
the term) for representing 
algorithmic processes, hopefully 
the way humans do. 

I. INTRODUCTION AND MOTIVATION 

It is becoming increasingly evident to 
human intelligence model builders and 
theorists that, in order to characterize 
human knowledge and belief as computer data 
structures and processes, it is necessary to 
deal with very large, explicitly unified 
structures rather than smaller, ununified 
fragments. The reason for this seems to be 
that the original experiences which caused 
the structures and processes to exist in the 
first place come in chunks themselves; 
knowledge is never gained outside of some 
context, and in gaining some piece of 
knowledge X in context C, X and C become 
inseparable. This suggests that it is 
meaningless to model "a piece of knowledge" 
without regard for the larger structures of 
which it is a part. If our goal is to build 
a robot which behaves and perceives in 
manners similar to a human, this means that 
the process by which the robot selects a 
piece of knowledge as being applicable to 
the planning, executory, inferential or 
interpretive process at hand at the moment 
is a function not only of the specific 
problem, but also of the larger context in 
which that instance of planning, execution, 
inference or interpretation occurs. If, for 
example, our robot sees his friend with a 
wretched facial expression, the inference he 
makes about the reasons for his friend's 
misery will reflect the larger picture of 
which he is aware at the time: his friend 
has just returned from a trip to purchase 
opera tickets vs. his friend has Just eaten 
the cache of mushrooms collected yesterday 
vs ..... The same pervasiveness of context 
exists in the realm of the robot's 
interpretations of visual perceptions: the 
very same object (visible at eye level) will 
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be perceived out of the corner of his eye in 
one situation as the cylindrical top of his 
electric coffee grinder (he is at home in 
his kitchen), but as the flasher of a police 
car (he is speeding on the freeway) in 
another. This suggests that at every 
moment, some fairly large swatch of his 
knowledge about the world somehow has found 
its way to the foreground to exert its 
influence; as our robot moves about, 
swatches must fade in and out, sometimes 
coalescing, so that at any moment, just the 
right one is standing by to help guide acts 
of planning, infePence and perception. 

Marvin Minsky has captured this whole 
idea very neatly in his widely-circulated 
"Frames" paper [MI]. While this paper 
describes an overall approach to modeling 
human memory, inference and beliefs, we 
still lack any specific formulation of the 
ingredients which make up the large, 
explicitly-unified structures which seem to 
underlie many higher-level human cognitive 
functions. It is the purpose of this paper 
to define the notion "commonsense algorithm" 
(CSA) and to propose the CSA as the basic 
Cognitive structure which underlies the 
human processes of planning, inference and 
contextual interpretation of meaning. 

I do not have a complete theory yet: 
the intent of this paper is to record a 
memory dump of ideas accumulated over the 
past few months and to show how they can 
unify my past ideas on inference and memory, 
as well as the ideas of others. 

II. THE SCOPE OF THE CSA'S APPLICABILITY 

Most of human knowledge can be 
classified as either static or dvnamic. For 
example, a person's static knowledge of an 
automobile tells him its general physical 
shape, size, position of steering wheel, 
wheels, engine, seats, etc.; these are the 
abstract aspects of a car which, although 
many differ in detail from car to car, are 
inherently unchanging. They are in essence 
the physical definition of a car. On the 
other hand, a person s dynamic knowledge of 
a car tells him the functions of the various 
components and how and why to coordinate 
them when the car is applied to some goal. 
The static knowledge tells the person where 
to expect the steering wheel to be when he 
gets in; the dynamic knowledge tells him how 
to get in in the first place, and what to do 
with the wheel (and why) once he is in. For 
a robot immersed in a highly kinematic 
world -- physically, psychologically and 
socially -- a very large part of his beliefs 
and knowledge must relate to dynamics: how 
he can effect changes in himself and his 
world, and how he perceives other robots 
effecting changes. It is the purpose of the 
CSA to capture the dynamics of the world in 
belief structures which are amenable to 
computer manipulation of plans, inference 
and contextual interpretation. 

It should be stressed that the phrase 
"dynamics of the world" is intended in its 
broadest possible sense. As will be 
elaborated upon in a later section, the 
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phrase is intended to encompass such 
seemingly diverse robot/human activities as: 

I. communicating with another 
robot/human (e.g., how to transfer 
information, instill wants, 
convince, etc.) 

2. getting about in the world 
3. building things (both physical and 

mental) and understanding the 
operation of things already built 
by others 

4. conceiving, designing .and 
implementing computer programs and 
other commonsense algorithms (a 
special form of building) 

5. interpreting sequences of 
perceptions (e.g., language 
utterances) in context 

6. making contextually meaningful 
inferences from perceptions 

I am convinced that all such dynamics 
of the world can and should be expressed in 
a uniform CSA formalism built around a 
relatively small number of cognitively 
primitive ingredients. 

III. EVOLUTION OF THE CSA IDEA 

The next section will define a CSA as a 
network-like structure consisting of events 
tied together by primitive links. Taken as 
a whole, the CSA specifies a process: how to 
get something done, how something works, 
etc. A computer scientist's first reaction 
to this type of structure is "Oh yes, that's 
an AND/OR problem-reduction graph" (see 
Nilsson [NI] for example). Figure I shows 
an AND/OR graph for how to achieve the goal 
state "a McDonald's hamburger is in P's 
stomach." Edges with an arc through them 
specify AND successors of a node (subgoals, 
all of which achieved imply the parent node 
has been achieved); edges with no arc 
through them specify OR successors 
(subgoals, any one of which being sufficient 
to achieve the parent goal). 

AND/OR graphs have been demonstrated 
adequate in practice for guiding various 
aspects of problem-solving behavior in 
existing robots (see [$I] for example). 
However, they are intuitively not 
theoretically adequate structures for 
representing general knowledge of world 
dynamics: their principal deficiency is that 
they are ad-hoc constructions which express 
neither the implicit conceptual 
relationships among their components, nor 
the inherent types of their components. 
Because of this, there is no constraint on 
their organization, and this means that two 
AND/OR graphs which accomplish or model the 
same thing might bear very little 
resemblance to one-another when in fact they 
are conceptually very similar. This may be 
little more than a nuisance in practice, but 
it is undesirable in principle because it 
makes learning, reasoning by analogy, 
sharing of subgoals, etc. tedious if not 
impossible in a generalized problem solver. 

A refinement of the notion of an AND/OR 
graph introduces the concepts of causality 
and enablement, and actions and states 
(statechanges); edges in the graph are 
distinguished as either causal or enabling, 
the nodes are distinguished as either 
actions or states, and the graph obeys the 
syntactic contraints: 

(a) actions cause states 
(b) states enable actions 

Bob Abelson [AI] was among the first to 
employ these historically very old concepts 
in the framework of a computer model of 
human belief, and since then, numerous 
computer-oriented systems of knowledge 
reDresentation (e.g., Schank's conceptual 
deDendency[S2], Schmidt's models of personal 
causation [$4]), as well as systems of 
inference (Rieger [RI], Charniak [CI]) have 
found these four concepts to be vital to 
meaning representation and inference. In 
some sense, enablement, causality, states 
and actions seem to be cognitive primitives. 
Figure 2 is a refinement of Figure I which 
makes explicit the nature of each node and 
each connecting arc, and hence the 
underlying gross conceptual structure of the 
algorithm. 

While the inclusion of these four 
concepts (and their resulting syntactic 
constraints) in the basic paradigm makes for 
a theoretically more coherent 
representation, the scheme is still too 
coarse to capture the kinds of detailed 
knowledge of algorithms people possess. The 
following section proposes an extended 
framework of event types and event 
connectors based on these four notions and 
some others. These event types and 
connectors will be regarded as 
model-primitives which hopefully are in 
correspondence with "psychological 
primitives" in humans. 

IV. DEFINITION OF THE COMMONSENSE ALGORITHM 

In the new formalism, a CSA consists of 
nodes of five types: 

I. WANTS 
2. ACTIONS 
3. STATES 
4. STATECHANGES 
5. TENDENCIES 

The first four types are not new (see [$3] 
for example), and will not be covered here 
beyond the following brief mention. A WANT 
is some goal state which is desired by a 
potential actor. An action is something an 
(animate) actor does or can do: it is 
enabled by certain states (certain 
conditions which must be true in order for 
the action to begin and/or proceed), and in 
turn causes other states (discrete) or 
statechanges (continuous) to occur. Actions 
are characterized by an actor, a 
model-primitive action, a time aspect, a 
location aspect, and a conceptual case 
framework which is specific to each 
model-primitive action. States are 
characterized by an object, an attribute, a 
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value and a time aspect; statechanges are 
characterized by an object, a continuous 
state scale (temperature, degree of anger, 
distance, etc.), a time aspect and beginning 
and end points on the scale. 

It is the notion of a tendency which is 
new and which serves to unify a class of 
problems which have been continually 
experienced in representing processes. 
Basically, a tendency is an actorless 
action. Tendencies are characterized by 
specifying a set of enabling conditions ,and 
a set of result states and/or statechanges. 
Whenever the enabling conditions are 
satisfied, the tendency, by some unspecified 
means, causes the states and statechanges 
specified as the tendency's results. Hence, 
a tendency may be regarded as a special type 
of non-purposive action which must occur 
whenever all its enabling conditions are 
satisfied. Contrasting the notion of a 
tendency with the notion of an action yields 
a rather compact definition of what makes a 
"volitional" action volitional: a volitional 
action is an action which need not occur 
even though all its physical enabling 
conditions are met. The reason it may not 
occur is, of course, that the actor does not 
desire it to occur; tendencies have no such 
desires. 

The abstract notion of a tendency is 
meant to be general-purpose, to characterize 
a wide variety of phenomena which are not 
actions, but action-like. Examples of 
tendencies are: 

I. GRAVITY, PRESSURE, MAGNETISM, 
ATOMIC-FISSION, HEAT-FLOW, and the host 
of other physical principles. 
Commonsense GRAVITY might be captured 
as follows:** 

((TYPE . TENDENCY) 
(REFERENCE-NAME . GRAVITY) 
(ENABLEMENTS . (UNSUPPORTED OBJ) 

(LESSP (DISTANCE OBJ EARTH) 
(ORDERMILES)) 

(RESULTS . (STATECHANGE OBJ VELOCITY X 
X+d (LOC OBJ) 
(LOC EARTH))) 

2. human biological functions: a tendency 
to GROW-HUNGRY, GROW-SLEEPY, GROW-OLDER 
(sole enabling condition is the passage 
of time!), GROW-LARGER, etc. For 
example: 

((TYPE . TENDENCY) 
(REFERENCE-NAME GROW-HUNGRY) 
(ENABLEMENTS . (iNOT (LOC NUTRIENTS 

STOMACH)) 
(DURATION * ORDERHOURS))) 

(RESULTS . (WANT P (INGEST P NUTRIENTS 
MOUTH STOMACH)))) 

3. human psychological functions: the 
tendency to GROW-LONELY, the tendency 
to FORGET, etc. For example: 

**The LISP notation reflects some 
concurrent thinking on how a 
commonsense algorithm system might 
actually be engineered. A forthcoming 

report will describe progress toward 
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((TYPE • TENDENCY) 
(REFERENCE-NAME . GROW-LONELY) 
(ENABLEMENTS ((ALONE P) 

iDURATION * ORDERDAYS)) 
(RESULTS . (WANT P (COMMUNICATE P 

X)))) 
((TYPE . TENDENCY) 
(REFERENCE-NAME . FORGET) 
(ENABLEMENTS . (INHEAD ITEM P) 

((UNREFERENCED ITEM P) 
(DURATION * ORDER??))) 

(RESULTS (STATECHANGE ITEM 
REFERENCE-DIFFICULTY X X+d)) 

Tendencies, thus characterized, will 
play an important role in modeling 
algorithmic processes via CSA's. In fact, 
adopting the notion of a tendency as a model 
primitive points out a rather ubiquitous 
principle: humans spend a large amount of 
time in planning either how to overcome 
tendencies which stand in the way of their 
goals, or how to harness them at the proper 
times in place of an action (e.g., dropping 
the large rock on the coconut). Although a 
tendency's primary use is at the edge of the 
world model, where things happen simply 
because "that's the way things are", it will 
probably be desirable to have the ability to 
regard as tendencies things which in fact 
can be explained. Characterizing something 
as a tendency even though it may be 
reduceable to further algorithms is probably 
one tactic a human employs when confronted 
with the analysis of very complex, olny 
partially understood processes. Even though 
something ~ be further explained, the 
system of representation should allow that 
something to be treated as though it were a 
tendency. 

Tendencies have numerous aspects which 
will require explicit characterization in a 
computer model. Two such aspects relate to 
(I) the inherent rapidity with which a 
tendency exerts itself and (2) the 
tendency's periodicity, if any. That is, 
how quickly does a person become hungry 
(slope of curve), how long does it take to 
forget something, how rapidly does an object 
accelerate, how fast does the water flow 
through the nozzle, etc.? If the tendency is 
periodic, what are the parameters describing 
its periodicity? The primitive CSA links 
described in the next section will serve in 
part to capture such aspects, but they are 
not yet adequate. 

The CS~ nrimitive Lin~ Using these 
five event-types as building blocks (WANTS, 
ACTIONS, STATES, STATECHANGES, TENDENCIES), 
the goal is to be able to express the 
dynamics of just about anything, be it a 
physical device, a psychological tactic 
employed by one person on another, how a 
person purchases a McDonald's hamburger, or 
how a computer program functions or was 
constructed. There are 25 primitive links 
in the current formulation. They will only 
be defined here, leaving Justificaion and 
details of their use for the examples which 
will follow, and for subsequent papers on 
the subject. In the following definitions, 
W, A, S, SC and T will stand for WANT, 
ACTION, STATE, STATECHANGE and TENDENCY, 
respectively. 
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TYPE I: ONE-SHOT CAUSALITY fA -r~ 

l Action A or tendency T causes state S. 7 The action or tendency need occur only once; 
thereafter S will persist until altered by another 

j action or tendency. For any given S, there will 
ordinarily be numerous alternative A's or T's in the 
algorithmic base which would provide the one-shot 
causality. 

l TYPE 2: CONTINUOUS CAUSALITY 

I Action or tendency A,T's continuing existence 
continually causes state or statechange S,SC. 

Whether one-shot or continuous causality is 
required to maintain S or SC is both a function of S or 

• SC and its particular environment in a particular 
algorithm (i.e., what other tendencies and actions are 

i influencing it). Again, there will ordinarily be 
numerous actions or tendencies in the algorithmic base 
which could provide continuous causality for any given 
state or statechange. 

I TYPES 3,4: GATED ONE-SHOT AND CONTINUOUS CAUSALITY 

A,T causes S,SC either one-shot or continuously, [ 
i providing that all states in [S] are satisfied. ! ~4--'~ 

The flow of causality cannot occur unless states 
specified by [S] exist. That is, even though A,T is 
occuring and there is a potential causal relationship ~r 
between A,T and S,SC, the relationship will not be 

i realized until the gating states become true. 

TYPE 5: ONE-SHOT ENABLEMENT 

l State S's one-time existence allows action A or 
tendency T to proceed. 

Thereafter, A,T's continuation is no longer a 
function of S. A,T will ordinarily have numerous 
one-shot enablements, in which case, all must be 
satisfied in order for A or T to proceed. ' 

State S's continued presence is requisite to 
action A's or tendency T's continuance. 

i S's removal causes A or T to halt. Any given A or 
T will ordinarily have numerous continuous enablements, 
in which case all must reamin true in order for A or T 
to proceed. 

TYPE 7: CAUSAL STATE COUPLING 

States $I, S2 or statechangges SCI, SC2 are 
causally coupled; because of this coupling, changes in 
$I or SCI are synonomous with changes in $2 or SC2. 
This link provides a way of capturing the relatedness 
of various aspects of the same situation. 

TYPE 8: GATED CAUSAL STATE COUPLING 

State $2 or statechange 
(causally coupled to) $I 
states in [S] are true. 

SC2 is synonymous with 
or SCI, provided that all 

This link is similar to ungated state coupling, except 
for the existence of factors which could disrupt the 
coupling. To illustrate, the flow of a fluid into a 
container (a statechange in location of the water) is 
synonymous with an increase in the amount of water in 
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the container (another statechange), but only providing 
that there is no souL~ce of exit from the container's 
bottom. 

TYPE 9,10,11,12: 
GATED/NON-GATED) 

BYPRODUCT (0NE-SHOT/CONTINUOUS, 

State S or statechange SC is a causal byproduct of 
action A, relative to goal state Sg or SCg. 

That is, the actor of A, wishing to achieve state 
Sg or statechange SCg also produces state S or 
statechange SC. The byproduct link 'is truly a causal 
link; what is and is not a by product must obviously 
relate to the motive of the actor in performing the 
action. Where gated, all states in [S] must be 
satisfied in order for the byproduct to occur. 

TYPE 13: ORIGINAL INTENT 

Want W is the original desire (goal state) of an 
actor. W is external to the CSA in that its origin is 
not explicable within the CSA itself; it is the outside 
directive which motivated the invocation of some acton. 
Within an algorithm for achieving some goal, 
motivations are explicable: every subaction is, by its 
nature, designed to produce subgoal states which, taken 
together, meet the original intent. 

TYPE 14: ACTION CONCURRENCY 

Actions AI,...,An must be concurrently executed. 
This link will arise in the dynamics of an actual 

plan, rather than be stored originally in the 
algorithmic base explicitly. As plans evolve and the 
actor learns concurrency by rote, the link will begin 
to appear in the algorithmic base as well. Action 
concurrency is nearly always caused by multiple 
enabling states for some other action, all of which 
must be continually present, or one-time synchronized 
as a collection of one-shot enablements. 

TYPE 15: DYNAMIC ANTAGONISM 

State $I or statechange SCI is antagonistic to 
state $2 or statechange SC2 along some dimension. 

This link relates two states Or statechanges which 
are opposites in some sense; typically the antagonism 
link will make explicit the final link in some sort of 
feedback cycle in an algorithm. The link is hard to 
describe outside the context of an example; examples 
will appear in the next section. 

TYPE 16: MOTIVATING DYNAMIC ~NTAGONISM 

As with ordinary dynamic antagonism, $I, $2 are 
antagonistic states. Typically, $2 is required as an 
enabling state (continuous) for some action, but that 
action, or some other action, produces $I as a 
byproduct; this gives rise to the need for another 
corrective action A which can suppress the byproduct, 
therby preserving the original required enablement. 
This link is intended to capture the execution dynamics 
of a situation in which antagonistic states are 
expected to arise. That is, it will provide a 
representation wherein antagonisms can be anticipated 
in advance of the SCA's actual execution. An example 
of motivating dynamic antagonism is included in the 
next section. 
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TYPE 17: GOAL-REALIZATION COUPLING 

State S is an alternative way of expressing 
original goal W or subgoal Sg. 

This link supplies a way of specifying termination 
criteria for CSA's involving repretition. Its use is 
illustrated in one of the examples~ 

TYPE 18: COMPOUND GOAL STATE DEFINITION 

State S is a shorthand for expresing the set of 
goal states SI,...,Sn. 

This link allows a "situation" to be characterized 
as a collection of goal states. When all goal states 
are satisfied, the situation is satisfied. An example 
of a compound goal state would be: "get the kids ready 
for the car trip", where this means a set of things 
rather than one thing. 

TYPES 19,20,21,22: DISENABLEMENT 
GATED/NON-GATED) 

(ONE-SHOT/CONTINUOUS, 

Action A or tendency T one-shot/continually causes 
state S or statechange SC not to exist. 

These four forms are shorthands for causality in 
conjunction with antagonism. They will be principally 
useful for representing acts of disenabling unwanted 
tendencies. 

TYPE 23: REPETITION UNTIL THRESHOLD 

Action A or tendency T occurs repeatedly until 
state S becomes true. 

This link provides for the repeated application of 
an action or tendency. Normally, the action or 
tendency will, directly or indirectly, causally produce 
a statechange along some scale; this statechange will 
eventually threshold at state S. 

TYPE 24: INDUCEMENT 

State S's or statechange SC's existence induces 
want W in a potential actor. 

Origins of wants can be explicitly represented via 
this link. Typically, W will be a stabe which is 
antagonistic to S or SC. For example, if the 
temperature is too high in the room, the want is that 
the temperature become lower; if the tendency, 
PRESSURE, has been enabled, allowing blood to flow out 
of P's body, the induced want is that this tendency be 
disenabled, and hence that the antagonism of one of 
PRESSURE's enabling states start to exist. 

TYPE 25: OPTIMIZATION MARKER 

State S is an enabling condition for action A, and 
this relationship makes possible an optimization during 
the execution of A in a particular environment. 

When several actions arise in a plan, they may share 
enabling states. This means that when the plans are 
considered together, some of the states needed for one 
action may coincide with those needed for another. The 
optimization marker allows this phenomenon to be 
recorded. Its interpretation is: when state S becomes 
true, consider performing acton A~ because action A 
also has S as an enabling state. ~ denotes a savings. 
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These are the commonsense algorithm 
primitive links. It is felt that they are 
conceptually independent enough of 
one-another so that unique algorithms will 
be forced into unique, or at least similar, 
representations under this formalism. 
Although it is the eventual intent of the 
theory to be able to capture all the nuances 
of intentional human problem-solving 
behavior, there is no real feeling yet for 
the completeness of this set of links in 
this regard; all that can be said now is 
that they do seem to suggest a reasonable 
approach to representing large classes of 
purposive human behavior. The adequacy of 
these primitives for representing devices 
and mechanisms, on the other hand, is easier 
to see, at least intuitively; the links seem 
to be adequate for some fairly complex 
"purposive" mechanisms. Accordingly, the 
first example of their use will be to 
characterize a mechanism very dear to most 
of us. 

V. EXAMPLES OF COMMONSENSE ALGORITHMS 

EXAMPLE I. Operation of g reverse-trap 
toilet [Figure 3] 

As a first test of the theory, the 
reverse-trap toilet is a relatively 
demanding mechanism. It is a complex 
feedback mechanism which is the product of 
some rather sophisticated human 
problem-solving. It is therefore 
interesting both in its own right and as a 
tangible manifestation of human-concocted 
causality and enablement. By one simple 
action, a complex sequence of tendencies is 
unleasehed; the sequence not only stops 
itself, but restores the system to its 
initial state, and does something useful in 
the process. 

The English description of the 
schematic of Figure 4 is as follows: The 
trip handle is pushed down, one-shot causing 
the flush-ball to be raised; this one-shot 
enables the tendency to float, in turn 
continually causing the float ball to remain 
raised. The float ball's being raised is 
synonomous with the flush valve being open, 
and this openness continuously enables the 
tendency of gravity to move water from the 
tank to the bowl beneath (as long as water 
remains in the tank, of course.) This 
movement of water is synonomous with two 
other state changes: a decrease of water 
height in the tank, and an increase of water 
height in the bowl. The increase of bowl 
water height thresholds when the water 
reaches waste channel lip level, at which 
time it begins providing continuous 
enablement for gravity to move the water 
into the waste channel; this movement 
thresholds when the channel fills, providing 
the beginning of continuous enablement of 
the tendency capillary action. This 
tendency, in turn, sustains the flow of 
water from the bowl to the waste channel, 
continually moving waste water into the 
sewer. This action ceases when the bowl 
becomes empty. Meanwhile, the tendency 
gravity is continually moving water from the 
tank to the bowl. This is synonomous with a 
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decrease in tank water height, and this 
decrease thresholds at point X, synonomous 
with the fresh water supply valve opening. 
This opening enables the tendency pressure 
to move water from the fresh water line into 
the tank; this is synonomous with an 
increase in tank water height, but only 
providing that the flush valve is closed 
(this will have to wait for the movement of 
waste from tank to bowl to cease). When the 
tank water height finally begins its 
increase, this increase will threshold at 
point X again, this time being synchronous 
with the ball cock supply valve's being 
closed, stopping the fresh water and hence 
the tank water height increase. At this 
point, the system has become quiescent 
again. (Note: in the actual simulation 
which will be performed, flow rates, or more 
generally, rates of statechanges, will be 
incorporated.) 

EXAMPLE 2. Sawing a hoard in half to 
decrease its length (Figure 5) 

Figure 5 is a bare-bones representation 
Of a purposive human process: sawing a board 
in two using a handsaw. This CSA 
illustrates the concepts of motivating 
dynamic antagonsim, original intent and 
byproduct with respect to a goal. The 
schematic of Figure 5 is only a fragment of 
the larger algorithm; many enabling states 
and byproducts, as well as their 
compensatory actions have been omitted. In 
this CSA, the act of sawing for the purpose 
of decreasing the board's length produces, 
among others, the byproduct of the board's 
moving. Since a stationary board is a gate 
condition on the flow of causality from the 
sawing action to the statechange in cut 
depth, the two states joined by the 
motivating dynamic antagonsim link form an 
antagonistic pair, indicating in advance of 
actual execution that it will be necessary 
to perform a compensatory action: hold the 
wood down. If we were to illustrate more of 
this algorithm, it might be found that 
holding the wood down would require more 
hands than were available. This would 
provide another dynamic antagonsim which 
would motivate the engagement of another 
compensatory action, such as "call for 
help," "go to a vise," etc. 

It should again be pointed out that 
points of antagonism could alternatively be 
detected at the execution time of the CSA 
and compensatory solutions dynamically 
fabricated. This would likely occur via 
some sort of interrupt mechanism. But the 
antagonsim link allows for planning ahead 
(e.g. when two arbitrary algorithms are 
selected to accomplish a task, their 
coexistence will probably not always be 
without antagonism -- this allows the 
planning mechanism to anticipate and solve 
such antagonisms before execution). Also, 
after a successful plan involving 
antagonisms has actually been executed, this 
link provides a means of recording once and 
for all the compensating actions which were 
performed. 

I 
I 
I 
I 
I 
I 
I 



EXAMPLE 3. Vicious cycles <Figure 6) 

Consider tendencies such as fire and 
forgetfulness. Both roughly follow the 
paradigm: a tendency has state S as a 
continuous enablement, and produces the same 
state as continuous causality. Once 
started, such a system is self-sustaining. 
In the case of fire, a one-shot causing 
action causes a statechange in temperature 
which thresholds at the point of the 
material's combustion temperature; this 
enables the tendency to burn, which in turn 
produces as a continual byproduct heat, 
causing a vicious cycle. In forgetting, the 
tendency to forget X is enabled by not 
referencing X for periods of time; but as X 
grows more forgotten, it becomes less 
referenceable. Here, dynamic antagonism 
lies at the root of the vicious cycle. 

EXAMPLE 4. Description (synthesis) of 
computer algorithm (Figure 7) 

Suppose the goal is to compute the 
average of a table of numbers, 
TABLE(1),...,TABLE(n). Figure 7 shows both 
how to conceive of the algorithm and how the 
algorithm will actually run. As a computer 
algorithm, this is not as fully explicit as 
might be desired: it lacks explicit 
iteration and explicit termination criterion 
testing. These will have to be worked out 
before the theory adequately handles 
repetition. 

i 

Causal gating seems to play a central 
role in this sort of computer algorithm. 
Intuitively, this is the case because, 
though a computer instruction typically has 
no physical enabling conditions (it could be 
issued at any time), desired effects can be 
achieved only by tying the syntax of 
instruction causality to the semantics of 
logical causality. For example, the flow of 
causality from the action "fetch location 
SUM to ACI" to the logical semantic state 
"partial sum in ACI" can take place only if 
location SUM logically contains the actual 
partial sum at that point! Otherwise, 
garbage is fetched. 

The relationships of certain types of 
causal gating and state coupling (e.g. the 
valve closing because the float has risen in 
the toilet tank) are not completely apparent 
yet. Perhaps state coupling is a shorthand 
for an implicit sequence of gated 
causalities between two statechanges. On 
the other hand, state coupling between two 
states, as opposed to statechanges, seems to 
be a concept which is independent of gated 
causality. To illustrate; "a nail through 
two pieces of wood" (state I) has to be 
regarded as state-coupled to "the pieces of 
wood are joined" (state 2, a description of 
the same situation, but at a different 
level): 
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In this type of situation, the state 
coupling concept is required at this level 
to stop the representation of some sort of 
inexplicable "micro-causality" when it 
transcends the model's knowledge of the 
world. 

VI. ALTERNATIVE ACTION SELECTION 

In looking at devices and simple 
processes such as sawing a board in half, 
there have been few choices; the causality 
and enablement are in a sense already built 
in or strongly prescribed. In a real 
planning environment on the other hand, 
there will ordinarily be numerous 
alternative actions which could causally 
produce some desired goal state, providing 
all gating conditions could be met. For 
example, if the goal of a planner is to 
produce a statechange in his location to 
some specified point, the various subplans 
of walking, driving a car, hitching a ride, 
bicycling, taking a plane, etc. all suggest 
themselves as potentially relevant, some 
more than others. The one the planner 
actually selects will be a function of more 
than Just the relative costs of each 
alternative; the selection will also relate 
to the inherent applicability, or 
reasonableness of the plan, based on the 
sDecif%cs of where his destination is 
relative to his current location, weather 
conditions, etc. Of course, all the 
relevant factors could eventually be 
discovered by simulating each alternative 
plan before choosing, watching out for 
undesirable or suboptimal events. For 
example, in simulating the walking, 
hitchhiking or bicycling plans, the planner 
finds himself outside for potentially long 
durations. Hence, if it is raining, the 
cost is judged high. If the distance is 
less than a mile, or is indoors, simulation 
of the airplane plan leads to some absurdly 
high costs and perhaps some unsolvable 
antagonisms. Certainly, a degree of such 
forward simulation must occur in planning; 
however, it seems that the process of 
selecting among alternative actions is, 
intuitively, more unified than just a 
collection of forward simulations. 

For this reason, the model of CSA's 
incorporates the notion of a selector, 
denoted by the construction: 



SEL is a place where heuristics, as well as 
forward simulation control can reside, The 
heuristics test relevant dimensions 
(e.g. distance, weather conditions, etc.) of 
the context in which the state or 
statechange is being sought (either for 
execution of some larger plan, or for 
interpreting what another might do in some 
context). Based on the outcomes of such 
tests, the SELector chooses one alternative 
action as most reasonable. Currently, the 
selector function is imagined to exist 
"outside" the CAS formalism as 'an 
unrestricted program which runs and decides. 
Eventually, since it is one goal of the CSA 
formalism to be able to represent arbitrary 
decision processes (these are, after all, 
just other algorithms), the SELector 
function should simply reference other CSA's 
which carry out the heuristic testing. In 
other words, defer the "intelligence" in 
selecting an alternative at this level to 
unintelligent CSA's at the next level, and 
SO on. 

VII. LEVELS OF RESOLUTIONS IN CSA'S 

The algorithmic content of a CSA can be 
described at many different levels of 
resolution. For example, the "action" "take 
a plane to San Francisco" is quite a bit 
higher in level and more abstract than the 
action "grasp a saw". In the former, the 
act of taking a plane somewhere is not 
really an action at all, but rather a 
description of an entire set of actions, 
themselves related in a CSA; "take a plane 
to San Francisco" is a high level surrogate 
for a low level collection of true actions 
in the sense of actually performing physical 
movements, etc. in the real world (things 
like grasping a saw, reaching into pants 
pocket for some money, and so on). 

Another example of resolution level 
differences relates to how enabling states 
for actions are characterized. For example, 
in (A2) Abelson employs the primitive (OKFOR 
object application), as in (OKFOR AUTO 
TRAVEL). The question here is, what is the 
relationship between this high level 
description of OKness and the specifics of 
what OKFOR means for any given object? That 
is, for a car, OKFOR means "gas in tank", 
"tires inflated", "battery charged",..., 
whereas (OKFOR TOILET FLUSHING) means quite 
a different set of things. The basic issue 
is: should the memory plan and interpret in 
the abstract realm of OKFORedness, then 
instantiate with details later, or must the 
details serve as the primary planning basis, 
with the abstract ideas being reserved for 
other higher level processes such as 
reasoning by analogy, generalization and so 
forth? There is probably no cut-and-dried 
answer; however, the tendency in a CSA 
system would be to favor the details over 
the abstract. But the CSA representation is 
intended to be flexible enough to accomodate 
both the abstract and the concrete. The 
idea of state coupling is an illustration of 
this. 

188 

VIII. THE THEORY HAS ONLY JUST BEGUN 

A later version of this paper will 
contain more examples of the CSA, including 
its use in language context problems. The 
theory is by no means complete; to 
illustrate: 

(I) Is there such a thing as gated 
enablement? The answer seems to be 
"yes", since it seems reasonable to 
regard enablement as a flow which 
can be cut off in much the same way 
as causality. Perhaps an example 
of gated enablement is when the 
horses begin their race at the 
racetrack: the start gate's being 
open is a one-shot enablement for 
the horse to run, but only if the 
horse is in the box to start with! 
If he's not in the box, the gate's 
position isn't relevant as an 
enablement to run; its flow is 
severed. 

(2) What kinds of time and sequencing 
information need to be incorporated 
in the formalism? For example, 
causality can be either abrupt or 
gradual: taking medicine for an 
ulcer provides a conceptually 
gradual statechange in the 
stomach's condition, whereas 
surgery provides a conceptually 
abrupt cure! This suggests the need 
for classifying statechanges on 
some discrete conceptual scale. 
Another inadequacy of the present 
model is its inability to specify 
time sequencing; adoption of some 
traditional flowchart concepts will 
probably prove adequate for this. 

(3) There is no convenient way to model 
decision-making processes on the 
part of the planner of a CSA. This 
will have to be developed. 

IX. APPLICATIONS OF THE CSA 

On the brighter side, the CSA provides 
a unified basis for problem-solving-related 
cognitive models. Specifically, I believe 
it shores up, under one basic data 
structure, the ideas presented in my own 
past research in conceptual memory and 
inference (RI,R2) and in conceptual overlays 
(R3) which suggests a meaning context 
mechanism for language comprehension based 
around CSA's. I want to conclude by listing 
anticipated applicaions of CSA's. The 
applications have been divided into two 
categories: general (those which are central 
to some major theoretical issues in language 
understanding and problem-solving), and 
specific (those which provide some local 
insights into memory organization). 

General ApPlications 

I. As the basis for active Rroblem-solv~ng 

The CSA supplies an algorithmic format 
wherein plans can be conceived, synthesized 
and executed. One immediate goal of 
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research should be to construct a 
commonsense algorithm1 interpreter which 
could "execute" the contents of portions of 
its own CSA memory in order to effect 
actions of moving about, communicating, and 
so forth. 

2. As the basis for conceptual inference 

In (RI), which describes a theory of 
conceptual memory and inference, sixteen 
classes of conceptual inference were 
identified as the logical foundation of'a 
language-based meaning comprehension system. 
Interestingly enough (but not surprising), 
nine of those inference classes correspond 
directly to traversals of CAS primitive 
links. In the theory of (RI), every 
language stimulus, represented in conceptual 
form via Schank's conceptual dependency 
notation (S2), was subjected to a 
spontaneous expansion in "inference space" 
along the sixteen dimensions corresponding 
to the sixteen inference classes. Making an 
inference in that model corresponds to 
identifying each perception as a step in one 
or more CSA's, then expanding outward from 
those points along the CSA links 
breadth-first. Although there is certainly 
a class of more goal-directed conceptual 
inference, this kind of spontaneous 
expansion seems necessary to general 
comprehension, and the CSA is a natural 
formalism to use. The nine classes of 
inference which relate directly to CSA links 
are: 

I. causative 
2. resultative 
3. motivational 
4. enablement 
5. function 
6. enablement-prediction 
7. missing enablement 
8. intervention 
9. action-prediction 

3. As the basis for the conceptual 
representation o_~f language. 

A very large percentage of what people 
communicate deals with algorithms, the how 
and why of their activities in the world. 
Schank's conceptual dependency framework 
does a good job at representing rather 
complex utterances which reference 
underlying actions, states and statechanges. 
This theory of CSA's extends this framework 
to accomodate larger chunks of experience 
and language to begin dealing with 
paragraphs and stories instead of isolated 
sentences. 

4. As the basis for modelin~ mechanisms 

Every man-made mechanism, as well as 
every naturally-occurring biological system, 
is rich in algorithmic content. As 
illustrated in a previous example, CSA's can 
do a respectable job at characterizing 
complex servo- and feedback mechanisms. It 
is not hard to envision the CSA as a basis 
for physiological models in such an 
application as medical diagnosis. Since all 
biological systems are purposively 
constructed mechanisms in the evolutionary 
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sense, representing such mechanisms in terms 
of causality, enablement, byproducts, 
thresholds, etc. is quite meaningful. 

5. As a basis for modeling dynamic 
meaning context i__nn language 
comprehension and general perception 

(R3) describes an expectancy-based 
system called "conceptual overlays" which 
can impose high-level, contextual 
interpretations on sentences by consulting 
its algorithmic base. In that paradigm, 
some stimuli (i.e. meaning graphs resulting 
from a conceptual parser " which receives 
language utterances as input) activate 
action overlays, while other stimuli fit 
into previously activated action overlays. 
Since an overlay is a collection of pointers 
to CSA's in the algorithmic base which have 
been predicted as likely to occur next, to 
"fit into" is to identify subsequent input 
as steps in the various algorithms actors 
have been predicted to engage. For example, 
knowing what the sentence "John asked Mary 
for the keys" means contextually is quite a 
bit more simply understanding the "picture" 
this utterance elicits (its conceptual 
dependency representation). If we know that 
John was hungry: 

John hadn't eaten in days. 
John asked Mary for the car keys. 

we activate an overlay which expects that 
John will engage CSA's which will alleviate 
his inferred hunger; needing car keys fits 
nicely as a continuous enablement in several 
of these algorithms. Of course, the virtue 
of such a system is that it allows the 
high-level interpretation of a sentence to 
change as a function of its contextual 
environment: 

John had some hamburger stuck 
in his teeth. 

John asked Mary for the car keys. 

Change the expectancies, and the 
interpretation changes! 

6. As ~he basis for 
computer al~orlthm synthesis 
~nd 

Since a computer algorithm is a 
relatively direct reflection of a 
programmer's internal model of an 
algorithmic process, it seems reasonable 
that both the processes of synthesis and 
final implementation be represented in the 
same terms as his internal model. The 
present theory only suggests an approach; it 
is not yet adequate for general computer 
algorithms. But it seems that the idea of a 
CSA might be very relevant to recent 
research in the area of automatic 
programming, at least as a basis of 
representation. 

7. As ~ basis o__ff g self-model 

If a CSA interpreter can indeed be 
defined, and if indeed the CSA can 
eventually capture any computer algorithm, 
then creating a self-model amounts to 



specifying the CSA interpreter in terms of 
CSA's. For example, an act of communication 
amounts to the communication of enough 
referential information (features of 
objects, times, etc.) to enable the 
comprehender to identify, in his own model, 
the concepts being communicated. The 
how-to-communicate algorithm which the CSA 
interpreter employs could itself be a CSA. 

8. As a basis for investigation 
of algorithm learning 

If we posit the existence of a small 
set of primitive CSA links and make the 
assumption that these are either part of the 
brain's hardware, or learned implicitly as 
soon as the intellect begins perceiving, we 
have a basis from which to study how a child 
learns world dynamics. For example, how, 
and at what point, does the toddler know 
that he must grasp the cup in an act of 
continuous enablement before he can lift it 
to his mouth, and how does he know it must 
be at his mouth before he can successfully 
drink? Perhaps algorithmic knowledge 
develops from random experimentation within 
the syntactic constraints imposed by the set 
of CSA primitive links. 

Specific CSA Applications 

I. For representing the functions of objects 

As with mechanisms, any man-made object 
is made for a purpose. Translated to CSA's, 
this means that part of every 
purposively-constructed object's definition 
is a set of pointers into the algorithm base 
to CSA's in which the object occurs. This 
is true for all objects from pencils, to 
furnaces, to window shades, to a bauble 
which provided its constructor amusement, to 
newspapers. An object in memory can be 
completely characterized (in the abstract) 
by a set of intrinsic features (shape, size, 
color, etc) and this set of pointers to 
CSA's. 

2. For representing people's professions 

To say (ISA JOHNI PLUMBER) skirts what 
it means to be a plumber. Rather, to be a 
plumber means to engage plumbing algorithms 
as a principal source of income. Thus, a 
profession can be defined by a set of 
pointers to the CSA's which are 
characteristic of that profession. This 
makes it possible to observe someone at work 
and identify his profession, to compare 
professions, etc.; these would not be 
possible if CSA's were not the basis of 
representation. 

3. For detecting and explaining 
anomalous situations and potentially 
antagonistic states 

A person notices a license plate yearly 
sticker on upside down; a person notices two 
fire engines approaching an intersection, 
rushing to a fire; at the intersection, one 
turns left, the other turns right; a person 
notices that the rain that morning will 
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interfere with the picnic plans that 
afternoon. How do such situations get 
judged "anomalous", and how does the 
perceiver try to explain or cope with them? 
The answer undoubtedly relates to 
expectancies and a knowledge of algorithms 
for putting things on one-another, getting 
somewhere in a hurry and antagonistic states 
when eating outdoors. By playing experience 
against CSA's we discover things which would 
not otherwise be discovered. 

4. For filling in missing information 

If a person is perceiving in a noisy or 
incomplete environment, having CSA's 
available to guide his interpretations of 
perceptions provides enough momentum to fill 
in missing details, scarcely noticing their 
absence. If John is hammering a nail into 
the wall with his hand on the backswing, but 
the object in his hand is occluded, it 
requires very little effort to surmise that 
it is a hammer. If we believe that Mary is 
going to McDonald's to buy a hamburger, but 
she comes back into the house saying "It 
won't start", we have a pretty good idea 
"it" refers to the car. This application of 
CSA's corresponds to the notion of a 
specification inference in (RI). 

X. CONCLUSIONS 

Instead of a conclusion, I will simply 
state the order in which research along CSA 
lines should, and hopefully will at the 
University of Maryland, progress: 

I. Reimplementation of the conceptual 
overlays prototype system described in (R3) 
to reflect the new CSA ideas and replace the 
ad-hoc AND/OR graph approach described in 
that report. 

2. Implementation of a mechanism simulator 
which could accept, in CSA terms, the 
definition of a complex mechanism 
(electronic circuit or toilet), simulate it, 
respond to artificially-induced 
malfunctions, and answer questions about the 
mechanism's cause and effect structure. 

3. Engineering of a new total conceptual 
memory, along the lines of the original one 
of (RI), but incorporatng CSA's and the new 
idea of a tendency. This would involve 
reimplementing the inference mechanism and 
various searchers. 

4. Development of a CSA interpreter which 
could not only use CSA's as data structures 
in the various cognitive processes, but also 
could execute them to drive itself. 

5. Applying CSA's to medical diagnosis and 
automatic programming. 

6. Investigating the problem of story 
comprehension via conceptual overlays and 
CSA's. Perhaps also investigating 
generation of stories (e.g. the story of 
the trip to McDonald's) or the generation of 
a description of a complex electronic 
circuit, encoded as a CSA, in layman's 
terms. 
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Figure ! 

Unrestricted AND/OR graph for getting a 
McDonald's hamburger into stomach. 

e.,~\e. 

Figure 2 

Hamburger algorithm, with actions, states, 
causality and enablement explicit. 
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FIGURE 7 

Computer algorithm to compute the 
average of TABLE(1),...,TABLE(N) 
expressed as a commonsense algorithm. 

(NOTE: Initialization has not been shown. The assumptions are 
that AC3 begins with zero, that ACI begins with zero, 
and that N and TABLE(1),...,TABLE(N) exist in core.) 


