
AUGMENTED PHRASE STRUCTURE GRAMMARS

George E. Heidorn
Computer Sciences Department

IBM Thomas J. Watson Research Center
Yorktown Heights, NY

ABSTRACT

Augmented phrase structure grammars
consist of phrase structure rules ~with
embedded conditions and structure-building
actions written in a specially developed
language. An attribute-value,
record-oriented information structure is an
integral part of the theory.

I. INTRODUCTION

An augmented phrase structure grammar
(APSG) consists of a collection of phrase
structure rules which are augmented by
arbitrary conditions and structure building
actions. This basic idea is not new, having
been used in syntax-directed compiling [e.g.
I] as well as in natural language processing
[e.g. 2], but what is new are the
particular language in which these rules are
written and the algorithms that apply them.

This brief paper is intended to serve
as an introduction to augmented phrase
structure grammars. First, the form of data
structure used is discussed, followed by
discussions of the analysis and synthesis of
text, i.e. decoding and encoding.
(Although this session of the workshop is
devoted to natural language inout, this
brief discussion of synthesis is included
because one of the important features of
APSG is the consistent manner in which both
decoding and encoding are specified.) Then
there is a section on implementations and
applications, followed by concluding
remarks.

II. DATA STRUCTURE

The data structure used by APSG is a
form of semantic network, consisting of
"records" which are collections of
attribute-value pairs. Records represent
entities, either physical or abstract, such
diverse things as vehicles, actions, words
and verb phrases. There are three different
kinds of attributes: relations, which have
as their values pointers to other records;
properties, which have as their values
either numbers or character strings; and
indicators, which have bit string values and
usually serve in a role similar to features
in linguistic terminology.

A record that has a NAME attribute is
called a "named record" and can be referred
to by using the value of the NAME attribute
in single quotes. Named records are used to
hold information that is relatively
permanent, such as information about
relevant words and concepts, and are defined
in the following manner (where the
parentheses enclose structure-building

information):

SERVIC ('ACTIVITY',E,ES,ING,ED,
TRANS,PS='VERB',XYZ=3)

It is convenient to picture a record as
a box enclosing a column of relation and
property names on the left and a column of
corresponding values on the right.
Indicators which are present in the record
(i.e. have a non-zero value) are listed at
the bottom of the box. The named record
"SERVIC" defined above could be drawn as:

I
NAME "SERVIC"
SUP "ACTIVITY"
PS "VERB"
XYZ 3

|E,ES,ING,ED,TRANS

Double quotes enclose a character string,
single quotes enclose the name of a named
record. The values of the SUPerset and PS
(part-of-speech) attributes are really
pointers to the records "ACTIVITY" and
"VERB" and could be drawn as directed lines
to those other records if they were included
in the diagram.

The named record "SERVIC" given here
could be considered to be a dictionary entry
stating that the VERB stem SERVIC can take
endings E, ES, ING and ED, the VERB SERVIC
is TRANSitive, and the concept SERVIC is an
ACTIVITY. (When a named record name appears
without the explicit mention of an attribute
name, the SUPerset attribute is assumed.)
The XYZ attribute was included just to
illustrate a numerically-valued property.
Of course, the true meaning of any of this
information depends completely upon the way
it is used by the APSG rules.

During decoding and encoding, records
called "segment records" are employed to
hold information about segments of text.
For example, the segment "are servicing"
could be described by the record:

I SUP "SERVIC"
PRES,P3,PLUR,PROG

which could be interpreted as saying that
"are servicing" is the present, third
person, plural, progressive form of
"service". Similarly, the sentence "The big
men are servicing a truck." could be
described by:

ISUP "MAN"
SUP "SERVIC" 1 ~SIZE "BIG"
AGENT i
GOAL L I ~ ~
PRES,PROG ~ S U P "TRUCK"

' ~INDEF,SING

where the indicators DEF and INDEF mean
definite and indefinite, respectively. The
sentence "A truck is being serviced by the
big men." could be described by exactly the
same record structure but with the addition
of a PASSIVE indicator in the record on the
left.

During a dialogue some records that
begin as segment records may be kept to
become part of longer term memory to
represent the entities (in the broadest
sense of the term) that are being discussed.
Segment records then might have pointers
into this longer term memory to show
referrents. So, for example, the sentence
"They are servicing a truck." might be
described by the same record structure shown
above if the referrent of "they" was known
to be a certain group of men who are big.

III. ANALYSIS OF TEXT (DECODING)

Decoding is the process by which record
structures of the sort just shown are
constructed from strings of text. The
manner in which these records are to be
built is specified by APSG decoding rules.
A decoding rule consists of a list of one or
more "segment types" (meta-symbols) on the
left of an arrow to indicate which types of
contiguous segments must be present in order
for a segment of the type on the right of
the arrow to be formed. Conditions which
must be satisfied in order for the rule to
be applicable may be stated in parentheses
on the left side of the rule, and
structure-building operations to be
performed when a new segment record is
created are stated in parentheses on the
right side.

For illustrative purposes, some of the
rules which would be required to produce the
segment records shown in the previous
section will be discussed here. Complete
examples are given in Reference 3.

If the string "servicing" appeared in
the input, and the substring "servic" were
described by the VERBSTEM segment record

I SUP "SERVIC" I

then the rule
VERBSTEM(ING*) I N G -->

VERB(SUP(VERBSTEM,PRESTART)

would form the VERB segment record

I SUP "SERVIC" 1
.PRESPART

to describe the string "servicing",
identifying it as the present participle
form of service. This rule says that if a
segment of the string being decoded is
described as a VERBSTEM, and the associated
segment record has a SUP attribute which
points to a named record which has an ING
indicator (as the named record for "SERVIC"
defined in the previous section would), and
this segment is followed immediately by the
characters "i", "n" and "g", then create a
VERB segment record with the same SUP as the
VERBSTEM and with a PRESPART indicator, to
describe the entire segment ("servicing" in
this case).

Then the rule

VERB --> VERBPH(~VERB)

would create aVERBPHrase segment record
which is a copy (4) of the VERB segment
record just shown.

If the string "are"
input were described
record

I SUP "BE"
.PRES,P3,PLUR

then the rule

appearing in the
by the VERB segment

VERB('BE') VERBPH(PRESPART) -->
VERBPH(PROG,FORM=FORM(VERB))

would produce the new VERBPH segment record

I sup SERWC I
PRES,P3,PLUR,PROG I

from the twojust shown, to describe the
string "are servicing". This rule says that
if a segment of the string being decoded is
described as a VERB with a SUP of "BE', and
it is followed by a segment described as a
VERBPH with a PRESPART indicator, then
create a new VERBPH segment record which is
a copy (automatically, because the segment
type is the same) of the VERBPH segment
record referred to on the left of the rule,
but which as a PROGressive indicator and the
FORM information from the VERB. FORM would
have previously been defined as the name of
a group of indicators (i.e. those having to
do with tense, person and number). Similar
rules can be used to recognize passives,
perfects and modal constructions.

Continuing with the example, if the
string "the big men" were decoded to the
NOUNPH segment record

I SUP "MAN"
SIZE "BIG"
DEF,PLUR

then the rule

NOUNPH VERBPH(NUMB.EQ.NUMB(NOUNPH), SUBJECT)
--> VERBPH(SUBJECT=NOUNPH,-NUMB,-PERS)

would produce the new VERBPH segment record
(the one on the left in this diagram)

I SUP "SERVIC" ISUP "MAN" I
SUBJECT ~ SIZE "BIG"
PRES,PROG DEF,PLUR

from the previous VERBPH record, to describe
the string "the big men are servicing". It
is important to realize that the record on
the left in the above diagram is a segment
record that "covers" the entire string and
that the record shown on the right (which is
the same one from the previous diagram) Just
serves as the value of its SUBJECT
attribute. The rule above says that if a
NOUNPH is followed by a VERBPH, and the
NUMBer indicators of the VERBPH are the same
as the NUMBer indicators of the NOUNPH, and
the VERBPH does not already have a SUBJECT
attribute, then create a new VERBPH segment
record which is a copy of the old one, give
it a SUBJECT attribute pointing to the
NOUNPH record, and delete the NUMBer and

I
I
t
t
!
i
I
i
i
I
I
i
I
!
I
t
I
t
ii

PERson indicators. Considering the subject
to be part of the verb phrase in this manner
can simplify the handling of some
constructions involving inverted word order.

If the string being decoded were "the
big men are servicing a truck.", a rule
similar to the last one shown above could be
used to pick up the direct object. Then the
rule

./VERBPH(SUBJECT,OBJECTI -TTRANS*IPASSIVE).
--> SENT (~VERBPH)

could be applied, which says if a VERBPH
extending between two periods has a SUBJECT
attribute and also either has an OBJECT
attribute or does not need one because there
is no TRANSitive indicator in the named
record pointed to by the SUP (i.e. the verb
is intransitive) or because there is a
PASSIVE indicator, then call it a SENTence.

To get the record structure describing
this string into the form shown near the end
of the previous section, one more rule would
be needed:

SENT($'ACTION',~PASSIVE,SUBJECT) -->
SENT(AGENT=SUBJECT,GOAL=OBJECT,

-SUBJECT,-OBJECT)

This says that for a non-PASSIVE ACTION
SENTence that still has a SUBJECT attribute,
set the AGENT and GOAL attributes to the
values of the SUBJECT and OBJECT attributes,
respectively, and then delete the SUBJECT
and OBJECT attributes from the record. The
notation $'ACTION" is read "in the set
"ACTION'" and means that the named record
"ACTION" must appear somewhere in the
SUPerset chain of the current record. In
the previous section the named record
"SERVIC" was defined to have a SUP of
"ACTIVITY'. If the named record "ACTIVITY"
were similarly defined to have a SUP of
"ACTION', the segment record under
discussion here would satisfy the condition
$'ACTION'.

From the above examples it can be seen
that the condition specifications take the
form of logical expressions involving the
values of attributes. Each element in a
condition specification is basicaly of the
form value.relation.value, but this is not
obvious because there are several notational
shortcuts available in the rule language.
For example, "BE" is short for
SUP.EG.'BE',PRESPART is short for
PRESPART.NE.0, and -~SUBJECT is short for
SUBJECT.EQ.0. The elements are combined by
and's (commas) and or's (vertical bars).

In most cases the attribute whose value
is being tested is to be found in the
segment record associated with the
constituent, but that is not always the
case. For example, ING* tests the value of
the ING indicator in the named record
pointed to by the SUP of the segment record,
and could be written ING(SUP) or
ING(SUP).NE.0. Another example is
NUMB(NOUNPH) which was used to refer to the
value of the NUMB indicators in the NOUNPH
segment in one of the rules above.

From the examples it can also be seen
that creation specifications take the form
of short procedures consisting of statements
for setting the values of attributes. Each
element in a creation specification is
basically of the form attribute=value (where
"=" means replacement), but again this is
not obvious becuase of the notational
shortcuts used. For example, SUP(VERBSTEM)
is short for SUP=SUP(VERBSTEM), PRESPART is
short for PRESPART:I (note that this form
has a different meaning when it is used in a
condition specification), and -SUBJECT is
short for SUBJECT=0.

In all of the examples here, the
attribute whose value is set would be in the
segment record being built, but that need
not always be the case. If, for example,
there were some reason to want to give the
AGENT record of an action an ABC attribute
equal to one more than the XYZ attribute of
the concept record associated with that
action (i.e. the named record pointed to by
its SUP), the following could be included in
the last rule shown:

ABC(AGENT)=XYZ(SUP)+I

which can be read as "set the ABC attribute
of the AGENT of this record to the value of
the XYZ attribute of the SUP of this record
plus I." There is no limit to the nesting of
attribute names used in this manner.

Although in the example rules given
here the conditions are primarily syntactic,
semantic constraints can be stated in
exactly the same manner. Much of the record
building shown here can be considered
semantic (and somewhat case oriented). The
important point, however, is that the kind
of condition testing and structure building
done is at the discretion of the person who
writes the rules. Complete specifications
for the APSG rule language are given in
Reference 3.

The decoding algorithm used with APSG
is basically that of a bottom-up,
left-to-right, parallel-processing,
syntax-directed compiler. An important and
novel feature of this algorithm is something
called a "rule instance record", which
primarily maintains information abut the
potential applicability of a rule. A rule
instance record is initially created for a
rule whenever a segment which can be the
first constitutent of that rule becomes
available. (A terminal segment becomes
available by being obtained from the input
stream, and a non-terminal segment becomes
available whenever a rule is applied.) Then
the rule instance record "waits" for a
segment which can be the next constituent of
the associated rule to become available.
When such a segment becomes available, the
rule instance record is "extended". When a
rule instance record becomes complete (i.e.
all of its constituents are available), the
associated rule is applied (i.e. the
segment record specified on the right is
built and made available). There may be
many rule instance records in existence for
a particular rule at any point in time.

Because of the parallel processing
nature of the decoding algorithm, when a
segment record is created to describe a
portion of the input text it does not result
in the destruction of other records
describing the same portion or parts of it.
Local ambiguities caused by multiple word
senses, idioms and the like may result in
more than one segment record being created
to describe a particular portion of the
text, but usually only one of them is able
to combine with its neighbors to become part
of the analysis for an entire sentence.

IV. SYNTHESIS OF TEXT (ENCODING)

Encoding is the process by which
strings of text are produced from record
structures of the sort already shown. The
manner in which this processing is to be
done is specified by APSG encoding rules.
The right side of an encoding rule specifies
what segments a segment of the type on the
left side is to be expanded into.
Conditions and structure-building actions
are included in exactly the same manner as
in decoding rules.

The encoding algorithm begins with a
single segment record and its associated
type side-by-side on a stack. At each cycle
through the algorithm, the top pair is
removed from the stack and examined. If
there is a rule that can be applied, it
results in new pairs being put on the top of
the stack, according to its right hand side.
Otherwise, either the character string value
of the NAME attribute of the SUP of the
segment record (e.g. "servic") is put out,
or the name of the segment type itself (e.g.
"I") is put out. Eventually the stack
becomes empty and the algorithm terminates,
having produced the desired output string.

For example, if at some point the
following pair were to come off the top of
the stack:

VERBPH I SUP "SERVIC" I
PRES,P3,PLUR,PROG

the following encoding rule could be
applied:

VERBPH(PROG) -->
VERB('BE',FORM:FORM(VERBPH))
VERB(-PROG,-FORM,PRESPART)

resulting in the following two pairs being
put on the top of the stack:

VERB ISUP "BE"
PRES,P3,PLUR

VERBPH I SUPPRESPART'SERVIC" 1

The above rule says that a VERBPH segment
with a PROGressive indicator should be
expanded into a VERB segment with a SUP of
"BE" and the same FORM indicators as the
VERBPH, followed by a new VERBPH segment
which begins as a copy (automatically) of
the old one and then is modified by deleting
the PROG and FORM indicators and setting the

PRESPART indicator.

When the VERB segment shown above comes
off the stack, a rule would be applied to
put the string "are" into the output. Then,
after application of a couple more rules,
the top of the stack would have the four
pairs

VERBSTEM [SUP "SERVIC" i
I null
N null
G null

which would result in the string "servicing"
being produced after four cycles of the
algorithm. Complete encoding examples may
be found in Reference 3.

V. IMPLEMENTATIONS AND APPLICATIONS

As part of the original work on APSG a
computer system called NLP (~atural Language
~rocessor) was developed in 1968. This is a
FORTRAN program for the IBM 360/370
computers which will accept as input named
record definitions and decoding and encoding
rules in exactly the form shown in this
paper and then perfor m decoding and encoding
of text [3]. A set of about 300 named
record definitions and 800 rules was written
for NLP to implement a specific system
(called NLPQ) which is capable of carrying
on a dialogue in English about a simple
queuing problem and then producing a program
in the GPSS simulation language to solve the
problem [3,4].

More recently a LISP implementation of
NLP has been done, which accepts exactly the
same input and does the same processing as
the FORTRAN version. An interesting feature
of this new version is that the compiler
part, whose primary task is to translate
condition and creation specifications (i.e.
the information in parentheses) into lambda
expressions, is itself written as a set of
APSG rules. This work is part of a project
at IBM Research to develop a system which
will produce appropriate accounting
application programs after carrying on a
natural language dialogue with a businessman
about his requirements. APSG is also being
used in the development of a natural
alaaguage query system for relational data
bases and is being considered for use in
other projects at IBM. None of this recent
work has been documented yet.

VI. CONCLUDING REMARKS

APSG clearly has much in common with
other current computational linguistic
theories, with the ideas of procedural
specification and arbitrary conditions and
strucutre-building actions being very
popular at this time. It would seem to be
most similar to Woods" augmented transition
networks (ATN) [5], especially as used by
Simmons [6]. Registers in the ATN model
correspond closely to attributes of segment
records in APSG, and the semantic network
structures of Simmons are very close to the
record structures of APSG.

!
!

i
|

!
!

!
p!
|
!

I
!
!

!

D
!

!

Context-free phrasestructure grammars
have been known to be inadequate for
describing natural languages for many years,
and context-sensitive phrase structure
grammars have not been found to be very
useful, either. Augmented phrase structure
grammars, however, appear to be able to
express the facts of a natural language in a
very concise and convenient manner, they
have the power of computer programs, while
maintaining the appearance of grammars.

Although APSG was used successfully to
implement one fairly large system (NLPQ), it
is too early to do a thorough appraisal of
its capabilities. Through the extensive use
anticipated in the next year however, its
strengths and weaknesses should become more
apparent.

ACKNOWLEDGEMENTS

I am indebted to my former students at the
Naval Postgraudate School for their efforts
on the original implementation and
application, my colleagues at IBM
Research -- Martin Mikelsons, Peter
Sheridan, Irving Wladawsky and Ted
Codd -- for their interest, ideas and work
on the current implementatons and
applications, and my wife, Beryl, for her
typing assistance and general helpfulness.

REFERENCES

I. Balzer, R.M., and Farber, D.J.,
"APAREL - a parse-request language,"
COMM. ACM 12, 11 (Nov. 1969), 624-631.

2. Thompson, F.B., Lockemann, P.C., Dostert,
B., Deverill, R.S., "REL: a rapidly
extensible language system," In PROC.
24th NAT'L CONF., ACM, NY, 1969, 399-417.

3. Heidorn, G.E., "Natural language inputs
to a simulation programming system,"
Technical Report NPS-55HD72101A, Naval
Postgraduate School, Monterey,
California, Oct. 1972.

4. Heidorn, G.E., "English as a very high
level language for simulation
programming," Proc. Symp. on Very High
Level Languages, SIGPLAN NOTICES 9,4
(April 1974), 91-100.

5. Woods, W.A., "Transition network grammars
for natural language analysis," COMM.
ACM 13, 10 (Oct. 1970), 591-606.

6. Simmons, R.F., "Semantic networks: their
computation and use for understanding
English sentences," in COMPUTER MODELS OF
THOUGHT AND LANGUAGE, R.C. Schank and
K.M. Colby (Eds.), W.H. Freeman and
Co., San Francisco, Calif., 1973, 63-113.

!

DIAGNOSIS AS A NOTION OF GRAMMAR

Mitchell Marcus
Artificial Intelligence Laboratory

M.I.T.

This paper will sketch an approach to
natural language parsing based on a new
conception of what makes up a recognition
grammar for syntactic analysis and how such
a grammar should be structured. This theory
of syntactic analysis formalizes a notion
very much like the psychologist's notion of
"perceptual strategies" [Bever "70] and
makes this formalized notion - which will be
called the notion of wait-and-see
diagnostics - a central and integral part of
a theory of what one knows about the
structure of language. By recognition
grammar, we mean here what a speaker of a
language knows about that language that
allows him to assign grammatical structure
to the word strings that make up utterances
in that language.

This theory of grammar is based on the
hypothesis that every language user knows as
part of his recognition grammar a set of
highly specific diagnostics that he uses to
decide deterministically what structure to
build next at each point in the process of
parsing an utterance. By deterministicali¥
I mean that once grammatical structure is
built, it cannot be discarded in the normal
course of the parsing process, i.e. that no
"backtracking" can take place unless the
sentence is consciously perceived as being a
"garden path". This notion of grammar puts
knowledge about controlling the parsing
process on an equal footing with knowledge
about its possible outputs.

To test this theory of grammar, a
parser has been implemented that provides a
language for writing grammars of this sort,
and a grammar for English is currently being
written that attempts to capture the
wait-and-see diagnostics needed to parse
English within the constraints of the
theory. The control structure of the parser
strongly reflects the assumptions the theory
makes about the structure of language, and
the discussion below will use the structure
of the parser as an example of the
implications of this theory for the parsing
process. The current grammar of English is
deep but not yet broad; this has allowed
investigation of the sorts of wait-and-see
diagnostics needed to handle complex English
constructions without a need to wait until a
grammar for the entire range of English
constructions could be written. To give
some idea of the scope of the grammar, the
parser is capable of handling sentences
like:

Do all the boys the librarian gave
books to want to read them?
The men John wanted to be believed by shot
him yesterday.
It should be mentioned that certain
grammatical phenomena are not handled at all
by the present grammar, chief among them
conjunction and certain important sorts of
lexical ambiguity. There is every
intention, however, of expanding the grammar

to deal with them.

Two Paradigms

To explain exactly what the details of
this wait-and-see (W&S) paradigm are, it is
useful to compare this notion with the
current prevailing parsing paradigm, which I
will call the guess-and-then-backup (G&B)
paradigm. This paradigm is central to the
parsers of both Terry' Winograd's SHRDLU
[Winograd "72] and Bill Woods" LUNAR [Woods
"72] systems.

In a parser based on the G&B paradigm,
various options are enumerated in the
parser's grammar for the next possible
constituent at any given point in the parse
and these options are tested one at a time
against the input. The parser assumes
tentatively that one of these options is
correct and then proceeds with this option
until either the parse is completed or the
option fails, at which point the parser
simply backs up and tries the next option
enumerated in the parser's grammar. This is
the paradigm of G&B: enumerate all options,
pick one, and then (if it fails) backup and
pick another. While attempts have been made
to make this backup process clever,
especially in Winograd's SHRDLU, it seems
that it is very difficult, if not impossible
in general, to tell from the nature of the
cul de sac exactly where the parser has gone
astray. In order to parse a sentence of
even moderate complexity, there are not one
but many points at which a G&B parser must
make guesses about what sort of structure to
expect next and at all of these points the
correct hypothesis must be found before the
parse can be successfully completed.
Furthermore, the parser may proceed
arbitrarily far ahead on any of these
hypotheses before discovering that the
hypothesis was incorret, perhaps
invalidating several other hypotheses
contingent upon the first. In essence, the
G&B paradigm considers the grammar of a
natural language to be a tree-structured
space through which the parser must blindly,
though perhaps cleverly, search to find a
correct parse.

The W&S paradigm rejects the notion of
backup as a standard control mechanism for
parsing. At each point in the parsing
process, a W&S parser will only build
grammatical structure it is sure it can use.
The parser does this by determining, by a
two part process, which of the hypotheses
possible at any given point of the parse is
correct before attempting any of them. The
parser first recognizes the specific
situation it is in, determined both on the
basis of global expectations resulting from
whatever structure it has parsed and
absorbed, and from features of lower level
substructures from a little ahead in the
input to which internal structure can be
assigned with certainty but whose function
is as yet undetermined. Each such situation
can be so defined that it restrains the set
of possible hypotheses to at most two or
three. If only one hypothesis is possible,
a W&S parser will take it as given,
otherwise it will proceed to the second step

!
!

i
!
!

I
I
I
I
I

I

I

I

I
I

I

i
I
I
!

I

of the determination process, to do a
~ifferential diagnosis to decide between the
competing hypotheses. For each different
situation, a W&S grammar includes a series
of easily computed tests that decides
between the competing hypotheses. The key
assumption of the W&S paradigm, then± i_gs
that the structure of natural language
provides enough and the right information t__~o
~etermine exactly what too d__oo next at each
point of ~ Parse. There is not sufficient
room here to discuss this assumption; the
reader is invited to read [Marcus ~74],
which discusses this assumption at length.

Th___~e Parser Itself

• To firm up this talk of "expectations',,
"situations", and the like, it it useful to
see how these notions are realized in the
existing W&S parsing system. Before we can
do this, it will be necessary to get an
overview of the structure and operation of
the parser itself.

A grammar in this system is made up of
packets of pattern-invoked demons, which
will be called modules. (The notion of
packet here derives from work by Scott
Fahlman [Fahlman "73].) The parser itself
consists of two levels, a group level and a
clause level, and any packet of modules is
intended to function at one level or the
o~her. Modules at group level are intended
to work on a buffer of words and word level
structures and to eventually build group
level structures, such as Noun Grouos (i.e.
Noun Phrases up to the head noun) and Verb
GrouPs (i.e. the verb cluster up to the
main verb), which are then put onto the end
of a buffer of group level structures not
yet absorbed by higher level processes.
Modules at clause level are intended to work
on these substructures and to assemble them
into clauses. The group buffer and the word
buffer can both grow up to some
predetermined length, on the order of 3, 4,
or 5 structures. Thus the modules at the
level above needn't immediately use each
structure as it comes into the buffer; but
rather can let a small number of structures
"pile up" and then examine these structures
before deciding how to use the first of
them. In this sense the modules at each
level have a limited, sharply constrained
look-ahead ability; they can wait and see
what sort of environment surrounds a
substructure in the buffer below before
deciding what the higher level function of
that substructure is. (It should be noted
that the amount of look-ahead is constrained
not only by maximum buffer length but also
by the restriction that a module may access
only the two substructures immediately
following the one it is currently trying to
utilize. This constraint is necessary
because the substructure about to be
utilized at any moment may not be the first
in the buffer, for various reasons.)

Every module consists of a pattern, a
pretest procedure, and a body to be executed
if the pattern matches and the pretest
succeeds. Each pattern consists of an
ordered list of sets of features. As
structures are built up by the parser, they

are labelled with features, where a feature
is any property of a structure that the
grammar wants to be visible at a glance to
any module looking even casually at that
structure. (Structures can also have
registers attached to them, carrying more
specialized sorts of information; the
contents of a register are privileged in
that a module can access the contents of a
register only if it knows the name of that
register.) A module's pattern matches if the
feature sets of the pattern are subsumed by
the feature sets of consecutive structures
in the appropriate buffer, with the match
starting at the effective beginning of the
buffer.

Very few modules in any W&S grammar ae
always active, waiting to be triggered when
their patterns match; a module is active
only when a packet it is in has been
activated, i.e. added to the set of
presently active packets. Packets are
activated or deactivated by the parser at
the specific order of individual modules;
any module can add or remove packets from
the set of active packets if it has reason
to do so.

A priority ordering of modules provides
still further control. Every module is
assigned a numerical priority, creating a
partial ordering on the active modules. At
any time, only the highest-prioritied module
of those whose patterns match will be
allowed to run. Thus, a special purpose
module can edge out a general purpose module
both of whose patterns match in a given
environment, or a module to handle some
last-resort case can lurk low in a pool of
active modules, to serve as default only if
no hlgher-prioritied module responds to a
situation.

Firmin~ Up The Notion Of Situation

This, in brief, is the structure of the
W&S parser; now we can turn to a discussion
of how this structure reflects the
theoretical framework discussed above. Let
us begin by recasting a statement made
above: In deciding what unique course of
action to take at any point in the parse,
the parser first recognizes a specific
well-deflned situation on the basis of a
combination of global expectations and the
specific features of lower level
substructures which are as yet unabsorbed.

It should now become clear that what it
means to have a global expectation is that
the appropriate packet is active in the
parser, and that each module is itself the
specialist for the situation that its
packet, pattern and pretest define. The
grammar activates and deactivates packets to
reflect its global expectations about
syntactic structures that may be encountered
as a result of what it has seen so far.
(The parser might also activate packets on
the basis of what some higher level process
in a natural language understanding system
tells it to expect by way of discourse
phenomena.) These packets often reflect
rather large scale grammatical expectations;
for example, the following are some packets

