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Abstract

This paper describes our submission to
SemEval-2019 Task 12 on toponym resolution
in scientific papers. We train separate NER
models for toponym detection over text ex-
tracted from tables vs. text from the body of
the paper, and train another auxiliary model
to eliminate mis-detected toponyms. For to-
ponym disambiguation, we use an SVM clas-
sifier with hand-engineered features. Our best
model achieved a strict micro-F1 score of
80.92% and overlap micro-F1 score of 86.88%
in the toponym detection subtask, ranking 2nd
out of 8 teams on F1 score. For toponym dis-
ambiguation and end-to-end resolution, we of-
ficially ranked 2nd and 3rd, respectively.

1 Introduction

Toponym resolution (TR) refers to the task of
automatically assigning geographic references to
place names in text, which has applications in
question answering and information retrieval tasks
(Leidner, 2008; Daoud and Huang, 2013; Vasar-
dani et al., 2013), user geolocation prediction
(Roller et al., 2012; Han et al., 2014; Rahimi
et al., 2015), and historical research (Grover et al.,
2010).

This paper describes our system entry to the To-
ponym resolution in scientific paper task of Se-
mEval 2019 (Weissenbacher et al., 2019). The task
consists of three subtasks: toponym detection, to-
ponym disambiguation, and end-to-end toponym
resolution.

For the toponym detection task, we extract ta-
bles from the full text and train separate BiLSTM-
ATTN models for each. For tables, the model cap-
tures the horizontal row-wise structure of the ta-
ble. For non-table content, the model can capture
syntactic and semantic features. In both cases, we
use a deep contextualized word representation —
ELMo (Peters et al., 2018) — to represent each

token. After detecting toponyms, we use an orga-
nization name detection model to eliminate mis-
detected toponyms that are actually part of an or-
ganization name. For the toponym disambiguation
task, we first construct a candidate set by search-
ing toponyms on GeoNames.1 Then, we manu-
ally construct features based on search results, and
finally, train an SVM model to disambiguate the
locations. For the end-to-end resolution task, we
pipeline the two aforementioned steps.

Our work makes the following contributions:

• we show that training separate models for ta-
ble and non-table portions of the paper is bet-
ter than simply training one model over the
full text;

• we show that contextualized word represen-
tation boosts performance;

• we show that auxiliary organization name
recognition model is helpful for toponym
detection, and better than training a single
named entity recognizer (NER).

2 Toponym Detection

Figure 1 shows our workflow on the toponym de-
tection task, which consist of 4 parts: (a) pre-
processing, which contains tokenization, table ex-
traction and sentence segmentation; (b) training
and inference for the toponym detection model; (c)
post-processing, to combine detected words into
toponyms; and (d) refinement of the results by in-
corporating an auxiliary model.

2.1 Pre-processing

Tables are ubiquitous in scientific articles, and dif-
fer in structure to text in the body of the paper, in

1GeoNames, https://www.geonames.org/ is a
freely available global placename database.

https://www.geonames.org/
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Figure 1: Toponym detection workflow

terms of syntactic structure. As such, training a
single text embedding model over both the main
body of text and tables will likely lead to sub-
optimal representations, leading us to train sepa-
rate models for: (1) tables, and (2) the remainder
of the text content of the paper. To extract tables
from the plain text dump provided by the shared
task organisers, we use a rule-based table detec-
tion method.

We first tokenize the entire article, as part of
which we treat all punctuation as a separator. In
the process of table extraction, we process the raw
text line-by-line rather than performing sentence
tokenization. We treat numbers, OOV tokens (us-
ing GloVe vocabulary), |, and - as table elements,
and consider lines with more than 70% of table
elements to be table rows. Three or more consec-
utive table rows are considered to make up a table.
In this way, we extract tables from the plain text
dump of the articles. Note that the original PDF
versions of papers were not made available by the
task organizers, meaning that it wasn’t possible to
use vision-based methods to identify tables.

For the remainder of the text dump not detected
as tables, we perform tokenization, remove hy-
phens caused by line breaks, and then perform sen-
tence segmentation using SpaCy.2 Sentences that

2https://spacy.io

are shorter than 5 tokens in length are concate-
nated with the preceding and proceeding sentences
to make up a single sentence. By expanding short
sentences, richer context can be exploited by both
ELMo and the RNN-based model.

2.2 Contextual Representation
We use ELMo (Peters et al., 2018) word repre-
sentations in this paper, which are learned from
the internal states of a deep bidirectional language
model (biLM), pre-trained on a large text cor-
pus. ELMo representations are purely character-
based, allowing the network to use morphologi-
cal clues to form robust representations for out-
of-vocabulary tokens unseen in training. They are
also robust to syntactic disfluencies caused by the
fine-grainedness of word segmentation. For the
purposes of empirical comparison, we also report
on experiments using GloVe (Pennington et al.,
2014) embeddings.

2.3 Models
For toponym extraction in the table part, we ex-
perimented with two kinds of models. The first is
a token-level model which is described in Magge
et al. (2018). In this model, each training instance
consists of an input word, the word’s context, and
a label indicating whether the word is a part of a
toponym. The context of the word is formed by the
words in its neighbourhood, which is a window
of words centred on the given word. We exper-
imented with two- and three-layer feed-forward
models.

The second model is built with RNN and self-
attention (Vaswani et al., 2017). Although an RNN
is able to make predictions over long sequences,
the documents in this task are too long for an
RNN, and at the same time, the size of the train-
ing data is not sufficient to train an RNN. As such,
we split each document with several sentences and
make predictions on separate sentences (hidden
states are not passed through sentences). We use
a two-layer bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) to capture the sequential in-
formation of the body and table contents, and use
self-attention to enhance the connection of each
token in the line. We consider the paper body
content to have semantic information which can
be captured by a sequential model like a BiLSTM.
However, for tables, it is not clear that sequential
information across cells in a table row should be
processed as a sequence. Therefore, we use self-

https://spacy.io
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attention to learn the table structure over an entire
line. We consider each sentence as a matrix which
we denote as L, where L ∈ Rt×h; t represents
the number of tokens in the line, and h is the di-
mensionality of the embedding representation. To
improve training efficiency, we pack l lines into a
single batch, thereby making L become a three-
dimensional tensor L ∈ Rl×t×h. We pad short
lines to make the same length as the longest line
in a batch, and set the embedding of each padding
word to a zero vector with dimensionality h.

We first encode each line with a two-layer bi-
directional LSTM, denoted as:

L′ = BiLSTM(L) (1)

Then, we feed L′ into the attention model to en-
code structural information. The attention model
can be denoted as follows:

Attn(Q,K, V ; θQ, θK , θV ) =

Softmax
(
f(Q; θQ)f(K; θK)>√

h

)
f(V ; θV )

(2)

This style of attention is named scaled dot-
product attention by Vaswani et al. (2017), where
Q,K, V ∈ Rt×h represent the query, key, and
value, respectively, and can be described as map-
ping a query and a set of key–value pairs to an
output, where the query, keys, values, and output
are all vectors. In this model, we use tokens in the
same line to represent the query, key, and value,
and use the attention function Attn to find self-
correlations among them. Meanwhile, in Eqn 2 we
define f to be a one-layer feed-forward network
with different parameter sets θQ, θK , θV , which
we denote as f(X; θ). This allows us to learn the
correlation with these three parameter sets. We use
the following attention function:

L′′ = Attn(L′, L′, L′) (3)

Finally, we pass L′′ into a 3-layer feed-forward
network denoted as g, using layer normalization
in each layer to increase the training speed. The
output of the feed-forward block is passed into the
output layer with a residual connection with L′′,
denoted as:

ŷ = φ(g(L′′) + L′′) (4)

The architecture of the model is shown in Fig-
ure 2.
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Figure 2: RNN with self attention

2.4 Post-processing

Since we are training a sequence labelling model,
result segmentation and combination is necessary.
For instance, the sentence AIV H9N2 was spread
to New York, Washington DC and Ottawa con-
tains three toponyms, and 5 tokens which are con-
tained in those toponyms (e.g. the words New and
York are combined into one toponym). An exter-
nal gazetteer3 downloaded from GeoNames, and
an in-house place name abbreviation library were
used.

We first restore all abbreviations in order to fa-
cilitate matching in the gazetteer. We then com-
bine all consecutive tokens that were labelled as a
toponym. After this, two different segmentation
methods were used: (1) longest string match in
the gazetteer; and (2) no segmentation. The result
shows that the second method is better because of
the limitation of string matching. We think us-
ing a better toponym match method like searching
via Geonames rather than string matching could
achieve better results.

2.5 Auxiliary Model

The single NER model picks up on features such
as the word-initial character being uppercase, that
are also common in non-toponym named entities,
possibly resulting in toponym named entity FPs.

3http://download.geonames.org/export/
dump/allCountries.zip

http://download.geonames.org/export/dump/allCountries.zip
http://download.geonames.org/export/dump/allCountries.zip
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Model Overlap Micro Strict Micro

Precision Recall F1 Precision Recall F1

Table
BiLSTM 78.11 69.54 73.58 74.91 65.77 70.04

BiLSTM+Attn 80.27 73.06 76.50 76.63 69.14 72.69

Non-table
BiLSTM 93.37 90.69 92.01 89.64 84.55 87.02

BiLSTM+Attn 93.65 90.38 91.99 90.11 84.78 87.36
BiLSTM+Attn+Aux 94.66 90.23 92.39 90.98 84.50 87.62

Single BiLSTM+Attn+Aux 90.15 85.22 87.62 85.73 71.67 78.07
Combined BiLSTM+Attn 90.77 86.27 88.46 85.02 72.59 78.31
Combined BiLSTM+Attn+Aux 91.35 82.83 86.88 84.69 77.48 80.92

Table 1: Performance of different models. “Table” refers to the performance on the table part, and “Non-table”
the non-table part; “Single” refers to the single model on the entire article; “Combined” refers to the combination
of the two models on table and non-table parts; and “+Aux” refers to the use of the auxiliary model to eliminate
misdetected toponyms.

For example, in the phrase The Royal Melbourne
Hospital, the word Melbourne should not be de-
tected as toponym according to the competition
setting. This issue was also identified by Dredze
et al. (2009).

In this paper, we use two methods to tackle
this. The first is to train a single NER to detect
toponyms and organization names together. The
second is to train an organization name recognizer
to correct misdetected toponyms in organization
names.

We used the WikiNER (Nothman et al., 2012)
dataset to train an organization detection model,
and applied it to our dataset. Then we build an
organization type set containing Institute, School,
Hospital etc.. Finally, we re-label toponyms that
are part of a corresponding organization name as
non-toponyms.

3 Toponym Disambiguation

We used a support vector machine to disambiguate
toponyms. For each detected toponym, we first
search for it on Geonames, and keep the top 20
records as candidate results. Features are con-
structed from this, as follows:

• History Result: If the toponym appears in
the training set, history result refers to the
ranking of the number of times the Geon-
ames ID appears as a standard answer. For
instance, the toponym Melbourne appears 13
times in training, of which 12 occurrence
have Geonames ID 2158177 and 1 has ID
7839805, so the history result feature for

2158177 is 1, 7839805 is 2, and all other
Geonames IDs are 3.

• Population: The ranking of the population of
the candidate.

• GeoNames Feature Codes: The feature
class codes of Geonames records, e.g. A rep-
resents country, state, region,...; P city, vil-
lage,...; etc.

• Name Similarity: The ranking of the string
similarity of the toponym and Name item in
each record.

• AncestorsNames Correlation: The ranking
of matching words of the AncestorsNames
item in each record.

4 Experiments and Results

4.1 Experiment Setting

The model architecture used for the toponym de-
tection task is depicted in Figure 2. We use
the Adam (Kingma and Ba, 2015) optimizer with
β1 = 0.9, β2 = 0.999, ε = 10−9 and an ini-
tial learning rate of 1e−3. A dropout (Srivastava
et al., 2014) rate of 0.5 is used to prevent overfit-
ting. The hidden size (d) of the model is 300, and
cross-entropy loss is used for training.

To compare different word embeddings, we use
pre-trained 300-dimensional GloVe embeddings
and pre-trained 1024 dimensional EMLo embed-
dings, respectively. We do not update the word
embeddings during training.
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Embedding Precision Recall F1

GloVe 80.47 75.03 77.65
ELMo 84.69 77.48 80.92

Table 2: Performance of different word representations

4.2 Results
We randomly selected 10 articles from the train-
ing set to manually evaluate the table extraction
method: 26 out of 27 tables were detected, and 3
non-table parts were misidentified as tables. 62%
of tables are exactly accurate, or in other words,
38% tables have some lines misidentified.

Table 1 shows the subtask 1 performance (pre-
cision, recall and F1 score) of different models on
the table and non-table parts. Strict and overlap-
ping micro measures results are reported. In the
strict measure, model outputs are considered to
match with the gold standard annotations if they
cover the exact same span of text; whereas in the
overlapping measure, the model output is consid-
ered to match if it overlap in span with the gold-
standard. From Table 1, we see that self-attention
improves the results on both table and non-table
parts, but is particularly effective for the table
part. Experimental results on the non-table part
are further improved by incorporating the auxil-
iary model. Finally, the combined model perform
is better than a single model on entire articles.

Table 2 shows the subtask 1 performance of dif-
ferent word representations. From that, we find
that using ELMo representation is much better
than using GloVe embeddings. The reason is that
our tokenization method separates many words
like I’m, let’s, which ELMo can generate a contex-
tualized representation for, while GloVe cannot.
Furthermore, there are many numbers and OOVs
in the tables, the GloVe embedding for which is a
random 300-dimensional vector that does not pro-
vide useful context information.

5 Conclusions

In this work, we presented a method for toponym
detection and disambiguation in scientific papers,
in the context of Sem-Eval 2019 Task 12, using an
LSTM model and SVM model respectively. We
extract tables from plain text, and train a dedi-
cated model for each to improve overall perfor-
mance due to the different structures of tables and
the body of text. We also demonstrated the per-

formance of the different models for toponym de-
tection, with our final submission coming in 2nd
(among 8).
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