
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1047–1051
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

1047

Team Xenophilius Lovegood at SemEval-2019 Task 4: Hyperpartisanship
Classification using Convolutional Neural Networks

Albin Zehe, Lena Hettinger, Stefan Ernst, Christian Hauptmann and Andreas Hotho
DMIR Group, University of Wuerzburg

<surname>@informatik.uni-wuerzburg.de

Abstract

This paper describes our system for the Sem-
Eval 2019 Task 4 on hyperpartisan news de-
tection. We build on an existing deep learning
approach for sentence classification based on
a Convolutional Neural Network. Modifying
the original model with additional layers to in-
crease its expressiveness and finally building
an ensemble of multiple versions of the model,
we obtain an accuracy of 67.52% and an F1
score of 73.78% on the main test dataset. We
also report on additional experiments incorpor-
ating handcrafted features into the CNN and
using it as a feature extractor for a linear SVM.

1 Introduction

The goal of SemEval 2019 Task 4 is to determine
whether a news article blindly follows a political
argumentation or not, which is referred to as ”hy-
perpartisan news” (Kiesel et al., 2019). Instead of
predicting the exact political orientation, it focuses
on whether an article is hyperpartisan in any way.
This is a very topical issue since news are easily
able to reach millions of people over the internet,
and in recent years have been excessively used to
influence the population, for example regarding
elections. Specifically, one sided media coverage
influences a lot of readers without their knowledge,
demonstrating the necessity of automated detection
of hyperpartisan news.

Approach In this work, we make use of deep
learning models to address this task. We decided to
adapt the sentence CNN proposed by Kim (2014),
as it has been shown to be a strong baseline for text
classification tasks. Since the model was originally
designed for the classification of sentences, we had
to make some modifications in order to deal with
the longer texts provided in this task. While the
very shallow model originally proposed by Kim
(2014) is enough to adequately represent sentences,

we found that it is not expressive enough to model
entire news articles. Thus, we added a second con-
volutional layer and a batch normalization layer
(Ioffe and Szegedy, 2015) to the model. Addition-
ally, we specified a maximum length for articles,
after which they are cut off. These modifications
will be described in more detail in Section 3. We
also experiment with including some hand-crafted
features into the model in an attempt to improve
the performance. Finally, we build an ensemble of
multiple models to obtain our final results.

2 Feature Extraction

In order to train our models, we need to represent
the input texts in some machine readable form. The
data provided in the task contains multiple kinds of
information that we use in different parts of our sys-
tem, namely the CNN model and the hand-crafted
features extracted to provide additional informa-
tion.

2.1 CNN Model
On the one hand, our main CNN model is based
purely on the text of the articles and requires little
pre-processing. For this part, we built a specialized
parser1 to remove HTML tags and split the texts
into tokens, which are then directly used as input
to the CNN. We chose to allow some special char-
acters like punctuation marks to support the model
identifying different sentences. Contractions like
they’re or he’s are split to obtain separate tokens
which can then be mapped to existing ones.

An article is then represented as a sequence
of one-hot vectors, where each dimension corres-
ponds to a word in the vocabulary. This sequence
is concatenated to form a matrix M ∈ Nl×v, where
l is the length of the article and v is the vocabulary
size.

1https://github.com/o8Gravemind8o/nlp_
tokenizer

https://github.com/o8Gravemind8o/nlp_tokenizer
https://github.com/o8Gravemind8o/nlp_tokenizer


1048

Word Embeddings As is common for NLP
tasks, we use embedding vectors to represent the
semantic meaning of tokens. Since the provided
datasets are rather large and previous work has
shown that domain specific word embeddings can
greatly improve classifier performance compared
to general embeddings (Hettinger et al., 2018), we
train our embeddings on these datasets. More spe-
cifically, we use Word2Vec (Mikolov et al., 2013)
as well as FastText (Bojanowski et al., 2017) to
retrieve different embeddings and see how they
perform in different approaches.

Dealing with Variable Article Length Due to
CNNs not being able to process input of arbitrary
length, we decided to represent articles with a fixed
length of 2000 tokens. Articles that exceed this
length are cut off at 2000 tokens. This saves a lot
of training time and affects less than 3% of the
articles. In the same way, we pad articles shorter
than 2000 tokens with zeros to achieve a consistent
input size.

2.2 Hand-Crafted Features

On the other hand, we employ hand-crafted fea-
tures partially based on the metadata that is con-
tained in the HTML. We do this to enable our clas-
sifiers to use information that may not be contained
in the raw text and also possibly recover informa-
tion that is lost by the length limit we impose on
the articles. For this purpose, we choose several
kinds of information from the articles, inspired by
Potthast et al. (2018). First, we count (a) every
token in the article and (b) tokens which are placed
between quotation marks. Furthermore, we use
the corresponding HTML tag to count paragraphs
and calculate the average number of tokens per
paragraph. Finally, we use the overall number of
hyperlinks as well as the number of internal and
external links. These values are concatenated to
form a feature vector that can be used as input to
an SVM or as additional input to the CNN.

3 Model Architectures

In this section, we describe the architectures we
evaluated in our experiments, starting with the base
CNN model from Kim (2014) and extending this
model step by step. We also describe an experiment
to use the CNN model as a feature extractor for an
SVM.

Base Model: Sentence CNN We use the sen-
tence CNN from Kim (2014) as a starting point
for our model, illustrated in Figure 1. Articles
are fed into the CNN represented by the matrix
described in Section 2.1. The first layer of the net-
work then converts the one-hot representation to
an embedding representation. To obtain a vector
representation of the words, we use two different
approaches described in Kim (2014), CNN-Rand
and CNN-Static. With CNN-Rand, word vectors
are initialized randomly and learned during train-
ing. CNN-Static uses the embeddings described in
Section 2.1 and does not change them during train-
ing. The CNN extracts features from the articles
through a convolution layer followed by max-over-
time pooling. Classification of an article is obtained
by flattening the max-pool feature map and passing
the features through a fully connected layer.

First Extension: Article CNN As the base
model discards all but one feature from the con-
volution activation map of each filter by using max-
over-time pooling, a lot of features are lost. In the
model’s original task, which is sentence classific-
ation, this is not much of an issue. However, our
experiments show that for the classification of art-
icles (which are much longer than one sentence),
we need to keep more information.

Therefore, we modify the sentence CNN and use
this as a second model, which we call Article CNN.
We add a second convolutional layer after the first
one to learn features that cover a larger range in the
article. Furthermore, we add a batch normalization
layer after the first and after the second convolu-
tional layer to speed up the training process (Ioffe
and Szegedy, 2015).

Second Extension: Article CNN with Hand-
Crafted Features In an attempt to incorporate
additional information into our model, we provided
the model with some handcrafted features de-
scribed in Section 2.2. To make use of handcrafted
features, we append them to the flattened output
of the pooling layer of the Article CNN. Since we
found that the model can not learn from the com-
bination of CNN and hand-crafted features with
only one dense layer at the end, a second dense
layer is inserted before the first one. We refer to
the resulting third model as Article CNN HC.

Model Variant: CNN as a Feature Extractor
In an additional experiment, we use the CNN as a
feature extractor for an SVM. To this end, we first



1049

Figure 1: Architecture of sentence CNN by Kim (2014).

train the Article CNN regularly. We then convert an
article to a feature representation by feeding it into
the trained CNN and extracting the representation
before the first dense layer. This vector is concat-
enated with the hand-crafted features described in
Section 2.2 and used to train a linear Support Vec-
tor Machine (SVM) as an alternative to the neural
classifier of the CNN.

4 Evaluation

After defining our models, we now shortly describe
the datasets (for a more detailed description, see
Kiesel et al. (2019)) before presenting the results
of training and evaluation.

4.1 Data
For training and validation, the task provides
750 000 news articles, which are equally distrib-
uted into the two classes hyperpartisan and not
hyperpartisan. 600 000 of these were used for train-
ing, the remaining 150 000 for validation. These
articles have not been labeled individually, but ac-
cording to their publisher, making them a form
of weakly labelled data. The official evaluation
was then performed on two concealed datasets, one
with articles manually labeled by humans and one
again labeled by publisher. The evaluation data
contains 628 articles labeled individually and 4000
by publisher, with both being equally distributed
into the two classes.

4.2 Metrics
We determine the performance of our models by
measuring accuracy (Acc) and F1 score (F1). As ac-
curacy is the official evaluation metric of SemEval

Task 4, we optimize for this metric.

4.3 Training and Results

We chose to optimize the hyperparameters of our
models by random search (Bergstra and Bengio,
2012). The hyperparameters with the best accuracy
values of each architecture are shown in Table 1.
All configurations use the CNN-static variant. Mod-
els were trained for a maximum of 5 epochs with
a batch size of 256. We employed early stopping
when the validation accuracy did not improve for 8
consecutive batches.

Results on the Validation Dataset First, we re-
port the results obtained by our models on the valid-
ation dataset. All results on this dataset are shown
in Table 2. The best configuration of the Sentence
CNN achieves a maximum accuracy of 62.13%
and an F1 score of 70.47%.

Our first extension, the Article CNN, increases
the accuracy by 1.68 percentage points and F1
score by 6.09 percentage points. We attribute this
to the increased model capacity, which enables the
model to represent articles more adequately. With
the max-pooling layer after the first convolution
layer, the whole article is reduced to one value per
convolution filter, which covers a maximum of 11
words (filter size is 11). The second convolution
layer contains information of several outputs of the
first layer, hence learning higher level features. As
a result of that, less information about the article is
lost by max-pooling.

Our second modification, the Article CNN HC,
however, decreases the model’s performance, as
does using an SVM as a classifier instead of the



1050

Convolution 1 Convolution 2 Dense Layer Miscellaneous

Model Filter Size Filters Filter Size Filters Dropout keep Units Activation Embeddings

Sentence CNN 5 168 — — 0.9 168 tanh Word2Vec
Article CNN 9,10,11 306 7 199 0.837 4179 ReLU FastText
Article CNN HC 7 405 9 210 0.079, 0.274 1890+7, 123 ReLU Word2Vec

Table 1: Best hyperparameters obtained via random search. Article CNN HC has two dense layers, hence two
numbers for dropout and units. We evaluated multiple filter sizes for Article CNN only, due to time constraints.

Model F1 Acc

Sentence CNN 70.47 62.13
Article CNN 76.56 63.81
Article CNN HC 63.02 60.30
Article CNN + SVM 62.07 58.18
SVM HC 66.91 52.83
Ensemble 3 68.69 64.94
Ensemble 5 68.98 66.01

Table 2: Best results achieved on the validation dataset.

final fully-connected part of the CNN (Article CNN
+ SVM). We also trained an SVM purely on the
hand-crafted features for comparison (SVM HC),
leading to a lower accuracy but higher F1 score
than both variants of Article CNN HC.

Finally, we used an ensemble of multiple models
for prediction. To this end, we used either 3 or 5
of our best individual models and combined their
predictions by majority vote. Because of the non-
deterministic nature of training (shuffling of the
input data and random initialization of the network)
(Reimers and Gurevych, 2017), multiple versions
of the same model with similar accuracy may rely
on different features and make different mistakes.
Thus, a combined prediction by the best models
can improve overall accuracy. This is confirmed
by the results of Ensemble 3 and 5 presented in
Table 2, leading us to submit these ensembles as
our final systems. Our best model, Ensemble 5,
combines 5 individual Article CNNs.

Results on the Test Dataset For the final evalu-
ation, participants were able to submit two models
for evaluation on the non-public test sets. We sub-
mitted our two ensemble models comprised of mul-
tiple instances of the Article CNN. Additionally we
were able to evaluate our single best Article CNN
on both test sets, giving us the evaluation results
but not appearing on the scoreboard. Results on
the test dataset are shown in Table 3. As on the
validation dataset, the ensembles outperform the

Article Publisher

Model F1 Acc F1 Acc

Article CNN 70.26 64.81 67.81 66.78
Ensemble 3 72.05 65.29 70.09 66.08
Ensemble 5 73.78 67.52 69.85 66.28

Table 3: Results on the hidden test datasets.

Article CNN in prediction accuracy on the main
test set. Our best performing model, the Ensemble
5, reaches an accuracy of 67.52% on the by-article
test set and 66.28% on the by-publisher test set.
This corresponds to rank 25 of 42 on the Main
Leaderboard (by-article) and rank 4 out of 28 on
the by-publisher Leaderboard.2

5 Conclusion

In this paper, we have described our approach for
SemEval Task 4 to detect hyperpartisanship in news
articles. We trained a CNN for sentence classi-
fication and improved its performance by adding
a second convolution layer and batch normaliz-
ation. Moreover, we combined this model with
handcrafted features. However, this did not lead to
an improvement of classification performance, nor
did the use of an SVM as an alternative classifier.
Finally, an increase of accuracy was achieved by
combining our best models for ensemble predic-
tion. Through this approach, we obtained an ac-
curacy of 67.52% and F1 score of 73.78% on the
by-article test dataset as well as 66.28% accuracy
and 69.85% F1 score on the by-publisher data set.
For future research, possible modifications to our
Article CNN that may bring further improvement
are using more channels for the input or different
filter sizes for max pooling. Apart from that, using
Transformer models (Vaswani et al., 2017) could
be rewarding, as they have become the standard for
many tasks in Natural Language Processing.

2We would like to note that, by F1 score, we would rank
14 out of 42 in the Main Leaderboard (by-article).



1051

References
James Bergstra and Yoshua Bengio. 2012. Random

search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associ-
ation for Computational Linguistics, 5:135–146.

Lena Hettinger, Alexander Dallmann, Albin Zehe,
Thomas Niebler, and Andreas Hotho. 2018. Claire
at semeval-2018 task 7: Classification of relations
using embeddings. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In International
Conference on Machine Learning, pages 448–456.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. Semeval-
2019 task 4: Hyperpartisan news detection. Pro-
ceedings of The 13th International Workshop on Se-
mantic Evaluation (SemEval 2019).

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2018. A stylo-
metric inquiry into hyperpartisan and fake news. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, pages 231–
240.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of lstm-networks for sequence tagging. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 338–
348.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.


