
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1032–1036
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

1032

Team Peter Brinkmann at SemEval-2019 Task 4: Detecting Biased News
Articles Using Convolutional Neural Networks

Michael Färber
University of Freiburg, Germany

michael.faerber@cs.uni-freiburg.de

Agon Qurdina
University of Prishtina, Kosovo

agon.qurdina@studentet.uni-pr.edu

Lule Ahmedi
University of Prishtina, Kosovo
lule.ahmedi@uni-pr.edu

Abstract

In this paper, we present an approach for clas-
sifying news articles as biased (i.e., hyperpar-
tisan) or unbiased, based on a convolutional
neural network. We experiment with various
embedding methods (pretrained and trained
on the training dataset) and variations of the
convolutional neural network architecture and
compare the results. When evaluating our best
performing approach on the actual test data
set of the SemEval 2019 Task 4, we obtained
relatively low precision and accuracy values,
while gaining the highest recall rate among all
42 participating teams.

1 Introduction

Hyperpartisan news detection describes the task of
given a news article text, decide whether it fol-
lows a hyperpartisan argumentation, i.e., whether
it exhibits blind, prejudiced, or unreasoning al-
legiance to one party, faction, cause, or person
(Kiesel et al., 2019). In recent years, hyperpartisan
news detection, which we consider synonymous to
news bias detection, has attracted the interest of
researchers and various approaches for news bias
detection have been developed (Recasens et al.,
2013; Baumer et al., 2015; Baly et al., 2018).
However, the definition of bias and the task set-up
of identifying biased news articles differs from au-
thors to authors. For instance, authors might con-
sider the bias in terms of the writing style, while
others might consider it in relation to fact selec-
tion (Hamborg et al., 2018). In this paper, we
use the definition and data set of SemEval 2019
Task 4 (Kiesel et al., 2019), which deliberately
uses the generic definition outlined at the begin-
ning. Note that news bias detection differs from
related tasks such as opinion finding (Ounis et al.,
2006; Macdonald et al., 2007), sentiment analy-
sis, fake news detection (Potthast et al., 2018),

claim assessment (Popat et al., 2016), argumenta-
tion mining on news articles (Palau and Moens,
2009), and personality detection based on texts
(Mairesse et al., 2007).

From a technical perspective, in recent years
deep learning techniques have outperformed tra-
ditional methods concerning various NLP tasks.
This also applies to news article classification
tasks (Ounis et al., 2006; Macdonald et al., 2007).
Indeed, in the SemEval Twitter sentiment analysis
competition in 2015, 2016, and 2017 (Rosenthal
et al., 2015; Nakov et al., 2016; Rosenthal et al.,
2017), among the most popular (and apparently
effective) deep learning techniques were convolu-
tional neural networks (CNNs). Thus, we decided
to build a hyperpartisan news classifier based on
a CNN. Next to our basic model, we also develop
and evaluate variations of our model.

2 Approach

In the following, we outline our approach for news
bias detection.1

2.1 Preprocessing

Given a set of news articles as input, we prepro-
cessed them along the following steps:

Text Cleaning. We replaced the new lines by
spaces, expanded contractions, and removed stop
words, HTML tags, and special characters from
the articles’ content.

Texts to Sequences. The articles’ content was
tokenized and a word dictionary (size: 1,207,438)
was generated.

Sequence Padding. We applied a padding with

1Note that our team’s name is dedicated to Peter
Brinkmann, the German journalist who asked the ques-
tion that ultimately fractured the Berlin wall in 1989.
The source code of the implementation is available
online at https://github.com/michaelfaerber/
SemEval2019-Task4.

https://github.com/michaelfaerber/SemEval2019-Task4
https://github.com/michaelfaerber/SemEval2019-Task4

1033

Convolutional layer,
with filters using a
window size of 4

The matrix d x l, representing
article word embeddings

Max Pooling
layer with a pool

size of 4

Fully connected
layer with 256

hidden neurons
Output layer

Convolutional layer,
with filters using a
window size of 4

Max Pooling
layer with a pool

size of 4

woman
arrived
home
collected
used
buy
thousands
pounds
worth
jewellery
released
photographs
woman
want
interview
connection
investigation
say
wig
time
pictures

Figure 1: Architecture of our system used for classifying sentences.

a fixed sequence length l. We set l = 5000. Thus,
around 0.04% of the sequences were truncated.

2.2 Basic Model Architecture

Our basic architecture is shown in the Figure 1.
We use a CNN architecture that is based on Kim
et al.’s approach for sentence classification (Kim,
2014). His proposed architecture has been widely
applied for various tasks in the past. The CNN
consists of two subsequent one-dimensional con-
volutional neural networks layers, appended by
MaxPooling layers, and a dense neural networks
layer processing the output of the second CNN
layer. The model is completed by a final output
layer that uses the sigmoid activation function to
return a binary output (i.e., the classification into
biased or non-biased).

In the following, we describe the architecture in
more detail:

Input layer. Considering article’s words were
embedded into d-dimensional vectors, the final
matrix used as input to the model can be writ-
ten as I = l × d where l is the chosen sequence
length (i.e., the length of the articles). Recall that
l = 5000 in our setting.

First convolutional layer. The first transforma-
tion this embedded input goes through is a con-
volutional layer with f 1-dimensional filters of
length k. Thus, the layer weights can be consid-
ered a matrix of shape Wc ∈ Rf×k.

We chose as filter size f = 64, while using a

filter length of k = 4. In our context, having 1-
dimensional filters means that for each word in an
article, its three adjacent words are considered as
the context of the word. The output of the con-
volutional layer then is C = conv(I,Wc) where
conv is the convolutional operation applied to in-
put I using the weights matrix Wc. This operation
includes applying the ReLu activation function to
complete weights calculations. Also, a dropout
function is used to prevent overfitting. We used
a dropout rate of 0.2, which means 20% of the
weights, chosen randomly, during each training
epoch are set to 0.

First max pooling layer. The above output C is
then considered the input to a 1-dimensional Max
Pooling layer. The purpose of the layer is to try
extracting only the most important features of the
convolution outputs. This is done by keeping only
the max value from a pool size p. As we chose
p = 4, the output of this layer can be written as
M = max pool(C, p). This operation reduces the
number of weights by four times.

Second convolutional layer and max pooling
layer. The output M of the max pooling layer is
the input of the second convolutional layer, and the
whole process described above is applied to this
input, to get a final output M2.

Fully connected layer. Given the two-
dimensional matrix of weights from the last step,
the next layer in the network is a fully connected
one with a size of 256 hidden neurons. But in or-

1034

Table 1: Distribution of biased and unbiased articles
(”a.” for articles) in the training and validation data set.

Training Test

Total # samples 588837 147210
samples w/ l > 2500 0.62% 0.58%
samples w/ l > 5000 0.04% 0.03%
of biased articles 290513 72629
non-biased articles 298324 74581
% biased articles 49.34 49.34
% of non-biased articles 50.66 50.66

der for the convolutional output to serve as an in-
put to this layer, it needs to be reduced in dimen-
sionality. The way we chose to do that was using
the flatten method, which keeps all of the values
but flatten them in a long vector. A ReLU activa-
tion function and a dropout layer with a rate of 0.5
were used here.

Output layer. The last layer is a fully con-
nected layer with one neuron. The sigmoid acti-
vation function is used to provide a binary output.

2.3 Architecture Variations
We developed and evaluated the following archi-
tecture variations:

1. The first variation only keeps the most impor-
tant features by using the GlobalMaxPooling
method. Keeping only the max values has
shown good results when used with convo-
lutional layers (Scherer et al., 2010).

2. The second variation uses the flatten method,
which also transforms the convolutional fil-
ters weights to a one-dimensional vector, but
does that by keeping all of the values (text
features) from the convolutional filters and
concatenates them in the resulting vector.
Obviously, the length of the output from this
method will be greater, usually much greater,
than the previous method.

3 Evaluation

3.1 Data Set
Note that the actual SemEval 2019 Task 4 test
data set is hidden and only used for submission.
Thus, we used the training and validation data set
of the SemEval 2019 Task 4 data set for training
and testing our models before the SemEval sub-
missions. Note also that, the biased news arti-
cles in the training and test data set always orig-
inate from sources other than the non-biased news

Table 2: Hyperparameters.
Parameter Value

CNN filter size for CNN 64
CNN kernel size for CNN 4
MaxPooling1D pool size 4
Dropout rate 0.2
Dense layer units 256
Layers Activation function ReLu
Optimizer Adam
Learning Rate Adaptive (0.001→0.00001)
Loss function Binary crossentropy
Batch Size 32

articles. Biased news articles originated mainly
from foxbusiness.com, counterpunch.
org, motherjones.com, truthdig.com,
and dailywire.com, while unbiased news arti-
cles originated mainly from abqjournal.com
and apnews.com. The SemEval 2019 Task 4 is,
thus, to some degree artificial, as, in reality, the
source of a given article could be used as a feature
for the classification.

Due to this correlation between the article’s bias
and its publisher, to have a generic model as much
as possible it was important to have articles from
the same publisher present in both sets. We de-
cided to merge the training and validation data
set, to shuffle the data randomly, and to split it
into a training, validation, and testing data set by
60:20:20. Table 1 shows basic statistics about the
used training data set and test data set.

3.2 Evaluation Settings

We developed our models using Keras v2.1.2 with
a Tensorflow v1.0.0 backend. Training the model
was performed on a machine with 64GB memory
and a GeForce GTX 1080 Ti GPU.

We implemented and evaluated our basic model
using several word-based embedding methods,
where an embedding vector is generated for each
unique word on the text corpus. These embed-
dings can be categorized into two main categories:
(1) pretrained word vectors and (2) custom word
vectors (here, trained on the articles’ content).

We fine-tuned the hyperparameters of our ba-
sic model using the dedicated validation data set.
In the end, we used the parameters as shown in
Table 2. Note that these optimal hyperparame-
ters showed to be the best-performing ones on
both Google’s prebuilt word2vec and the custom
word2vec which we had trained on our training
data.

foxbusiness.com
counterpunch.org
counterpunch.org
motherjones.com
truthdig.com
dailywire.com
abqjournal.com
apnews.com

1035

Table 3: Evaluation results on the custom validation split using various embedding methods.
Embedding # Dim. Accuracy Precision Recall F1

Google’s word2vec (general) 300 0.9255 0.9295 0.9197 0.9246
Stanford’s GloVe (general) 100 0.9198 0.9161 0.9216 0.9188
Facebook’s fastText (general) 300 0.9277 0.9378 0.9021 0.9196
Custom word2vec 100 0.9234 0.9246 0.9197 0.9222
Custom fastText 100 0.9114 0.9309 0.8860 0.9079
Custom news word2vec 100 0.9123 0.9142 0.9073 0.9108

Table 4: Results for the adapted CNN architecture.
Architecture Accuracy

Model using GlobalMaxPooling 0.9225
Model using Flatten 0.9255

3.3 Evaluation Results

3.3.1 Evaluating the Basic Architecture
Table 3 presents the evaluation results for all used
embedding methods. The embedding models gave
similar results, with some slight differences in the
model accuracies for some of them. Thus, we de-
cided to go with one of the better performing mod-
els for the final SemEval test runs (see Sec. 3.3.3).

Although the fastText word embeddings are
said to perform as well as word2vec embed-
dings while being trained much faster (Grave
et al., 2017) and although the domain-specific
pre-trained word2vec embeddings are said to per-
form better than the general pre-trained word2vec
embeddings (Kim, 2014), the general pre-trained
word2vec embeddings lead to the best results in
our evaluation. A reason for that could be that the
words used in the news articles are more spread in
terms of the domains to which they belong. Thus,
the word vectors trained by Google on 100 billion
words of Google News performed even better than
a specific word2vec model trained on millions of
news articles.

3.3.2 Evaluating the Architecture Variations
We trained the extended models with the same
hyperparameters as our basic model and used
Google’s word2vec as word embedding method
based on our results from Sec. 3.3.1. The eval-
uation results are shown in Table 4.

Even though the training times for the flatten
method were much longer due to the huge differ-
ence in terms of the number of trainable param-
eters, we obtained slightly better results than the
GlobalMaxPooling method. Thus, the model cho-
sen for the SemEval submission was the model

employing the flattening method.

3.3.3 Evaluating on SemEval’s Test Data Set
Applying our basic model – using our second ar-
chitecture variation, Google’s word2vec embed-
ding model, the hyperparameters shown in Table 2
and the model itself trained using our mixed, ”arti-
ficial” data sets – on the official SemEval test data
set via official approach submissions, we obtained
accuracy of 0.602, a precision of 0.560, a recall
of 0.955, and a F1 score of 0.706. It becomes ap-
parent that the precision value is considerably low,
while the recall rate is the highest achieved rate
among all submitted systems. Based on our inves-
tigations so far, we believe that one reason for the
low accuracy on the evaluation data set is the la-
beling of the used data sets: while the train and
test data set’s labels depend solely on the article’s
publisher, the labels of the evaluation data set were
hand-labeled on a single article basis.

4 Conclusion

In this paper, we presented a convolutional neu-
ral network architecture for determining whether
a given news articles is biased (i.e., hyperparti-
san) or not. In our experiments, we found that a
convolutional neural network containing the flat-
ten function and using Google’s word2vec em-
beddings performs best. In the official SemEval
2019 Task 4 test runs, we obtained comparably
low precision and accuracy values, while gaining
the highest recall rate among all 42 participating
teams. For the future, besides evaluating a deeper
CNN, we plan to develop two further approaches.
The first one will be based on LSTMs. The sec-
ond model will be a hybrid model, consisting of
a CNN layer, which is supposed to learn the text
features, appended by an LSTM layer for learning
sequence patterns of those features. Furthermore,
we plan to work on a non-deep learning approach
which assigns controversy scores to news articles
and, in this way, determines the bias of the articles.

1036

References
Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov,

James R. Glass, and Preslav Nakov. 2018. Predict-
ing Factuality of Reporting and Bias of News Media
Sources. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 3528–3539.

Eric Baumer, Elisha Elovic, Ying Qin, Francesca Pol-
letta, and Geri Gay. 2015. Testing and Comparing
Computational Approaches for Identifying the Lan-
guage of Framing in Political News. In Proceed-
ings of the 2015 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT’15, pages 1472–1482.

Edouard Grave, Tomas Mikolov, Armand Joulin, and
Piotr Bojanowski. 2017. Bag of Tricks for Effi-
cient Text Classification. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, EACL’17, pages
427–431.

Felix Hamborg, Karsten Donnay, and Bela Gipp. 2018.
Automated identification of media bias in news arti-
cles: an interdisciplinary literature review. Interna-
tional Journal on Digital Libraries, pages 1–25.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP’14, pages 1746–1751.

Craig Macdonald, Iadh Ounis, and Ian Soboroff. 2007.
Overview of the TREC 2007 Blog Track. In Pro-
ceedings of The Sixteenth Text REtrieval Confer-
ence, TREC’07.

François Mairesse, Marilyn A. Walker, Matthias R.
Mehl, and Roger K. Moore. 2007. Using linguistic
cues for the automatic recognition of personality in
conversation and text. J. Artif. Intell. Res., 30:457–
500.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. SemEval-
2016 Task 4: Sentiment Analysis in Twitter. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation, SemEval@NAACL-HLT 2016,
pages 1–18.

Iadh Ounis, Craig Macdonald, Maarten de Rijke, Gi-
lad Mishne, and Ian Soboroff. 2006. Overview of
the TREC 2006 Blog Track. In Proceedings of the
Fifteenth Text REtrieval Conference, TREC 2006.

Raquel Mochales Palau and Marie-Francine Moens.
2009. Argumentation mining: the detection, clas-
sification and structure of arguments in text. In Pro-
ceedings of the 12th International Conference on Ar-
tificial Intelligence and Law, pages 98–107.

Kashyap Popat, Subhabrata Mukherjee, Jannik
Strötgen, and Gerhard Weikum. 2016. Credibility
Assessment of Textual Claims on the Web. In
Proceedings of the 25th ACM International Confer-
ence on Information and Knowledge Management,
CIKM 2016, pages 2173–2178.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2018. A Sty-
lometric Inquiry into Hyperpartisan and Fake News.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, ACL’18,
pages 231–240.

Marta Recasens, Cristian Danescu-Niculescu-Mizil,
and Dan Jurafsky. 2013. Linguistic Models for An-
alyzing and Detecting Biased Language. In Pro-
ceedings of the 51st Annual Meeting of the Associ-
ation for Computational Linguistics, ACL’13, pages
1650–1659.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
Semeval-2017 task 4: Sentiment analysis in twitter.
In Proceedings of the 11th International Workshop
on Semantic Evaluation, SemEval@ACL’17, pages
502–518.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif Mohammad, Alan Ritter, and Veselin Stoy-
anov. 2015. SemEval-2015 Task 10: Sentiment
Analysis in Twitter. In Proceedings of the 9th
International Workshop on Semantic Evaluation,
SemEval@NAACL-HLT 2015, pages 451–463.

Dominik Scherer, Andreas C. Müller, and Sven
Behnke. 2010. Evaluation of Pooling Operations in
Convolutional Architectures for Object Recognition.
In Proceedings of the International Conference on
Artificial Neural Networks, ICANN’10, pages 92–
101.

