Team Bertha von Suttner at SemEval-2019 Task 4: Hyperpartisan News
Detection using ELMo Sentence Representation Convolutional Network

Ye Jiang, Johann Petrak, Xingyi Song, Kalina Bontcheva, Diana Maynard
Department of Computer Science
University of Sheffield
Sheffield , UK
{yjiangl8, johann.petrak, x.song,
k.bontcheva,d.maynard}@sheffield.ac.uk

Abstract

This paper describes the participation of team
“bertha-von-suttner” in the SemEval2019 task
4 Hyperpartisan News Detection task. Our
system' uses sentence representations from
averaged word embeddings generated from the
pre-trained ELMo model with Convolutional
Neural Networks and Batch Normalization for
predicting hyperpartisan news. The final pre-
dictions were generated from the averaged pre-
dictions of an ensemble of models. With this
architecture, our system ranked in first place,
based on accuracy, the official scoring metric.

1 Introduction

Hyperpartisan news is typically defined as news
which exhibits an extremely biased opinion in
favour of one side, or unreasoning allegiance
to one party (Potthast et al., 2017). SemEval-
2019 Task 4 on “Hyperpartisan News Detection”
(Kiesel et al., 2019) is a document-level classifica-
tion task which requires building a precise and re-
liable algorithm to automatically discriminate hy-
perpartisan news from more balanced stories.

One of the major challenges of this task is that
the model must have the ability to adapt to a large
range of article sizes. In one of the training data
sets, the by-publisher corpus, the average article
length is 796 tokens, but the longest document has
93,714 tokens. Most state-of-the-art neural net-
work approaches for document classification use a
token sequence as network input (Kim, 2014; Yin
and Schiitze, 2016; Conneau et al., 2016). This
implies either a high computational cost when a
very large maximum sequence length is used to
fully represent the longest articles, or alternatively
potentially a significant loss of information if the

!The code is available at
https://github.com/GateNLP/semeval2019-
hyperpartisan-bertha-von-suttner

840

sequence length is restricted to a manageable num-
ber of initial tokens from the document.

In this paper, we introduce the ELMo Sentence
Representation Convolutional (ESRC) Network.
We first pre-calculate sentence level embeddings
as the average of ELMo (Peters et al., 2018) word
embeddings for each sentence, and represent the
document as a sequence of such sentence embed-
dings. We then apply a lightweight convolutional
Neural Network (CNN), along with Batch Nor-
malization (BN), to learn the document represen-
tations and predict the hyperpartisan classification.

Two types of data set have been made avail-
able for the task. The by-publisher corpus con-
tains 750K articles which were automatically clas-
sified based on a categorization of the political bias
of the news source. This dataset was split into a
training set of 600K articles and a validation set of
150K articles, where all the articles in the valida-
tion set originated from sources not in the training
set. The second set, by-article, contains just 645
articles which were labelled manually. The final
evaluation (Potthast et al., 2019) was carried out
on a dataset of 628 articles which were also la-
belled manually.

We created several models based on the two
datasets and evaluated them using cross-validation
on the by-article training set (as the final test set
was not available to the participants and it was
only available for a maximum of three evalua-
tions). In order to investigate the usefulness of
the by-publisher training data for training a model
that performs well on the manually annotated
by-article corpus, we experimented with various
kinds of pre-training and fine-tuning, and found
that any kind of use of the by-publisher corpus
was actually harmful and decreased the usefulness
of the model. A CNN model which used ELMo-
based sentence embeddings to represent the arti-
cle, and was trained on the by-article set only,

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 840-844
Minneapolis, Minnesota, USA, June 67, 2019. ©2019 Association for Computational Linguistics

https://github.com/GateNLP/semeval2019-hyperpartisan-bertha-von-suttner
https://github.com/GateNLP/semeval2019-hyperpartisan-bertha-von-suttner

(

)

Output

f

(

)

Dense Layer, Sigmoid

[J | J

Maxpooling

[

Maxpooling] [Maxpooling] [Maxpooling]

Maxpooling
b

() ()

Batch Normalization Batch Normalization

(

J) ()

Batch Normalization Batch Normalization Batch Normalization

(J J

Conv Layer, k=2, ReLU Conv Layer, k=3, ReLU

[

Conv Layer, k=4, ReLU

J) J

Conv Layer, k=6, ReLU

Conv Layer, k=5, ReLU
/'

[

)

Sequence Input

| ELviem ElMo | | ELMo
i F/B vector i E F/B vector E
*—{ BiLsT™M | [BiLSTM | <— [BiLSTM™ | :: *—{ BilsT™ | [BiLSTM | <— [BiLST™ ||
F/B vector] F/B vector] E | ELMO '
~— [BilsT™ "——{ BiLsT™ | [BiLsT™ | > [BilST™ || ! Embedding

BiLSTM | | BiLSTM

Sentence 1 [<splt>]

) ([);
SO ? __________ { _________________ T_

Sentence 2 [Tomorrow

?

Char-

?

Char-

Char-

|
' |
' |
' |
\ ’
\ /

<splt>] Sentence N

Figure 1: System architecture, /B vector denotes Forward/Backward hidden state from BiLSTM layers.

turned out to outperform all other attempts.

2 System Description

In our model, we represent each article as a
sequence of sentence embeddings, where each
sentence embedding is calculated as the aver-
aged word embeddings generated from a pre-
trained ELMO model. The network consists of
5 parallel convolutional layers with kernel sizes
2,3,4,5,6 and 512 output features, each followed
by a ReLU non-linearity, batch normalization, and
max-pooling. All the results of the max-pooling
layers are combined and go through a final fully
connected layer with a sigmoid activation function
for the final binary classification. Our model ar-
chitecture is shown in Figure 1.

2.1 Data

The maximum, mean, and minimum numbers of
tokens in the by-article corpus are: 6470, 666, 19
respectively, and in the by-publisher are: 93714,
796, 10 respectively. This makes it impractical to
directly use word level representations as the in-
put for our models. As a simple and easy to cal-
culate compromise between representing the de-
tails of the article and as much of a longer article
as possible, we represent the article as a sequence
of sentence embeddings which are calculated as
the average of the word embeddings of a sentence.
This can be done using any pre-trained word em-
beddings and does not require a large training set

841

for training or pre-training, so can be easily ap-
plied to even the small by-article corpus. To form
the input sequence for our network, a maximum
of the 200 initial tokens per sentence was used for
each sentence embedding and a maximum of 200
sentences was used per article. The title of the ar-
ticle was used as the first article sentence for each
document.

2.2 Preprocessing

Our model is character-based, which enabled us to
only perform minimal pre-processing. We extract
the title and article text from the original XML
representation. All the original HTML paragraphs
in the text cause a sentence break; the remain-
ing text paragraphs have been split into sentences
using Spacy. The original case of the text was
maintained.

Whitespace is normalized to a single space be-
tween tokens; numbers are replaced by a special
number token; and all punctuation and other spe-
cial characters are preserved as input to the pre-
trained ELMo model.

2.3 Deep Contextualized Word
Representation

Traditionally, the input to CNNs is a set of pre-
trained word vectors such as Word2Vec (Mikolov
et al., 2013), Glove (Pennington et al., 2014), or
Fasttext (Bojanowski et al., 2017). In our model,
we use the AllenNLP library to generate ELMo

embeddings, in which the word representation is
learned from character-based units as well as con-
textual information from the news articles. These
character-based word representations allow our
model to pick up on morphological features that
word-level embeddings could miss, and a valid
word representation can be formed even for out-
of-vocabulary words. Furthermore, ELMo uses
two bi-directional LSTM (Gers et al., 1999) lay-
ers to learn the contextual information from the
text, which makes it capable of disambiguating the
same word into different representations based on
its context.

We use the original® pre-trained ELMo model
to output three vectors for each word. Each vec-
tor corresponds to a layer output from the ELMo
pre-trained model. Then, we take the average of
all three vectors to form the final word vector,
and compute the sentence vector by averaging the
word vectors in the sentence.

2.4 Convolutional Layers

We combine 5 convolutional layers for different
kernel sizes. Each layer is then followed by a non-
linear activation function ReL.U.

2.5 Batch Normalization

Batch Normalization (BN) is a method for re-
ducing internal covariate shift in neural networks
(Ioffe and Szegedy, 2015). BN normalizes the
input distribution by subtracting the batch mean
and dividing by the batch standard deviation, so
that the ranges of input distribution between each
layer stay the same. This allows the model to have
a higher learning rate, so that the training speed
is accelerated. It also reduces overfitting by de-
creasing the dependence of weight initialization
between each layer. The original paper suggested
that BN should be applied before the activation
layer, but we apply it after the activation layer, af-
ter observing better performance in our model this
way round. We also applied weighted moving-
mean and moving-variance to avoid updating the
mean and variance so aggressively in the mini-
batch during training time.

2.6 Fully Connected Layer

We perform max-pooling on the output of the
batch-normalization layers. Then the outputs of
the max-pooling for all convolution layers are

2elmo_2x4 096_512_2048cnn_2xhighway

842

combined to form the input to a fully connected
layer, which maps to a single output, followed by
the Sigmoid function for the binary classification
task.

3 Experiments and Results

The generated ELMo embedding contains three
vectors for each word, where each vector corre-
sponds to one of the output layers from the pre-
trained model. We average the three vectors to
generate word representations which contain mor-
phological and contextual information, and com-
pute the sentence vectors by averaging all the word
vectors in each sentence. We take a maximum of
200 words for each sentence and a maximum of
200 sentences for each article. If a document has
fewer than 200 sentences, we pad the number of
sentences out to 200.

Our models are built by using the Keras library
with a Tensorflow backend. All the results are
shown in Table 1. The table shows for each model
the accuracy obtained on the by-article training
set, and for the submitted models, the by-publisher
test set, and the hidden by-article test set (which
unlike the other two, was not available to partici-
pants).

In order to investigate the correlation be-
tween the two datasets, we first built the
ESRC-publisher model which is trained on a
randomly selected 100K out of the 750K articles
from the by-publisher corpus, as it is impractical
to generate ELMo embeddings for the entire cor-
pus. We also fine-tuned the ESRC-publisher
model based on the by-article set to obtain the
ESRC-publisher-article model by freez-
ing the weights of all but the last layer of the
model. Finally we trained the ESRC-article
model only on the by-article set, one version with-
out and one version (ESRC—article-BN) with
the additional batch normalization (BN) layer.
The accuracy for the ERC-publisher model
is from evaluating on the whole by-article
training set, while all other evaluations on the
by-article training set were carried out using
a 10-fold cross validation. However, because of
the very limited size of that corpus, the evaluation
part of each fold was also used for early stopping
and model selection within each fold.

For the evaluation on the hidden test set, we se-
lected the best three models from the 10-folds, ac-
cording to the accuracy on the evaluation set of

elmo_2x4096_512_2048cnn_2xhighway

each fold to form an averaged ensemble model,
ESRC-article—-BN-Ens.

For comparison, the table also shows the
results for an earlier version of the model,
GloVe—-article, which used GloVe word em-
beddings (6 billion words, 300 dimensional) to
represent up to the first 400 words of the article
and did not use batch normalization.

Models By-Article Training

GloVe-article 0.7963
ESRC-publisher 0.5643
ESRC-publisher-article 0.8189
ESRC-article 0.8182
ESRC-article-BN 0.8387
ESRC-article-BN-Ens 0.8404
Submitted Models By-Article Test
GloVe-article 0.7659
ESRC-article-BN-Ens 0.8216
Submitted Models By-Publisher Test
GloVe-article 0.6435
ESRC-article-BN-Ens 0.5947

Table 1: System comparison (accuracy).

The parameters in our models are as follows:
we used 5 convolutional layers with kernel sizes
(k = 2,3,4,5,6) and 512 output features. The
momentum in the batch normalization is set to
0.7.3> We used the default Adam algorithm as the
optimizer, and Binary Cross-Entropy as the loss
function. The batch size was set to 32 and the
fixed number of epochs used was 30. The final
best model after 30 epochs was used.

4 Discussion and Conclusion

The ESRC-publisher model performs ex-
tremely badly on the by-article evaluation data.
Even fine-tuning the ESRC-publisher model
on the by-article corpus produces models which
perform worse than a model that is trained only on
the by-article data. This confirms results from ear-
lier experiments with simpler models that any use
of the by-publisher data only hurts the model. We
assume that the algorithm used for assigning the
labels to this dataset just does not reflect any infor-
mation about hyperpartisan articles sufficiently to
be helpful. For this reason, the GloVe-article

3This was determined by exploring values from 0.1 to 0.9
at an earlier stage of the experiments and kept, so it may not
be the optimal value.

843

model also outperforms the ESRC-article-BN-Ens
model on the by-publisher dataset.

A quick manual inspection of the data showed
that the source of an article is insufficient by far to
identify articles as hyperpartisan or not. It would
be interesting to know how the algorithm used for
creating the by-publisher corpus actually performs
on the by-article corpus. To get maximum perfor-
mance on the by-article dataset, we therefore de-
cided to completely ignore the by-publisher data
for our final model. The use of BN also showed
significant improvement.

Since we use a CNN with a comparatively large
number of parameters in relation to the size of
the training set which is rather small, we expect
significant variance in the generated models and
therefore use the average of an ensemble of sev-
eral models for the final predictions.

5 Acknowledgements

Research partially supported by a Grantham Cen-
tre for Sustainable Future Scholarship, a Google
Faculty Research Award 2017, and projects
funded by the European Commissions Horizon
2020 research and innovation programme under
grant agreements No. 654024 SoBigData and No.
825297 We Verify.

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Alexis Conneau, Holger Schwenk, Loic Barrault,
and Yann Lecun. 2016. Very deep convolutional
networks for text classification. arXiv preprint
arXiv:1606.01781.

Felix A Gers, Jiirgen Schmidhuber, and Fred Cummins.
1999. Learning to forget: Continual prediction with
Istm.

Sergey loffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111-3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532—1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2017. A sty-
lometric inquiry into hyperpartisan and fake news.
arXiv preprint arXiv:1702.05638.

Wenpeng Yin and Hinrich Schiitze. 2016. Multichan-
nel variable-size convolution for sentence classifica-
tion. arXiv preprint arXiv:1603.04513.

844

