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Abstract
This document describes the submission of
team YNU-HPCC to SemEval-2019 for three
Sub-tasks of Task 6: Sub-task A, Sub-task B,
and Sub-task C. We have submitted four sys-
tems to identify and categorise offensive lan-
guage. The first subsystem is an attention-
based 2-layer bidirectional long short-term
memory (BiLSTM). The second subsystem is
a voting ensemble of four different deep learn-
ing architectures. The third subsystem is a s-
tacking ensemble of four different deep learn-
ing architectures. Finally, the fourth subsys-
tem is a bidirectional encoder representation-
s from transformers (BERT) model. Among
our models, in Sub-task A, our first subsys-
tem performed the best, ranking 16th among
103 teams; in Sub-task B, the second subsys-
tem performed the best, ranking 12th among
75 teams; in Sub-task C, the fourth subsystem
performed best, ranking 4th among 65 teams.

1 Introduction

Identifying offensive language (Zampieri et al.,
2019b) on Twitter is a particularly challenging
task because of the informal and creative writing
style, with the improper use of grammar, figu-
rative language, misspellings and slang, etc. In
previous attempts of the task, OffensEval was
generally tackled using hand-crafted features
and/or sentiment lexicons by feeding them to
classifiers such as Support Vector Machines
(SVM). These approaches require a laborious
feature-engineering process, which may also need
domain-specific knowledge, usually resulting in
both redundant and missing features. However, in
recent years, artificial neural networks for feature
learning have achieved good results in this field
(Christos Baziotis, 2017).

SemEval-2019 Task 6 consists of three Sub-
tasks (Symeon Symeonidis, 2017):

• Sub-task A: Offensive language identifica-
tion;

• Sub-task B: Automatic categorisation of of-
fense types;

• Sub-task C: Offense target identification.

In this document, we present four systems that
competed at SemEval-2019 Task 6 (Zampieri
et al., 2019b). The first model is a 2-layer
BiLSTM, equipped with an attention mechanism.
The second is voting scheme that combines
a 2-layer BiLSTM, Capsule Network, 2-layer
bidirectional gated recurrent unit (BiGRU), and
the first model. The third model is a stacking
scheme that combines a 2-layer BiLSTM, Capsule
Network, 2-layer bidirectional gated recurrent
unit (BiGRU), and the first model. In addition, the
above three models, for the word representation,
we have used the glove vector. The fourth model
is BERT-BASE (Jacob Devlin, 2018), which was
released last year by Google AI Language.

The remainder of this document is organised as
follows. The related work is described in Section
2. Section 3 reports our methodology and data.
Section 4 reports our result. The conclusions are
summarised in Section 5.

2 Related Work

In recent years, with the rapid development of
social media, the use of aggressive and offensive
language as well as hate speech has gradually
increased. To tackle this problematic behaviour,
one of the most common strategies is to train
systems capable of recognising them and either
deleting them or setting them aside for human
moderation.
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Aggression can be divided into three categories:
overt aggression, covert aggression, and non-
aggression (Kumar et al., 2018). Last year, in a
shared task, several participants used deep neural
networks and traditional machine learning meth-
ods for aggression identification. The best per-
forming systems in this competition used deep-
learning approaches based on convolutional neural
networks (CNN), BiLSTM, and long short-term
memory (LSTM). Offensive Language is com-
monly defined as hurtful, derogatory or obscene
comments made from one person to another. Cur-
rently, there is an increasing amount of such lan-
guage online. Manually monitoring these posts
would incur significant costs (Mathur et al., 2018).
Therefore, the automatic identification of suspi-
cious posts has emerges as a trend. In recent years,
many researchers have studied the use of deep-
learning and traditional machine learning method-
s for this purpose. Their results indicate that, al-
though several deep-learning approaches produce
good scores, traditional supervised classifiers can
produce similar scores. Word embeddings, char-
acter n-grams and lexicons of offensive words are
popular features, but all three components are not
necessary for a robust system. Ensemble meth-
ods mostly help (Wiegand et al., 2018). Many
previous studies still tend to equate offensive lan-
guage and hate speech. However, through this
method, we may erroneously classify many peo-
ple as hate speakers by failing to differentiate be-
tween commonplace offensive language and gen-
uine hate speech (Davidson et al., 2017; Fortuna
and Nunes, 2018). In recent years, the recogni-
tion of hate speech has mainly focused on deep-
learning methods, such as CNNs (Gambäck and
Sikdar, 2017) and Convolution-GRU (Zhang et al.,
2018).

3 Methodology and Data

3.1 Data

The datasets contain data from Twitter and were
provided by the organisers. For Sub-task A,
Sub-task B, and Sub-task C, the available datasets
(Zampieri et al., 2019a) comprised all the training
and testing data. In addition, because the organ-
isers did not provide development, we decided to
split 0.2 from the training as development. Table
1 shows the data provided by the organisers.

As shown in Table 1, there the data of the three

Sub-tasks shows a significant imbalance.

A B C Train Test Total
OFF TIN IND 2,407 100 2,507
OFF TIN OTH 395 35 430
OFF TIN GRP 1,074 78 1,152
OFF UNT — 524 27 551
NOT — — 8,840 620 9,460
ALL 13,240 860 14,100

Table 1: Distribution of label combinations in the data

3.2 Preprocessing

Initially, we received the training and testing data
that had been preprocessed by the organisers. Sub-
sequently, on this basis, we preprocessed the train-
ing and testing data again and finally applied it to
a neural network. For preprocessing, we removed
and replaced strings from the tweets that did not
show any sentiments, irregularities, or abbrevia-
tions. We also removed duplicates and Unicode
strings. These were implemented as follows:

• Removing consecutive duplicates while re-
taining one item: we found that some in-
stances of text were duplicates, e.g. ”????”
→ ”?”.

• Replacing the emojis on Twitter with the cor-
responding English definition and replacing
abbreviations: There were several emojis in
the data conveying different emotions. In ad-
dition, the abbreviations in the data also re-
strict the corresponding emotional categories,
e.g. ”don’t”→ ”do not”.

• Replacing irregular words: we found that
there were many irregular words in the data,
e.g. ”bro”→ ”brother”.

• Removing some punctuation: preliminary
experiments showed better results when we
removed some punctuation; however, we de-
tected emotive punctuation signs such as ”!”
and ”?” and retained them.

• Converting lowercase: the final tweets were
converted to lowercase (after detecting word-
s that had all of their character capitalised,
which were retained).

• Using Stanford toolkit: After comparing the
use of the word segmentation in the NLTK
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and Stanford toolkits, we finally decided to
use the Stanford toolkit, because of its better
performance.

3.3 System
For SemEval-2019 Task 6, we used five basic
models:

• BiLSTM: BiLSTM is a combination of for-
ward LSTM (LSTM is an artificial recurrent
neural network (RNN) architecture; a com-
mon LSTM unit comprises a cell, an input
gate, an output gate, and a forget gate.) and
backward LSTM. Because BiLSTM can bet-
ter represent bidirectional semantic depen-
dencies, it is often used to model contextual
information in natural language processing.
In the three Sub-tasks, after several trial com-
parisons and time factors, we finally selected
a 2-layer BiLSTM. In addition, the parame-
ters of our model were chosen to maximise
development performance: in Sub-task A, we
initialised the hidden dimension, recurrent
dropout, and batch size as 120, 0.25, and 128,
respectively; in Sub-task B, we initialised
the hidden dimension, recurrent dropout, and
batch size as 120, 0.25, and 100, respectively;
and in Sub-task C, we initialised the hidden
dimension, recurrent dropout, and batch size
as 140, 0.35, and 64, respectively.

• BiGRU: similarly, BiGRU is a combination
of forward GRU (GRU, a variant of LST-
M, has a simpler structure than LSTM and
works well; there are only two gates in the
GRU model, namely the update gate and
the reset gate) and backward GRU. For the
three Sub-tasks, we used a 2-layer BiGRU.
The parameters of our model were chosen to
maximise development performance: in Sub-
tasks A and B, we initialised the hidden di-
mension, recurrent dropout, and batch size as
120, 0.25, and 100, respectively; in Sub-task
C, we initialised the hidden dimension, recur-
rent dropout, and batch size as 120, 0.25, and
128, respectively.

• BiLSTM with attention: For this, an at-
tention layer was added to the 2-layer BiL-
STM. In BiLSTM, we used the output vec-
tor of the last time sequence as the feature
vector and then performed softmax classifi-
cation. The attention layer is used to first

calculate the weight of each time sequence,
then take the weighted sum of all the time
sequence vectors as feature vectors, and fi-
nally perform softmax classification. Sim-
ilar to the previous models, the parameters
of our model were as follows: in Sub-tasks
A and B, we initialised the hidden dimen-
sion, recurrent dropout, and batch size as 120,
0.25, and 256, respectively; in Sub-task C,
we initialised the hidden dimension, recur-
rent dropout, and batch size as 180, 0.3, and
128, respectively.

• Capsule Network: In the deep-learning
model, the spatial patterns are summarised
at the lower level, thus helping represent the
concept of higher layers. For example, when
a CNN models spatial information, it need-
s to copy the feature detector, which reduces
the efficiency of the model. However, spa-
tially insensitive methods are inevitably lim-
ited by rich text structures (such as the p-
reservation of word location information, se-
mantic information, and grammatical struc-
ture), which are difficult to encode effectively
and lack text expression ability. Hinton et al.
(Sara Sabour, 2017) proposed a Capsule Net-
work, which replaces a single neuron node
of a traditional neural network with a neu-
ron vector and trains this new neural network
through dynamic routing, effectively improv-
ing the shortcomings of the above two meth-
ods. The parameters of our model were as
follows: in Sub-tasks A and B, we initialised
the hidden dimension, batch size, and routing
as 64, 120, and 15, respectively; in Sub-task
C, we initialised the hidden dimension, batch
size, and routing as 64, 140, and 15, respec-
tively.

• BERT: The BERT model is a language mod-
el proposed by Google based on a bidirec-
tional transformer. It is quite different from
ELMo (Peters et al., 2018). In existing
pre-training models (including word2vec and
ELMo), word vectors are generated. This
type of pre-training model belongs to domain
transfer. The GPT (Karthik Narasimhan and
Sutskever, 2018), BERT, etc. proposed in
recent years are all examples of model mi-
gration. Furthermore, the BERT model com-
bines the pre-training model with the down-
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stream task model. In other words, it is
still utilised when performing downstream
tasks, and text classification tasks are natural-
ly supported. The model does not need to be
modified when performing text classification
tasks. The BERT model has two versions on
the English datasets, namely Base and Large,
and we used the Base version. The param-
eters of our model were as follows: trans-
former blocks (L) was set as 12, hidden size
(H) as 768, number of self-attention head-
s (A) as 12, total parameters as 110M, train
batch size as 32, predict batch size as 8, and
learning rate as 0.00002.

For the four models of BiLSTM, BiGRU, BiL-
STM with attention, and Capsule Network, first,
the processed Twitter text was converted into a
word vector matrix. Then the word vector ma-
trix was processed by the embedded layer. Sub-
sequently, the word vector matrix was converted
to a computable vector matrix. Finally, the four
models could utilise the vector matrix for training
and prediction.

3.4 K-Fold Cross-Validation

We know from Section 3.1 that data imbalance
exists in the public datasets published by the or-
ganisers. This would lead to unstable or inaccu-
rate experimental results. To manage this problem,
we used k-fold (k = 5) cross-validation: the train-
ing sample was randomly partitioned into 5 equal
sized subsamples. Of the 5 subsamples, a single
subsample was retained as validation data to test
the model, and the remaining 4 subsamples were
used as training data.

4 Results

4.1 Task A

Sub-task A includes 13240 training instances and
860 testing instances, as well as OFF and NOT la-
bels. We used four models for predictions on the
testing sets. These four models were BERT (sys-
tem ID: 528280), voting (system ID: 528117), s-
tacking (system ID: 528015), and BiLSTM with
attention (system ID: 528232). In the voting mod-
el, we performed soft voting ensemble on four ba-
sic models: BiLSTM, BiGRU, BiLSTM with at-
tention, and Capsule Network. In the stacking
model, we performed stacking ensemble on four
basic models: BiLSTM, BiGRU, BiLSTM with

attention, and Capsule Network. Our team results
according to those provided by the task organiser-
s are shown in Table 2. Among the results of the
four models submitted by our team, the BiLSTM
with attention model performed the best, and its
F1 (macro) was 0.7877. The accuracy was 0.843,
ranking 16th among all participants. In addition,
from the confusion matrix in Figure 1, it is ob-
served that when the classifier predicts two classes
of labels, namely NOT and OFF, it is more specif-
ic to the NOT label, and the precision for the NOT
label is higher than that for the OFF label.

System ID F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
528015 0.7258 0.7872
528117 0.7817 0.836
528280 0.7667 0.8174
528232 0.7877 0.843

Table 2: Results for Sub-task A
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Figure 1: Sub-task A, YNU-HPCC CodaLab 528232

4.2 Task B
Sub-task B continues on the OFF label of Sub-task
A. It includes 4400 training instances and 240 test-
ing instances, as well as TIN and UNT labels. We
used BERT (system ID: 533313), voting (system
ID: 533291), and BiLSTM with attention (system
ID: 533311) for predictions on the testing sets.
The results of our team according to those pro-
vided by the task organisers are shown in Table 3.
Among the results of the three models submitted
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by our team, the voting model performed best; its
F1 (macro) was 0.6811, its accuracy was 0.8625,
and it ranked 12th among all participants. Similar
to the previous Sub-task, the confusion matrix in
Figure 2 indicates that, for the TIN and UNT la-
bels, the classifier is more sensitive to TIN labels.
In terms of precision, the value for the TIN label
is also higher than that for the UNT label.

System ID F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
533291 0.6811 0.8625
533311 0.6248 0.7833
533313 0.6530 0.8375

Table 3: Results for Sub-task B
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Figure 2: Sub-task B, YNU-HPCC CodaLab 533291

4.3 Task C
Sub-task C continues on the TIN label of Sub-task
B. It includes 3876 training instances and 213
testing instances, as well as IND, OTH, and GRP
labels. We used BERT (system ID: 536705) and
voting (system ID: 537472) for predictions on the
testing sets. The results of our team according
to those provided by the task organisers are
shown in Table 4. Among the results of the two
models submitted by our team, the BERT model
performed the best; its F1 (macro) was 0.6212,
its accuracy was 0.7089, and it ranked 4th among
all participants. Additionally, as shown in Figure
3, among the IND, OTH, and GRP labels, the
highest recall and precision are for the IND labels,

and the lowest are for the OTH labels.

For the three Sub-tasks, misclassifications of the
classifier are likely due to data imbalance.

System ID F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
536705 0.6212 0.7089
537472 0.5377 0.6667

Table 4: Results for Sub-task C
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Figure 3: Sub-task C, YNU-HPCC CodaLab 536705

5 Conclusion

Identifying and categorising offensive language is
a task that is drawing increasing attention. In this
document, we described our four models submit-
ted for Task 6 of the SemEval-2019 Workshop,
which involved identifying and categorising offen-
sive language on Twitter. These four models com-
prise not only traditional neural network model-
s but also popular language models. Our model
exhibited good performance in terms of the ex-
perimental results. In the three Sub-tasks, there
appears to be significant room for improvement
compared to the top-ranked participating systems.
Therefore, in future work, we will focus on using
more word embedding methods and managing da-
ta imbalance issues.
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