
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 745–752
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

745

Stop PropagHate at SemEval-2019 Tasks 5 and 6:
Are abusive language classification results reproducible?

Paula Fortuna1,2 Juan Soler-Company2 Sérgio Nunes1,3

(1) INESC TEC and (3) FEUP, University of Porto
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

paula.fortuna@fe.up.pt, sergio.nunes@fe.up.pt
(2) Pompeu Fabra University

Carrer de Roc Boronat 138, 08018 Barcelona, Spain
juan.soler@upf.edu

Abstract
This paper summarizes the participation of
Stop PropagHate team at SemEval 2019. Our
approach is based on replicating one of the
most relevant works on the literature, using
word embeddings and LSTM. After circum-
venting some of the problems of the original
code, we found poor results when applying it
to the HatEval contest (F1=0.45). We think
this is due mainly to inconsistencies in the data
of this contest. Finally, for the OffensEval the
classifier performed well (F1=0.74), proving
to have a better performance for offense de-
tection than for hate speech.

1 Introduction

In the last few years, several evaluation tasks in
the context of hate speech detection and catego-
rization have been created. Some of these tasks
include e.g., EVALITA (Bosco et al., 2018) and
TRAC-1 (Kumar et al., 2018). These type of
initiatives promote the development of different
but comparable solutions for the same problem,
within a short period of time, which is an inter-
esting contribution for a research field. In this pa-
per, we describe the participation of team “Stop
PropagHate” in the HatEval and OffensEval tasks
of SemEval 2019.

The main goal of both tasks is to improve the
classification of Hate Speech and Offensive Lan-
guage. Some of the works in the literature achieve
a very competitive performance, e.g. Badjatiya
et al. (2017) obtain an F1 score of 0.93 when us-
ing deep learning for classifying hate speech in
one of the most commonly used baseline datasets
(e.g. Waseem (2016)). In this context, we have a
specific objective with our approach: we aim to
reproduce a state-of-the-art classifier as described
in the literature of this topic.

We choose to reproduce the study by Badjatiya
et al. (2017), not only because of the good perfor-

mance of the developed models, but also because
in this work the authors published their code. Con-
sidering the amount of parameters available for
definition and tuning in a machine learning classi-
fication pipeline, a precise and extensive definition
of an experiment’s parameters is not simple and is
hardly ever provided. Thus, having the code of the
experiment is the best way to understand not only
which steps were conducted, but also how those
steps were indeed executed. This is a highly cited
paper, which can be regarded as an indicator of its
relevance in the area.

In this paper, we describe our journey in the
process of replication and the results achieved
when applying this classifier in both shared tasks.
The paper is structured as follows: Section 2
briefly reviews the literature, Section 3 presents
our methodology, Section 4 describes the tasks
and preliminary experiences with the data, Sec-
tion 5 shows our official results in the shared tasks,
and we report the conclusions of our work in Sec-
tion 6.

2 Related Work

Previous research in the field of automatic detec-
tion of hate speech and offensive language can
give us insight on how to approach this prob-
lem. Two surveys summarize previous research
and conclude that the approaches rely frequently
on Machine Learning techniques (Schmidt and
Wiegand, 2017; Fortuna and Nunes, 2018). Differ-
ent methods are used, such as word and character
n-grams (Liu and Forss, 2014), perpetrator char-
acteristics (Waseem and Hovy, 2016) or “othering
language” (Burnap and Williams, 2016). Word
embeddings (Djuric et al., 2015) are often used
in this field because they can feed deep learn-
ing classification algorithms and obtain high per-
formances. Usually, when traditional Machine



746

Learning classifiers are used, the most frequent al-
gorithms are SVM (Del Vigna et al., 2017) and
Random Forests (Burnap and Williams, 2014),
but Deep Learning techniques are quickly gaining
ground in the area (Yuan et al., 2016; Gambäck
and Sikdar, 2017; Park and Fung, 2017). Dif-
ferent studies proved that deep learning algo-
rithms outperform previous approaches (Mehdad
and Tetreault, 2016; Park and Fung, 2017; Bad-
jatiya et al., 2017; Del Vigna et al., 2017; Pitsilis
et al., 2018; Founta et al., 2018; Zhang et al., 2018;
Gambäck and Sikdar, 2017).

Other sources of solutions are previous shared
tasks. For EVALITA, the best performing system
achieved an F1 score of 0.83 on Facebook data and
0.80 on Twitter data. The best team tested three
different classification models: one based on a lin-
ear SVM, another one based on a 1-layer BiLSTM
and a 2-layer BiLSTM which exploits multi-task
learning with additional data. For TRAC-1, the
system that achieved the best performance with a
F1 value of 0.64 used an LSTM and resorted to
translation as a data augmentation strategy.

During the last 2 years, many articles have been
published in this area, and one of the main focal
points is to find accurate classifiers for the detec-
tion and characterization of hate speech. One main
dataset is now used (Waseem, 2016), allowing per-
formance comparison between systems. However,
it is still not trivial to compare and reproduce the
different approaches. Machine learning classifica-
tion systems involve a long, complex set of steps
and parameters and not every paper gives clear
and transparent specifications. A precise specifi-
cation is fundamental for replicating and improv-
ing a system.

With this idea in mind, we tried to replicate a
paper with promising results as a baseline for our
work. We found a paper which describes several
classifiers with good performance and that also
provides a GitHub repository for the code of the
classifiers (as stated before, the work from Bad-
jatiya et al. (2017). In this paper, the authors
propose and use different methods. They inves-
tigate three neural network architectures applied
to the problem of automatic hate speech detec-
tion: CNN, LSTM and FastText. In each one of
the methods they initialize the weights with either
random embeddings or GloVe embeddings. They
use a dataset with messages classified as contain-
ing sexist hate speech, racist or none (Waseem,

2016). Additionally, they use 10-fold cross val-
idation. The set of experiments achieving better
performance consists in using a deep learning ar-
chitecture, then taking the weights of the last layer
and feeding it into a standard machine learning
classifier. More particularly, embeddings learned
from LSTM model were combined with gradient
boosted decision trees and led to the best perfor-
mance (F1 score of 0.93).

Regarding our specific approach in this shared
task, the main research question of our work con-
cerns if it is possible to replicate the results of
the aforementioned paper. After trying to repli-
cate their results, we then apply the approach to
the two new datasets provided by the shared tasks.

In the next sections, we present our methodol-
ogy and approach to these shared tasks.

3 Methodology

For conducting this study, we follow a methodol-
ogy of 10-fold cross-validation with holdout val-
idation (Chollet, 2017). This consists in divid-
ing the data into two sets. One part of the data
is used for cross-validation and parameter tuning
with grid search on several classification parame-
ters. The second part of the data is used for es-
timating the performance of this model when ap-
plied to classify new data.

In terms of pipeline, we tried to replicate the
study by Badjatiya et al. (2017), and we started by
downloading the version of the code1 in December
2018. We then faced some difficulties that we list
here:

• Unspecified versions of Python and of some
of the used libraries.

• The authors use the fact that they provide the
code as a reason not to specify the parameters
in detail.

• The code contains only some of the classi-
fiers described in the paper. The set of classi-
fiers using xgBoost together with deep learn-
ing as features were not provided. These are
the classifiers with the best performance.

• No validation data is hold out for the model
to be tested after the tuning during the cross
validation.

1 https://github.com/pinkeshbadjatiya/
twitter-hatespeech

https://github.com/pinkeshbadjatiya/twitter-hatespeech
https://github.com/pinkeshbadjatiya/twitter-hatespeech


747

• In the provided code, the 10-fold cross-
validation procedure has a bug. With a more
detailed analysis of the code we have found
out that the method used for classification
is train on batch from Keras2, that runs a
single gradient update on a single batch of
data. Successive calls to this method are
done through the 10 iterations of the cross-
validation procedure, without instantiating a
new model. This means that, during the 10
iterations, the model will successively up-
date the gradient values without resetting it.
The effect of using 10-fold cross-validation
is then eliminated because only in the first it-
eration the testing is conducted in data never
seen previously by the model. As a conse-
quence of this problem, we can see that the
successive values of F1 score found in the 10
iterations increases every time. See Table 1
for the specific F1 score values per cross-
validation phase.

CV Iteration Macro F1
1 0.76
2 0.78
3 0.8
4 0.83
5 0.87
6 0.88
7 0.89
8 0.91
9 0.92
10 0.89

Average 0.89

Table 1: F1 score over the different iterations of the
cross-validation procedure. Experiment conducted for
replicating the paper from Badjatiya et al. (2017).

In order to overcome these limitations, we pro-
vide all the information required to replicate the
experiment. We use Python 3.6, Keras (Chollet
et al., 2018), Gensim (Řehůřek and Sojka, 2010)
and Scikit-learn (Pedregosa et al., 2011) as main
libraries, and we make available our project and
code3.

The following subsections describe specific in-
dications on how we implement each step per-
formed by our system.

2Line 204 at the file https://github.com/
pinkeshbadjatiya/twitter-hatespeech/
blob/master/lstm.py

3https://github.com/paulafortuna/
SemEval_2019_public

3.1 Text pre-processing
In terms of text pre-processing, we remove stop
words using Gensim, and punctuation using the
default string library. We transform our tweets to
lower case.

3.2 Feature extraction
Regarding the features that we use in our experi-
ment, we extract Glove Twitter word embeddings,
sentiment and frequencies of words from Hate-
base. The last is a set of features developed in our
work. In Table 2 we present an overview of the
features.

Used features Dimensions Abbreviation
Glove twitter
word embeddings 200 glove

Sentiment Vader 4 sentiment
Hatebase 2 hatebase

Table 2: Experiment features.

3.2.1 Word embeddings
Regarding the pre-trained word embeddings, we
use Twitter Glove pre-trained word embeddings
with 200 dimensions. We then use the methods
provided by Keras to map each token in the input
to an embedding.

3.2.2 Sentiment Features
Another set of features that we use is the sentiment
analysis provided by the Vader library (Hutto and
Gilbert, 2014). We extract the negative (‘neg’),
neutral (‘neu’), positive (‘pos’) and compound
(‘compound’) dimensions. Each text is then rep-
resented as a 4-dimensional vector with these val-
ues.

3.2.3 Hatebase Features
Finally, we use word frequencies from the Hate-
base platform (Hatebase, 2019). This platform
provides different data regarding hateful words
usually connected to hate speech. For each
method, we count two set of words:

• Hateful words - corresponds to one or two
words and are defined as “terms” in Hatebase
(e.g. bitch);

• Hate topic words - corresponds to a definition
of the hateful terms and are defined as “hate-
ful meaning” (e.g. a human female). We ex-
cluded the stop words and counted for each
message if there would be any reference to

https://github.com/pinkeshbadjatiya/twitter-hatespeech/blob/master/lstm.py
https://github.com/pinkeshbadjatiya/twitter-hatespeech/blob/master/lstm.py
https://github.com/pinkeshbadjatiya/twitter-hatespeech/blob/master/lstm.py
https://github.com/paulafortuna/SemEval_2019_public
https://github.com/paulafortuna/SemEval_2019_public


748

words used to explain hatebase terms, so that
we could approximate reference to hate re-
lated topics.

For every message, we store the frequencies of
total hateful words in the text and also the frequen-
cies of hate topic words.

3.3 Classification

Regarding the classifiers we used LSTM and xg-
Boost.

3.3.1 Deep Learning
For the deep learning model, we used LSTM as
implemented in the code from the paper by Bad-
jatiya et al. (2017). This contains an Embedding
Layer with the weights from the word embeddings
extraction procedure, an addtional LSTM layer
with 50 dimensions, and dropouts at the end of
both layers. We used Adam as optimizer, binary
cross-entropy as loss function, 10 epochs and 128
for batch size. With this model we classify the
data into binary classes and we save the last layer
before the classification to extract 50 dimensions
for giving it as input to the xgBoost algorithm, in
a similar manner as described in the paper we are
replicating. Additionally, we tested with higher di-
mensionality, but we find no improvement when
we kept the remaining parameters.

3.3.2 xgBoost
We used the gradient boosting algorithm from the
Python library xgboost (Chen and Guestrin, 2016).
In terms of parameters, we used the default except
for the eta and gamma. In this case we conducted a
grid search combining several values of both (eta:
0, 0.3, 1; and gamma: 0.1, 1, 10). Additionally, we
ran all the possible combinations of the three avail-
able sets of features: hatebase words frequencies,
sentiment, and weights extracted from the LSTM
model.

4 Tasks, systems and results

We conduct different experiments following the
procedure described in Section 3.

4.1 Standard Dataset

In our methodology, we use a standard
dataset (Waseem, 2016), so that we could
compare our results with the original paper we are
replicating.

4.1.1 Data
We randomly divided the data into 90% training
and 10% testing datasets, having 15,214 messages
for training and 1,691 messages for testing.

4.1.2 Results for Tuning and Validation
In Table 3 we present the results of the experi-
ments with the baseline dataset. Some patterns
of the results are in accordance with the original
study (Badjatiya et al., 2017). Indeed, classify-
ing the data with xgBoost after extracting 50 di-
mensions with the LSTM brought improvement
when compared to directly classify it with LSTM.
However, the results presented here are far from
the 0.93 reported in the original paper. We ob-
tained an F1 score of 0.72 using cross validation
and 0.78 using the test set, when combining LSTM
last layer with sentiment, hatebase, and xgBoost
as classifier. One explanation for the differences
between our results and the cited paper can be the
fact that in this experiment we developed and clas-
sified hate speech as binary classes and for that we
converted the sexism and racism, to a single hate
speech class. On the other hand, the original work
was conducted with the three original classes of
the dataset. Another possible explanation may be
the different problems found in the code, mainly
the bug in the cross-validation. The results re-
ported in the original paper may be classification
models that were not tested in new data, and can
be overfitted.

We can also conclude that the sentiment and
hatebase features did not work well for our clas-
sification tasks either when used alone or together
with the 50 dimensions extracted from the LSTM
last layer to feed the xgBoost model.

4.2 HatEval (Task 5)

The proposed task (Basile et al., 2019) consists in
the detection of Hate Speech targeting immigrants
and women in Twitter, using texts in Spanish and
English. There are two different tasks but our team
participated only in the first. In Task A, the teams
predict whether a tweet is hateful or not hateful as
a binary classification task. This task is composed
of two different subtasks, one in English and an-
other in Spanish. The systems are evaluated and
ranked using macro averaged F1 score.

4.2.1 Data
All the data provided for the competition was
collected from Twitter and manually annotated



749

via the Figure Eight crowdsourcing platform.
The data is organized and especially released for
the competition. More specifically, there are
two datasets including tweets about hate against
women and immigrants, in English and Spanish.
The task dataset contains 9,000 messages for train-
ing, 1,000 messages for testing during develop-
ing phase and 3,000 messages for final testing and
evaluation of the different teams.

4.2.2 Results for Tuning and Validation
Our team participated in the Task A for En-
glish and, during the model development phase,
achieved the results presented in Table 4. We ob-
tained similar results when applying the classi-
fier to this dataset, when compared to the baseline
dataset. Again, using the xgBoost to classify and
the 50 dimensions of the last layer of LSTM as
features, brought improvement. We achieved an
F1 score of 0.75 using cross validation and 0.68
using the test set. We noticed that in the base-
line the testing results improve, when compared to
the cross-validation while when using the HatEval
dataset those results decreased.

4.3 OffensEval (Task 6)

In OffensEval (Zampieri et al., 2019b), there are
three sub-tasks and one of the main goals is to
take into account the type and target of offenses.
Our team participated in the Task A, about Offen-
sive language identification. Again, Classification
systems in all tasks are evaluated using the macro-
averaged F1 score.

4.3.1 Data
The data used for the contest were previously pre-
sented in another work (Zampieri et al., 2019a).
Participants were allowed to use external re-
sources and other datasets for this task. Our team
received 13,240 messages for training, 320 mes-
sages for testing during model development phase,
and 860 messages for final testing and ranking of
the different teams.

4.3.2 Results for Tuning and Validation
Our team participated in Task A and, during the
model development phase, achieved the results
presented in Table 5. We obtained similar re-
sults to the baseline dataset and HatEval contest.
Again, using the xgBoost to classify brought im-
provement when compared to just use LSTM to
directly classify the data (F1 score of 0.78 using

cross validation and 0.80 using the test set). Ad-
ditionally, we can see that the classification of Of-
fensive discourse achieved a better performance,
when compared to the classification of hate speech
in previous tasks. This may indicate that offen-
sive language is easier to identify when compared
with hate speech, which is consistent with previ-
ous studies (Kumar et al., 2018).

5 Shared Task Results

In Table 6 we present the results of the team “Stop
PropagHate” in the two contests. Regarding the
HatEval, we conclude that the results drastically
dropped in the F1 metric from 0.77 in the test-
ing phase to 0.45 in the contest. We believe that
this result is due to the sampling procedure used
for building the datasets, we noticed that the train-
ing was conducted with a very balanced dataset
which is an uncommon situation for hate speech
automatic detection. We also find strange that the
winning team only achieved 0.65 which is a re-
sult much lower than the current state of art (F1 of
around 0.80). The low performances of the sys-
tems and our drop in score from the development
phase indicates that there should be important dif-
ferences in the evaluation dataset with respect to
the training material. However, we checked the
proportion of hate speech in both datasets and it is
equivalent (around 42%).

For the OffensEval task, we achieved more con-
sistent results in all the phases, with a F1 of 0.74
more similar to the 0.80 from the testing phases.
The consistency in this case might indicate that
the evaluation set is similar to the training mate-
rial. The winner of the competition scored 0.83,
so we can see that our approach is not far from
that performance.

6 Conclusion

In this paper, we entered a shared task in the field
of hate speech detection and characterization. Our
approach was based on replicating one of the most
relevant works on the state-of-the-art literature.
One of our initial conclusions was that it was not
possible to replicate the study and the results we
aimed at. Our main difficulty was the lack of spec-
ification of the method. Additionally, the incom-
plete available code contained a bug that brought
doubt on the validity of the reported results in the
original paper. This allowed us to see the impor-
tance of sharing code in this field. This is the



750

Features Classifier Number of
features Parameters CV training

F1 macro
testing
F1 macro

glove LSTM 28 batch: 128, epochs: 10 0.66 -
hatebase xgBoost 2 eta: 0, gamma: 0.1 0.44 0.45
sentiment xgBoost 4 eta: 0, gamma: 1 0.50 0.49
hatebase, sentiment xgBoost 6 eta: 0, gamma: 0.1 0.50 0.51
LSTM layer xgBoost 50 eta: 0, gamma: 0.1 0.71 0.77
LSTM layer, hatebase xgBoost 52 eta: 0, gamma: 1 0.71 0.78
LSTM layer, sentiment xgBoost 54 eta: 0, gamma: 0.1 0.71 0.77
LSTM layer, hatebase, sentiment xgBoost 56 eta: 0, gamma: 1 0.72 0.78

Table 3: Achieved F1 score during cross validation (CV) and testing for the baseline experiments.

Features Classifier Number of
features Parameters CV training

F1 macro
testing
F1 macro

glove LSTM 52 batch: 128, epochs: 10 0.67 -
hatebase xgBoost 2 eta: 0, gamma: 10 0.59 0.54
sentiment xgBoost 4 eta: 0, gamma: 1 0.61 0.53
hatebase, sentiment xgBoost 6 eta: 0, gamma: 1 0.56 0.36
LSTM layer xgBoost 50 eta: 0, gamma: 0.1 0.74 0.68
LSTM layer, hatebase xgBoost 52 eta: 0, gamma: 0.1 0.75 0.68
LSTM layer, sentiment xgBoost 54 eta: 0, gamma: 0.1 0.74 0.66
LSTM layer, hatebase, sentiment xgBoost 56 eta: 0, gamma: 0.1 0.74 0.67

Table 4: Achieved F1 score during cross validation (CV) and testing for the HatEval experiments.

Features Classifier Number of
features Parameters CV training

F1 macro
testing
F1 macro

glove LSTM 79 batch: 128, epochs: 10 0.74 -
hatebase xgBoost 2 eta: 0, gamma: 0.1 0.47 0.50
sentiment xgBoost 4 eta: 0, gamma: 1 0.65 0.68
hatebase, sentiment xgBoost 6 eta: 0, gamma: 0.1 0.41 0.47
LSTM layer xgBoost 50 eta: 0, gamma: 1 0.78 0.80
LSTM layer, hatebase xgBoost 52 eta: 0, gamma: 0.1 0.78 0.80
LSTM layer, sentiment vader xgBoost 54 eta: 0, gamma: 0.1 0.78 0.80
LSTM layer, hatebase, sentiment xgBoost 56 eta: 0, gamma: 0.1 0.78 0.80

Table 5: Achieved F1 score during cross validation (CV) and testing for the OffensEval experiments.

Metrics HatEval
Task A

OffensEval
Task A

Model 1 (A) 0.48 0.82
Model 2 (A) - 0.82
Model 3 (A) - 0.82
Model 1 (F1) 0.45 0.74
Model 2 (F1) - 0.74
Model 3 (F1) - 0.74
Classification # 35 44
Number of teams 67 103
1st place (F1) 0.65 0.83
last place (F1) 0.35 0.17

Table 6: Achieved performance in the shared tasks.
Model 1 corresponds to the original classifier from the
replicated paper (LSTM 50d + xgBoost). Model 2 cor-
responds to the same as Model 1 plus adding hatebase
features, and finally, Model 3 corresponds to the same
as Model 1 plus adding hatebase and sentiment fea-
tures.

only way to exactly replicate the reported results
to then apply the same approach in other scenar-
ios. A posteriori, we received an answer from
the authors explaining that the available GitHub

repository does not correspond to the final version
of the project. Nevertheless, the it remained not
updated at the moment of the submission of this
paper. Another work could also not replicate this
results (Lee et al., 2018).

After circumventing some of the aforemen-
tioned problems of the original code, we explained
our specific version and used it to enter the shared
task. We show that using the same classifier we
found poor results when applied to the HatEval
contest. Due to the results achieved on the base-
line dataset and testing set before contest, we think
this is due to inconsistencies between the charac-
teristics of the training set and the final test set. Fi-
nally, for the OffensEval we believe that the classi-
fier performed well, and with a better performance
for offense detection than for hate speech.

Acknowledgments

This work was partially funded by the Google DNI
grant Stop PropagHate.



751

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760. International World
Wide Web Conferences Steering Committee.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Cristina Bosco, Felice DellOrletta, Fabio Poletto,
Manuela Sanguinetti, and Maurizio Tesconi. 2018.
Overview of the EVALITA 2018 Hate Speech De-
tection Task. In Proceedings of the 6th evalua-
tion campaign of Natural Language Processing and
Speech tools for Italian (EVALITA’18), Turin, Italy.
CEUR.org.

Pete Burnap and Matthew L. Williams. 2016. Us and
them: identifying cyber hate on Twitter across mul-
tiple protected characteristics. EPJ Data Science,
5(1):11.

Peter Burnap and Matthew L. Williams. 2014. Hate
speech, machine classification and statistical mod-
elling of information flows on Twitter: Interpreta-
tion and communication for policy decision making.
In Proceedings of Internet, Policy & Politics, pages
1–18.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16,
pages 785–794, New York, NY, USA. ACM.

Francois Chollet. 2017. Deep learning with python.
Manning Publications Co.

François Chollet et al. 2018. Keras: The python deep
learning library. Astrophysics Source Code Library.

Fabio Del Vigna, Andrea Cimino, Felice Dell’Orletta,
Marinella Petrocchi, and Maurizio Tesconi. 2017.
Hate me, hate me not: Hate speech detection on
facebook. In Proceedings of the First Italian Con-
ference on Cybersecurity, pages 86–95.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate speech detection with comment
embeddings. In Proceedings of the 24th Interna-
tional Conference on World Wide Web, pages 29–30.
ACM2.

Paula Fortuna and Sérgio Nunes. 2018. A survey on
automatic detection of hate speech in text. ACM
Computing Surveys (CSUR), 51(4):85.

Antigoni-Maria Founta, Despoina Chatzakou, Nico-
las Kourtellis, Jeremy Blackburn, Athena Vakali,
and Ilias Leontiadis. 2018. A unified deep learn-
ing architecture for abuse detection. arXiv preprint
arXiv:1802.00385.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Hatebase. 2019. Hatebase. Available in https:
//www.hatebase.org/, accessed last time in
January 2019.

Clayton J. Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis
of social media text. In Eighth international AAAI
conference on weblogs and social media.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Younghun Lee, Seunghyun Yoon, and Kyomin Jung.
2018. Comparative studies of detecting abusive lan-
guage on twitter. arXiv preprint arXiv:1808.10245.

Shuhua Liu and Thomas Forss. 2014. Combining n-
gram based similarity analysis with sentiment anal-
ysis in web content classification. In Interna-
tional Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Manage-
ment, pages 530–537.

Yashar Mehdad and Joel Tetreault. 2016. Do charac-
ters abuse more than words? In Proceedings of the
SIGdial 2016 Conference: The 17th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue, pages 299–303.

Ji Ho Park and Pascale Fung. 2017. One-step and Two-
step Classification for Abusive Language Detection
on Twitter. In Proceedings of the First Workshop on
Abusive Language Online.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Georgios K. Pitsilis, Heri Ramampiaro, and Helge
Langseth. 2018. Detecting offensive language
in tweets using deep learning. arXiv preprint
arXiv:1801.04433.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://www.hatebase.org/
https://www.hatebase.org/
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en


752

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. SocialNLP 2017, page 1.

Zeerak Waseem. 2016. Are you a racist or am i see-
ing things? annotator influence on hate speech de-
tection on Twitter. In Proceedings of the 1st Work-
shop on Natural Language Processing and Compu-
tational Social Science, pages 138–142.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on Twitter. In Proceedings of
NAACL-HLT, pages 88–93.

Shuhan Yuan, Xintao Wu, and Yang Xiang. 2016. A
two phase deep learning model for identifying dis-
crimination from tweets. In International Con-
ference on Extending Database Technology, pages
696–697.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting hate speech on Twitter using a
convolution-gru based deep neural network. In Eu-
ropean Semantic Web Conference, pages 745–760.
Springer.


