
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 628–634
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

628

HHU at SemEval-2019 Task 6: Context Does Matter - Tackling Offensive
Language Identification and Categorization with ELMo

Alexander Oberstrass1 Julia Romberg1 Anke Stoll2 Sefan Conrad1

1Institute of Computer Science, Heinrich Heine University Düsseldorf, Germany
alexander.oberstrass@hhu.de

{romberg,conrad}@cs.uni-duesseldorf.de
2Department of Social Sciences, Heinrich Heine University Düsseldorf, Germany

anke.stoll@hhu.de

Abstract

We present our results for OffensEval: Iden-
tifying and Categorizing Offensive Language
in Social Media (SemEval 2019 - Task 6).
Our results show that context embeddings are
important features for the three different sub-
tasks in connection with classical machine and
with deep learning. Our best model reached
place 3 of 75 in sub-task B with a macro
F1 of 0.719. Our approaches for sub-task A
and C perform less well but could also deliver
promising results.

1 Introduction

User generated content in social media platforms
such as Twitter often includes high levels of rude,
offensive, or sometimes even hateful language.
The increasing vulgarity in online discussions and
user comment sections have recently been dis-
cussed as relevant issues in society as well as in
science.

The identification of offensiveness, aggression,
and hate speech in user-generated content has been
addressed in recent research (Waseem et al., 2017;
Davidson et al., 2017a; Malmasi and Zampieri,
2018) and previous shared tasks (Wiegand et al.,
2018; Kumar et al., 2018). However, detect-
ing such content automatically is still challenging.
We developed classification models to identify of-
fensive language, different categories of offense
types, and targets of offensive language through-
out the SemEval-2019 challenge on Identifying
and Categorizing Offensive Language in Social
Media (Zampieri et al., 2019b).

2 Methodology and Data

In this section, we introduce the datasets, the fea-
tures and classifiers we use.

2.1 Datasets

The training dataset provided for this task is fur-
ther described in Zampieri et al. (2019a). For
sub-task A: Offensive Language Detection 4.400
offensive (OFF) and 8.840 not offensive (NOT)
tweets are given for the training and 240 offensive
plus 620 not offensive tweets are given as test data.
Sub-task B: Categorization of Offensive Language
is provided with a training set of 3876 targeted in-
sult (TIN) and 524 untargeted (UNT) tweets and
a test set of 213 targeted insult plus 27 untargeted
tweets. The train data distribution for sub-task C:
Offensive Language Target Identification are 2407
tweets targeting an individual (IND), 1074 target-
ing a group (GRP) and 395 targeting any other cat-
egory (OTH). The test data given counts 100, 78
and 35, respectively.

We use Davidson et al. (2017b)’s dataset for
hate speech detection as an additional source of
knowledge and to address the problem of overfit-
ting in our deep learning models. Tweets were col-
lected and filtered using a lexicon of common hate
speech terms. The remaining tweets were then
each classified by at least 3 CrowdFlower users
into the three categories hate speech, offensive lan-
guage or none. Each tweet was assigned a label,
which was chosen based on a majority vote. In
order to match the labels to this task, we merged
the categories: hate speech and offensive language
into a single offensive label OFF and renamed the
label none to NOT. This resulted in 20620 OFF
and 4163 NOT labeled additional tweets. It should
be noted that our assumption to equate hate speech
and offensive language does not apply in general.

2.2 Features

Word and Char-Level Features We transformed
the tweet texts into tf-idf weighted bag of words
and bag of chars representations using scikit-learn



629

(Pedregosa et al., 2011). The feature CHARS is
built from bigrams to 6-grams on character level.
For the feature WORDS we use unigrams and bi-
grams on word level, excluding stop words. In or-
der to reduce variance in the text data, we also
built the feature STEMS with unigrams and bi-
grams. For this, we applied the TweetTokenizer
from NLTK (Bird et al., 2009) that removes user
name handles from a tweet and replaces repeated
characters with a sequence of only 3. Afterwards,
the word tokens are reduced to their stems using
the Snowball Stemming algorithm (Porter et al.,
2002).

Named Entities Named entities in a tweet can
indicate whether this tweet is person-related or re-
lates to e.g. religious or political groups or or-
ganizations. This information might help with
the target identification. The feature NE is im-
plemented using the named entity recognition of
spacy1, building a bag of named entities for ev-
ery tweet preserving all OntoNotes5 (Weischedel
et al., 2013) named enity types, which results in an
18-dimensional feature vector per tweet.

Grammatical Number of Nouns and Pro-
nouns The grammatical number of a noun might
also indicate if a tweet insults a specifiable target.
We use spacy’s part-of-speech tagger, which uses
the OntoNotes5 tagging scheme. The feature ND
models the noun distribution of singular and plu-
ral nouns and is implemented building a bag of
tags for the tags NNS, NN, NNP and NNPS, nor-
malized by the tweets’ token count. Contrarily,
feature SPNR describes the ratio of singular noun
tags (NN and NNP) and plural noun tags (NNPS
and NNS) per tweet. The first value is divided
by the latter one, smoothing both by adding 1.
Another feature to separate single person targets
from groups is the absolute count of single pro-
noun words (he, she, him, her, his, hers, himself,
herself) per tweet, hereinafter referred to as SPC.
It should be noted that the corresponding proce-
dure for plural pronouns could not bring any ben-
efit in our evaluations and is therefore not further
described.

Dependencies Another consideration was
whether syntactic dependency relations could
provide information for one of the three sub-tasks.
For the feature DEP, every tweet is transformed
into the corresponding list of dependency labels.
These representations are subsequently used to

1
https://spacy.io/

build n-grams in the range (2,4) which are then
vectorized using tf-idf.

Global Vectors for Word Representation
(GloVe) Feeding words into machine learning
models often requires a meaningful vector repre-
sentation that captures syntactic and semantic in-
formation. We use GloVe word embeddings (Pen-
nington et al., 2014), an unsupervised learning
algorithm for obtaining vector representations of
words. A set of pre-trained word vectors, trained
on over 2 billion tweets, containing vector repre-
sentations for over 1.2 million words in various di-
mensions (25, 50, 100, 200) is publicly available
on the author’s website2. In this work, we use 200
dimensions.

Embeddings from Language Models (ELMo)
Traditional pre-trained word representations
merely contain meaning based on statistical in-
formation and therefore struggle with word-sense
disambiguation. Since offensive words change
their meaning greatly depending on their context,
a contextualizing method would help to tackle
this task. ELMo (Peters et al., 2018) is a novel
approach on creating word representations and
shows a significant improvement of state of the
art systems on many benchmarks. It models a
function using character-based word representa-
tions and bidirectional long-short term memories
of not only each single word, but also the entire
input sentence. Thus, it can be useful for solving
the problem of processing ambiguous words that
are not offensive by themselves but could point to
offensive language depending on the context they
are used in. For these reasons, we expect ELMo
to increase the results of this task. The pre-trained
model can be downloaded from TensorFlow
Hub3.

χ2 Feature Selection To quantify the contribu-
tion of a feature, we choose the χ2 test statistic,
that excludes features that are most likely to be in-
dependent from a class, and keep the k features
with the highest values for χ2.

2.3 Classifier

We use logistic regression (Nelder and Wedder-
burn, 1972), support vector machines (Cortes and
Vapnik, 1995) and neural networks with long
short-term memory units (Hochreiter and Schmid-
huber, 1997) for the different classification prob-

2
https://nlp.stanford.edu/projects/glove/

3
https://tfhub.dev/google/elmo/2

https://spacy.io/
https://nlp.stanford.edu/projects/glove/
https://tfhub.dev/google/elmo/2


630

lems. The classifiers are implemented with scikit-
learn and TensorFlow (Abadi et al., 2015).

Logistic regression has been used by several
teams of the GermEval shared task on offensive
language identification (Wiegand et al., 2018) with
promising results. We therefore decided to use it
as a baseline approach. In the multiclass case the
one-vs-rest scheme is used.

Support vector machines (SVM) are also known
to perform well on a variety of classification tasks
and have been used in the context of hate and of-
fensive speech and abusive language detection in
recent years (Malmasi and Zampieri, 2017; Wie-
gand et al., 2018). We use the rbf kernel. In the
multiclass case the one-vs-one scheme is used.

To overcome class imbalances, class weights
are adjusted inversely proportional to the train data
class frequencies for both classifiers.

As seen in recent challenges focused on offen-
sive language detection in social media like TRAC
(Kumar et al., 2018), long-short term memories
(LSTM) play an important role and are often used
among the best classifiers. Their ability of se-
quential data iteration and of memorizing recent
content across time provides them with a good
opportunity not only to analyze individual words,
but also to find problem-specific dependencies be-
tween them.

3 Models

This chapter describes the development of the
models for the submissions and how they perform
on the training data.

3.1 Sub-task A

The training data was split into a training set con-
taining 3400 OFF and 7840 NOT labels and a val-
idation set, which consists of the remaining 1000
OFF and 1000 NOT labels. To establish a base-
line for this sub-task, we used the features CHARS,
WORDS and STEMS, which were the features that
were mainly used by the most powerful systems in
the TRAC challenge that did not use deep learn-
ing. We opted for logistic regression, because
it performed better than the SVM. C was set to
the default value 1. Table 1 gives an overview of
all model results for sub-task A. The baseline ap-
proach, denoted as Baseline A, reaches a macro F1

of 0.712 on the validation set.
Our first deep learning model architecture

LSTM A1 uses ELMo context embeddings as in-

System F1 (macro) Accuracy
Baseline A 0.712 0.718
LSTM A1 0.742 0.745
LSTM A2 0.753 0.753
LSTM A3 0.759 0.759
LSTM A4 0.729 0.731
LSTM A5 0.764 0.764
LSTM A6 0.767 0.768
Feature Union A 0.760 0.760

Table 1: Overview of the performance by different
models for sub-task A

puts into a bidirectional LSTM layer with a size
of 64 cells. For classification, we used the hid-
den states of the LSTM cells generated when pass-
ing the last token from each tweet to the LSTM.
A fully connected layer was used to compute the
two class scores that were normalized using soft-
max. Its highest macro F1 value of 0.742 on the
validation set was reached after only two epochs,
which means that the network tends to overfit very
quickly. To overcome this problem, we placed
an additional fully connected layer with a dimen-
sionality of 64 and L2 loss between the high-
dimensional ELMo output (1000 dimensions) and
the LSTM layer to insert a relatively strong regu-
larization loss to the system. We expected this to
force the system to look for more universal pat-
terns in the embeddings before passing them to
the LSTM layer. While improving the F1 score
by 1%, this architecture, named LSTM A2, still
started overfitting after two epochs. As a further
adjustment against overfitting we used an extra
heavy dropout layer with a 70% dropout between
the ELMo embeddings and the fully connected
layer. We also tried other dropout rates (30%,
40%, 50%, 60%, 80%, 90%), but 70% worked
best. A higher percentage did not yield meaning-
ful results. Through this modification of the ar-
chitecture, LSTM A3, the overfitting was delayed
until the 16th epoch. The F1 score also showed a
slight improvement.

Comparing non-contextualized to contextual-
ized word embeddings, the developed architec-
ture was also evaluated with GloVe (LSTM A4) as
well as with a vector concatenation of GloVe and
ELMo Embeddings LSTM A5. It turned out that
ELMo embedding inputs alone exceed the GloVe
embedding inputs in this model and that they work
together even better than each one on its own.



631

Due to the remaining problem of overfitting,
we used the additional data described in Sec-
tion 3.1. Pre-training the network with this addi-
tional data and then training it with our training
set, a small but no significant improvement was
achieved. With a macro F1 of 0.767, this model
(LSTM A6) shows the best performance on the val-
idation set and was therefore used for our first sub-
mission. We used a learning rate of 0.001 and a
batch size of 64 for all models. The number of
epochs was chosen dependent on the stagnating
progress on the validation set.

We used logistic regression with the default
C = 1 for the second submission system. As fea-
ture representation for each tweet, we combined
CHARS, WORDS and STEMS with the output of
the already trained LSTM of LSTM A6 as 128-
dimensional fixed features. This system Feature
Union A could not surpass LSTM A6, but achieves
nevertheless a F1 of 0.760. It should also be noted,
that the χ2 feature selection could reduce the fea-
tures used in this feature union to only four of
them without affecting the accuracy of the classi-
fication. All of them derived from the LSTM out-
put features. The full architecture of this model,
including all the models described earlier in this
section, is illustrated in Figure 1.

Figure 1: Model architecture for the Feature Union A
system

3.2 Sub-task B

System F1 (macro) Accuracy
Baseline B 0.615 0.869
LSTM B1 0.602 0.745
LSTM B2 0.628 0.809
Feature Union B 0.653 0.825

Table 2: Overview of the performance by different
models for sub-task B

In sub-task B we split the data into 80% train-
ing and 20% validation set. We trained the same
baseline model as in sub-task A, which reached a
macro F1 of 0.615 on the validation set and forms
the baseline for the list of all models build for this
sub-task shown in Table 2.

For our first deep learning approach on this sub-
task, we used the same structure as in LSTM A6,
but with smaller layer sizes as another way to re-
duce overfitting, because the training data given
for this sub-task was even smaller than for sub-
task A. The dense layer between the dropout layer
and the bidirectional LSTM consists of 8 and the
LSTM of 32 cells. This system named LSTM B1
achieves 0.623 on the validation set.

Pseudo Labeling was used on the additional
data described in Section 3.1 to generate the miss-
ing labels for this task. For this, we first labeled the
additional data using LSTM B1, which had already
been trained on the training data. Then the result-
ing labels are used to extend the training data. In
addition, we have focused only on the labels which
softmax class score was higher than 0.7 for the
predicted label to reduce noisy labels. This results
in about 2000 UNT and 17500 TIN labeled tweets.
The resulting system named LSTM B2 reaches a
macro F1 of 0.628 on the validation set.

As first classifier Feature Union B, we used
the same structure as in sub-task A and combined
CHARS, WORDS and STEMS and the output of
LSTM B2 as feature input. The value for C in the
logistic regression was selected using grid search
and was set to 0.51. Together these features im-
proved the macro F1 even further and reached our
best result 0.653 for sub-task B on the validation
set.

For the second submission, we trained addi-
tional four models of LSTM B2 and we used the
Feature Union B from the first submission as a
fifth classifier. We then performed a majority vote
on all five resulting labels.



632

All deep learning models in sub-task B are
trained with a learning rate of 0.001 and a batch
size of 32 for all models. The number of epochs
was defined in the same way as in sub-task A.

3.3 Sub-task C

The evaluation for sub-task C is done on a 80%-
20% train-validation split making sure that the test
data set contains a 20% proportion of each class.
Additionally, the train data was enriched with the
trial data, where all occurrences of class ORG
were replaced by class OTH. Deep learning was
not used for the implementation of this sub-task
due to the small amount of training data. To se-
lect the best feature sets for the used classifiers, lo-
gistic regression and SVM all combinations were
tested including grid search to find the best param-
eter values for C and γ, respectively.

Class Features Prec. Recall F1

GRP ELMo 0.566 0.679 0.617
ELMo+NE 0.573 0.674 0.62
ELMo+ND 0.567 0.61 0.614
ELMo+NE+ND 0.58 0.674 0.623
all 0.582 0.674 0.625

IND ELMo 0.820 0.789 0.804
ELMo+NE 0.821 0.795 0.808
ELMo+ND 0.567 0.67 0.614
ELMo+NE+ND 0.823 0.795 0.809
all 0.825 0.798 0.811

OTH ELMo 0.360 0.237 0.286
ELMo+NE 0.365 0.250 0.297
ELMo+ND 0.370 0.263 0.308
ELMo+NE+ND 0.375 0.276 0.318
all 0.386 0.29 0.331

macro ELMo 0.582 0.568 0.57
ELMo+NE 0.587 0.573 0.575
ELMo+ND 0.586 0.574 0.575
ELMo+NE+ND 0.593 0.582 0.584
all 0.598 0.587 0.589

Table 3: Overview of feature impact on the logistic re-
gression system with C = 0.011

Logistic regression classifies best on the vali-
dation set using C = 0.011 and the combination
of the features WORDS, NE, SPC, DEP, SPNR,
ND and the ELMo embeddings trained for sub-
task B achieving a macro F1 of 0.589. Table 3
gives an overview of the model performance for
the three classes. The features are broken down
by influence, where all denotes the entire feature
set used. ELMo is the most important feature here
and gives a macro F1 of 0.57. The further two per-
cent are largely due to the use of named entities
and the noun distribution. The additional features
(WORDS, SPC, DEP, SPNR) have only little in-

fluence of the classification. A closer look reveals
that the class performances differ widely depend-
ing on class size. Underrepresented classes benefit
the most from adding other features to the embed-
dings, OTH in particular: Precision and recall in-
crease by two and five percent, which leads to a
rise in F1 of about four percent.

Class Features Prec. Recall F1

GRP ELMo 0.537 0.729 0.618
ELMo + SPNR 0.554 0.715 0.625
all 0.554 0.715 0.625

IND ELMo 0.871 0.706 0.78
ELMo + SPNR 0.873 0.706 0.781
all 0.874 0.708 0.782

OTH ELMo 0.296 0.342 0.317
ELMo + SPNR 0.317 0.434 0.367
all 0.32 0.434 0.369

macro ELMo 0.568 0.592 0.572
ELMo+SPNR 0.582 0.618 0.591
all 0.583 0.619 0.592

Table 4: Overview of feature impact on the SVM sys-
tem with C = 6, γ = 0.0001

Table 4 depicts the results for the best SVM
model, using a feature set of WORDS, DEP,
SPNR, ND and the ELMo embeddings trained for
sub-task B. The best parameter values we found
are C = 6 and γ = 0.0001 and lead to a macro
F1 of 0.592 on the validation set. As in the previ-
ous setting, ELMo is the key feature and achieves
0.572 macro F1. The union with feature SPNR
leads to 0.591 macro F1. As with logistic regres-
sion, the addition has a positive effect on the less
common classes.

In addition, we use a majority vote as third sub-
mission. For this, we build a voting classifier
out of the previously developed logistic regression
and SVM classifiers and a further logistic regres-
sion classifier which uses CHARS, WORDS and
STEMS and the output of LSTM B2 as feature in-
put. It should be noted, that the LSTM has not
been re-trained on the sub-task C data. Subse-
quently, a majority decision is taken and in case
of doubt, the label prediction of the latter logistic
regression classifier is given preference.

4 Results

After the previous description of the submission
models, an overview of the test results follows in
this section.



633

4.1 Sub-task A
In order to prepare the LSTM A6 system for sub-
mission, we re-trained it with the complete avail-
able training data. This classifier reached a macro
F1 of 0.768, as shown in Table 5 on the test set,
which is comparable to the result reached on the
validation set in Table 1.

As a second submission we chose the Feature
Union A classifier, but took the output of the
LSTM from the first submission for the LSTM
output features in the feature union instead. With
0.742, it reached a somewhat lower macro F1 on
the test set than on our validation set as shown in
comparison of Table 1 and Table 5.

System F1 (macro) Accuracy
All NOT baseline 0.419 0.721
All OFF baseline 0.218 0.279
LSTM A6 0.768 0.807
Feature Union A 0.742 0.788

Table 5: Test results for sub-task A

4.2 Sub-task B
The Feature Union B system reached a macro F1

score of 0.671. Comparing the results from Table
2 and Table 6, the classifier works equally well on
the train and on the test data.

The majority vote classifier achieved our best
result with a macro F1 score of 0.719 (Table 6).
This result is remarkably good which we think is
caused by a high robustness resulting from the dif-
ferent strengths of the incorporated classifiers.

System F1 (macro) Accuracy
All TIN baseline 0.470 0.888
All UNT baseline 0.101 0.113
Feature Union B 0.671 0.871
Majority Vote B 0.719 0.850

Table 6: Test results for sub-task B

4.3 Sub-task C
On the test data, all systems perform inferior than
on the validation set. The best macro F1 is ob-
tained by the SVM having 0.571, followed by the
logistic regression with 0.551 and then the voting
classifier with 0.539. Overall, the performance is
fairly stable compared to the validation set and the
fact that no cross validation was used in the model
selection process.

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

54 10 14

11 71 18

16 8 11

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2: Confusion matrix for sub-task C and the best
performing model SVM

Figure 2 shows the confusion matrix for the
best performing system. As can be seen, most
tweets of GRP and IND are classified correctly,
whereas almost half of the OTH tweets are in-
correctly recognized as GRP. On the one hand,
the rare class occurence in the training seems to
obstruct the classifier in learning. On the other
hand, it was challenging for us as humans to dif-
ferentiate between the classes GRP and OTH in
the data set: For instance ”Liberals are mentally
ill!” is labeled as GRP, whereas ”@USER republi-
cans/conservatives are the most disgusting people”
has label OTH.

5 Conclusion

We showed that contextualized embeddings work
well in the context of offensive language identifi-
cation and the two different categorization tasks.
Other language and linguistic features could de-
liver only small improvements.

The main problems in using deep learning are
the model size and the dimensionality and num-
ber of parameters resulting in fast overfitting. We
plan to address this problem through strategies to
reduce model size (primarily in reducing the high-
dimensional ELMo output without loosing rele-
vant information before connecting it to the less
high-dimensional LSTMs using a fully connected
layer), or to include more data when available.
Another consideration for sub-task A would be the
use of the majority vote model from sub-task B,
which showed good results. For sub-task C, the
development of deep learning models would be in-
teresting.



634

References
Martın Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2015. Tensorflow: Large-scale machine learning on
heterogeneous systems, 2015. Software available
from tensorflow. org, 1(2).

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning, 20(3):273–297.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017a. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017b. Automated hate speech
detection and the problem of offensive language. In
Proceedings of the 11th International AAAI Confer-
ence on Web and Social Media, ICWSM ’17.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

John Ashworth Nelder and Robert WM Wedderburn.
1972. Generalized linear models. Journal of
the Royal Statistical Society: Series A (General),
135(3):370–384.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christoper
Manning. 2014. Glove: Global vectors for word
representation. volume 14, pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations.

Martin F Porter, Richard Boulton, and Andrew Mac-
farlane. 2002. The english (porter2) stemming algo-
rithm. Retrieved, 18:2011.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw,
Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. Ontonotes release 5.0
ldc2013t19. Linguistic Data Consortium, Philadel-
phia, PA.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/arXiv:1802.05365
http://arxiv.org/abs/arXiv:1802.05365

