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Abstract

We describe the CAMsterdam team entry to
the SemEval-2019 Shared Task 6 on offen-
sive language identification in Twitter data.
Our proposed model learns to extract tex-
tual features using a multi-layer recurrent net-
work, and then performs text classification us-
ing gradient-boosted decision trees (GBDT).
A self-attention architecture enables the model
to focus on the most relevant areas in the text.
We additionally learn globally optimised em-
beddings for hashtags using node2vec, which
are given as additional tweet features to the
GBDT classifier. Our best model obtains
78.79% macro F1-score on detecting offensive
language (subtask A), 66.32% on categorising
offence types (targeted/untargeted; subtask B),
and 55.36% on identifying the target of of-
fence (subtask C).

1 Introduction

The SemEval-2019 shared task 6 (‘OffensEval’)
involved three sub-parts: the classification of
tweets as offensive or not (subtask A), classify-
ing whether they are targeted insults or not (sub-
task B), and finally whether the targeted insults are
aimed at an individual, group or otherwise (sub-
task C). Further details may be found in the shared
task report (Zampieri et al., 2019b). Here we de-
scribe CAMsterdam’s competition entry.

In recent years, there has been a growing inter-
est in the automatic detection of offensive opinions
expressed in online texts, including those posted
in discussion forums, news article comment sec-
tions, and social networks. Such detection is not
straightforwardly a matter of identifying texts con-
taining obscene words (Malmasi and Zampieri,
2018); offensiveness often arises from the con-
text, current affairs, world knowledge, the use of
acronyms and slang, and the identity of the authors
and audience. Therefore the task is a challenging

one, but one with real world impact: if measures
can be taken to identify and curtail trolling, the
toxicity of the internet can to some extent be re-
duced. There is evidence that online harassment
is connected with oppression, violence and sui-
cide (Dinakar et al., 2011; Sood et al., 2012; Wul-
czyn et al., 2017), and there may moreover be rea-
sons for concern about the perpetrator’s wellbeing
along with that of the victims (Cheng et al., 2017).

Our approach to the task extends the work of
Mishra et al. (2018b), who extract features from
tweets using an RNN for subsequent use in a
gradient-boosted decision tree (GBDT) (Ke et al.,
2017). Firstly, we experiment with changes to
the RNN, including the use of self-attention (Rei
and Søgaard, 2019) and ELMo embeddings (Pe-
ters et al., 2018). Secondly, we add additional fea-
tures to the GBDT, including globally-optimised
hashtag embeddings learned from a graph of tweet
contents using node2vec (Grover and Leskovec,
2016). We show that this method of learning dis-
tributional information about hashtags improves
performance over just learning their embeddings
within a RNN.

2 Related Work

There has been much work characterising of-
fensive online discourse including hate speech
and cyberbullying (Warner and Hirschberg, 2012;
Kwok and Wang, 2013; Xu et al., 2013; Waseem
et al., 2017; Ribeiro et al., 2018). This work also
includes creating datasets for training and eval-
uating detection models, for example the Hate
Speech Twitter Annotations and Wikipedia Com-
ments Corpora (Waseem and Hovy, 2016; David-
son et al., 2017; Wulczyn et al., 2017). Most
work has been conducted on English data – tweets
in particular – with some extensions to other do-
mains (e.g. hacking forums (Caines et al., 2018))
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and other languages (e.g. Arabic (Mubarak et al.,
2017), Chinese (Su et al., 2017), Slovene (Fišer
et al., 2017)).

Automated detection approaches have drawn
on traditional document classification methods for
spam detection and sentiment analysis, and tend
to use lexical and syntactic features (Nobata et al.,
2016; Li et al., 2017; Bourgonje et al., 2018). Ma-
chine learning techniques range from logistic re-
gression (Cheng et al., 2015) to support vector
machines (Yin et al., 2009) to neural networks
(Gambäck and Sikdar, 2017).

We draw on the work by Mishra and colleagues,
who used a character-based recurrent neural net-
work to form contextual word representations of
out-of-vocabulary words (Mishra et al., 2018b),
and moreover employed graph-based author em-
beddings to represent group behaviour within so-
cial networks, significantly improving abuse de-
tection (Mishra et al., 2018a). In this shared task,
we do not have access to author information, but
instead adapt the approach by building a graph
of the tokens which occur in the training data, a
method described in further detail in Section 4.4.

3 Data

The OffensEval shared task uses the Offen-
sive Language Identification Dataset (OLID)
(Zampieri et al., 2019a), which hierarchically la-
bels tweets according to whether or not they are
offensive, whether any offence is targeted, and if
so targeted at whom: an individual, a group or oth-
erwise. The three subtasks in this shared task cor-
respond to predicting labels at each level of gran-
ularity. The data is structured to allow this: all
tweets presented in subtask B are guaranteed to
be offensive, and all of those in subtask C are tar-
geted.

Tweets were collected by using the Twitter API
to search for terms that are frequently associated
with offensive behaviour. These included polit-
ical keywords, as political content may attract a
disproportionate amount of offensive comments.
The dataset is evenly split between tweets sourced
from these keywords and non-political ones. The
authors additionally found that an effective strat-
egy for gathering offensive tweets was to search
for those flagged by Twitter’s safe search feature.
All tweets were anonymised by replacing user-
names and URLs with placeholder tokens.

Each of the 14, 100 collected tweets were man-

A B C Train Test Total
OFF TIN IND 2, 407 100 2, 507
OFF TIN OTH 395 35 430
OFF TIN GRP 1, 074 78 1, 152
OFF UNT — 524 27 551
NOT — — 8, 840 620 9, 460

All 13, 240 860 14, 100

Table 1: Count of tweets in each category of OLID
(Zampieri et al., 2019a).

ually annotated by at least two annotators; where
the original two annotators disagreed on a tweet,
it was further annotated until agreement reached
66%. Table 1 presents the number of tweets in
each category.

4 Methodology

In this section, we extend the model proposed by
Mishra et al. (2018b) for offensive language clas-
sification. The architecture uses a 2-layer RNN,
optimised using Adam (Kingma and Ba, 2015), to
predict the class of a given tweet. The pre-softmax
activation values from the output layer are given as
input to a GBDT for final classification. Using the
GBDT for classification was found to give better
results compared with predicting from the RNN
directly, and allows us to include additional fea-
tures into the model. The RNN is initialised with
pre-trained word embeddings which are fine-tuned
during training. For previously unseen words,
we follow Mishra et al. (2018b) in using a neu-
ral character-based compositional model to gen-
erate plausible embeddings of unseen words. This
component is optimised to compose context-aware
character embeddings into word-level embeddings
that are similar to the pre-trained representations,
trained on words for which the embeddings are
available. This methodology is effective in gener-
ating reasonable quality embeddings in instances
where words were deliberately obscured to evade
detection.

Following common practice in named entity
recognition (Sang and De Meulder, 2003), where
fine-grained labels are used to improve perfor-
mance on the sequence labeling task, we take
advantage of the hierarchical labels available for
each tweet. For subtasks A and B we train a model
to predict all cascading labels, and sum the prob-
abilities of labels under the relevant class to make
a final prediction. For example, for subtask A the
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model is trained to predict between 5 classes: not-
offensive (NOT), offensive but not targeted (UNT),
targeted towards an individual (IND), towards a
group (GRP), and towards any other target (OTH).
We classify a tweet as offensive if the cumulative
probability mass for UNT, IND, GRP, and OTH is
greater than NOT.

We also introduce several architectural exten-
sions to the Mishra et al. (2018b) model. Firstly,
we augment the core RNN with ELMo embed-
dings and a self-attention mechanism. Secondly,
we add both the post-softmax output from the
RNN as well as graph-based representations of
tweets as input features to the GBDT classifier.
We provide details of each extension in the fol-
lowing sections.

For each subtask, we experiment with combina-
tions of the above and additionally tune the RNN
type (between LSTM (Hochreiter and Schmidhu-
ber, 1997) and GRU (Cho et al., 2014)), dimen-
sion, and batch size, whether to use character n-
grams (n ∈ [1, 4]), and, when used, the size of
self-attention layers. We also run experiments
using the unmodified model to find which pre-
trained embeddings give the best performance. We
compare publicly available embeddings trained
using Word2Vec (Mikolov et al., 2013), FastText
(Mikolov et al., 2018), and GLoVe (Pennington
et al., 2014).

4.1 ELMo

We use embeddings generated from ELMo con-
catenated with pre-trained word embeddings as in-
put to the RNN. ELMo generates embeddings on a
character level, so does not share the same out-of-
vocabulary issue as pre-trained embeddings and is
always able to generate a word representation. We
used the largest pre-trained model available on-
line1, and learn a weighted linear combination of
its three layers.

4.2 Self-attention

The model proposed by Mishra et al. (2018b) uses
the last hidden state of the RNN as the feature
representation for each tweet; instead, we propose
the use of a self-attention mechanism to learn a
weighted combination of all intermediate hidden
states (Rei and Søgaard, 2019). The weights âi
for each hidden state hi are learned by passing
hi through two dense layers with tanh activation,

1https://allennlp.org/elmo

and a further 1-dimensional dense layer. The fi-
nal dense layer has either sigmoid or exponential
activation, corresponding to soft or sharp attention
respectively. The weights are normalised to sum
to 1, yielding final attention values ãi, which are
used to obtain the final sentential representation
s =

∑
i ãihi. The RNN is then trained using cat-

egorical cross-entropy on s passed through a final
tanh layer.

4.3 RNN Prediction
This modification includes the post-softmax out-
put of the RNN as an additional input feature to
the decision tree.

4.4 node2vec
We make use of node2vec to learn low-
dimensional continuous representations of hash-
tags used in tweets on the basis of whole-tweet
contexts. We first represent every token (including
all hashtags) and each tweet as nodes in a graph,
with edges formed between tweets and the tokens
they contain. node2vec first follows a tunable
sampling strategy to perform random walks from
each node, generating directed acyclic graphs with
a maximum out degree of 1 (i.e. a sequence
of nodes). It then applies the SkipGram model
(Mikolov et al., 2013) to learn a representation
of each node based on its neighbours in the sam-
pled sequences. Specifically, given a graph with
nodes V , node2vec maximises the log probability:∑

v∈V log(P (Ns(v)|v)), where Ns(v) is the set
of neighboring nodes for node v generated from a
sampling strategy s.

We train these node2vec representations on two
data sets: the OLID training data, and our own
scrape of Twitter using rtweet (Kearney, 2018).
We collect this additional data by searching for
each of the 24 hashtags which appear at least 10
times in the training set, with at least 1 in 4 oc-
currences in tweets labelled offensive. Intuitively,
these common and frequently offensive hashtags
are a more reliable signal of offensiveness than
less frequent hashtags. It remains to be seen
whether collecting more tweets with all hashtags
in OLID would help, but the strict rate limits on
the Twitter API meant that we ran out of time to
explore this.

We trained 200-dimensional embeddings on a
random sample of 10, 000 of the resulting tweets.
To represent each tweet we sum the embeddings
of each hashtag present, and normalised the re-
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System F1 (macro)
Vanilla model 0.710
Vanilla model + ELMo 0.742
Vanilla model + ELMo + self attention 0.764
Vanilla model + ELMo + self attention + char. ngrams 0.763
Vanilla model + ELMo + self attention + node2vec 0.764
Vanilla model + ELMo + self attention + char. ngrams + node2vec 0.767

Table 2: Ablation test for features, with results reported on our held-out development set for subtask A.

sulting vector to unit length. These vectors, or a
200-dimensional 0-vector for tweets containing no
hashtags with trained embeddings, were then con-
catenated with the RNN features (either from self-
attention where it was used, or the last hidden state
if not) prior to being input into the GBDT.

5 Results

In this section, we present a sample of results ob-
tained during model selection, and results on each
of the official subtask test sets. Model selection is
carried out by evaluating each model on a consis-
tent 90% training and 10% validation split of the
provided training data. Before carrying out model
selection, we ran an unmodified version of Mishra
et al. (2018b)’s model on subtask A and found that
300-dimensional FastText embeddings trained on
Common Crawl gave the best performance2.

We submitted three models for each of the three
subtasks. We submit models that differ in two
ways. The first is the amount of data they are
trained on. Models labelled ALL-DATA are trained
on all of the provided data, while models tagged
TRAIN-SPLIT are trained on just the 90% training
split, but have a known performance via their re-
sults on the development set. It is beneficial to
know this as there is a large amount of variance
in model results due to stochasticity in the train-
ing process. The second way in which the models
differ is designed to handle this variance by en-
sembling three models via majority vote. Such
submissions are labelled with ENSEMBLE, while
those only using a single model are labelled BEST.

In all three subtasks we find that the best per-
forming system is that which ensembles three
identical models trained on the entire training set.

5.1 Subtask A
Subtask A concerns classifying a tweet as OFF (of-
fensive) or NOT (see Section 3). We experiment

2https://fasttext.cc/docs/en/english-vectors.html

with adaptations of the model from Mishra et al.
(2018b) to perform a 5-WAY classification be-
tween all categories, and select the most effective
feature combination for each subtask. We experi-
ment with features mentioned in Section 4: ELMo,
self-attention, character n-grams, and node2vec.
Results from ablation studies are presented in Ta-
ble 2.

We found that the best performing model used
features extracted from a RNN that used ELMo
embeddings in addition to FastText and compo-
sitional character-based word embeddings, with
sharp self-attention over a GRU with 256 hidden
units trained using a batch size of 64. These fea-
tures were used in a GBDT alongside the 10, 000
most frequently occurring character n-grams, and
node2vec representations of the tweets.

Table 3 shows our results for subtask A on the
test data. All three submissions use the model ar-
chitecture and hyperparameters described above.

System F1 Accuracy
All NOT baseline 0.419 0.721
All OFF baseline 0.218 0.279
TRAIN-SPLIT-BEST 0.776 0.835
ALL-DATA-ENSEMBLE 0.788 0.847
ALL-DATA-BEST 0.769 0.835

Table 3: Accuracy and macro F1 results on the official
subtask A test set. All three models have the same hy-
perparameters.

5.2 Subtask B

Subtask B involves a binary classification of
whether a tweet is untargeted (UNT) or targeted
(TIN). Following Subtask A, we maintain a finer
grained classifier using a 4-WAY classification
(TIN, IND, GRP, OTH), where we classify a tweet
as targeted if the probability for TIN is less than
the sum of probabilities for the 3 other labels.

We re-ran feature selection experiments to op-
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System F1 Accuracy
All TIN baseline 0.470 0.888
All UNT baseline 0.101 0.113
TRAIN-SPLIT-BEST 0.577 0.717
ALL-DATA-ENSEMBLE 0.663 0.904
TRAIN-SPLIT-ENSEMBLE 0.657 0.900

Table 4: Accuracy and macro F1 results on the official
subtask B test set.

timise for this task. Development experiments
showed that the use of character n-grams does not
improve performance on this subtask, LSTM per-
forms better than a GRU, and that reducing the
RNN dimension to 64 and training batch size to 32
is beneficial. These smaller hyperparameter values
are likely more suitable due to the smaller amount
of available training data. We found that training
node2vec using the provided training data, rather
than the scraped dataset, gave better representa-
tions, with F1 scores on our held-out development
set of 0.635 for OLID data and 0.618 for the ex-
tra tweets we obtained from Twitter’s API (section
4.4).

Results on the test set are presented in Table
4, where we once again find that the ensemble of
classifiers trained on all of the data performs best.

5.3 Subtask C

Subtask C involves classifying the target of an of-
fensive tweet as either an individual, group, or
other. As this is the last subtask, only classification
between these three labels is possible: there are no
finer-grained labels that can be trained on. We find
that the best performing model is the same as that
in subtask B, except that a GRU is used and the
softmax from the RNN is included in the GBDT.
Results on the test data are presented in Table 5.

System F1 Accuracy
All GRP baseline 0.179 0.366
All IND baseline 0.213 0.470
All OTH baseline 0.094 0.164
ALL-DATA-ENSEMBLE 0.554 0.704
TRAIN-SPLIT-ENSEMBLE 0.544 0.709
TRAIN-SPLIT-BEST 0.534 0.695

Table 5: Accuracy and macro F1 results on the official
subtask C test set.
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Figure 1: Subtask A, ALL-DATA-ENSEMBLE model.

6 Discussion

In all subtasks, our best performing submission
was an ensemble of three identical models, inde-
pendently trained on all of the training data. En-
sembling helps to account for the high variance
observed during model training, which occurred
despite fixing random seeds.

Across all subtasks we find the inclusion of
node2vec features to be helpful. These features
offer contextualised representations of hashtags in
terms of the tokens they appear with across the
corpus, suggesting that features that share infor-
mation between tweets are useful in addition to
those derived from each individually.

We observe that performance drops from sub-
task A to C. This could be due to the decreasing
amounts of training data, from 13, 240 instances
in Subtask A, to 4, 400 in subtask B and 3, 876 in
subtask C. Very small amounts of data are avail-
able for two classes in particular – untargeted of-
fence (UNT) with only 524 training instances, and
offence targeted at those other than individuals and
groups (OTH) with 395.

As seen in Figures 1 and 2, our model achieves
high recall for the NOT class (0.952) in subtask
A and for TIN (0.986) in subtask B, but low re-
call for the other classes OFF (0.575) and UNT

(0.259). Figure 3 shows that in subtask C we per-
form worst on the OTH label, with a low recall of
0.086. In all cases, the model shows weakest per-
formance on the classes for which we have least
training data. Therefore, we expect that model
performance would improve given more training
instances of the minority classes.

Furthermore, in subtask C, the definition of the
‘other’ class is less clear-cut than the other two cat-
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Figure 3: Subtask C, ALL-DATA-ENSEMBLE model.

egories GRP and IND, including abstract concepts
such as events or issues, and serving as a catch-
all for targeted insults against anything other than
specific people or groups of people with a com-
mon characteristic. A manual inspection of the
data suggests that a large amount of the OTH data
includes politically-motivated insults, though sim-
ilar language also appears in the two other cate-
gories, which may make classification harder.

7 Conclusion

The CAMsterdam team attempted the OffensE-
val tasks taking inspiration from the approach of
Mishra and colleagues (2018b), feeding the pre-
softmax activation layer of an RNN into a GBDT
to classify tweets into one of the applicable fine-
grained classes for each subtask. The probabilities
of the fine-grained classes were summed to obtain
a probability for the desired class: for instance, in
subtask A, we summed the probabilities of UNT,
IND, GRP and OTH, and compared this sum with
the probability of NOT to classify a tweet as offen-

sive or not.
We extended the work of Mishra et al. by

using ELMo embeddings as additional input to
the RNN, and incorporating a self-attention mech-
anism following Rei and Søgaard (2019). We
also used node2vec to train graph-based represen-
tations of hashtags, using both tweets from the
OLID training set and new data obtained from the
Twitter API featuring hashtags frequently found
in the offensive subset. We focus on hashtags on
the intuition that they are employed by users to
reach those interested in similar topics, and are
thus indicative of tweet content. Their use encodes
this useful information directly, which we show
to be useful for classification. We take into ac-
count the fact that hashtags are used in many posi-
tions in a tweet by constructing the graph based on
co-occurrence across the whole tweet, rather than
only within a small window as other embedding
methods do.

During development, we found that our best
performing models were those formed from an en-
semble of three models trained in an identical fash-
ion, thereby smoothing random variation in the
training process. The results of the test phase show
that our model performed in line with expectations
set during development, with F1-scores which de-
crease from subtask A to C, and lowest precision
and recall on the minority classes.

In the future, we will seek to address the im-
balance in the training data, inspect the tweets
further to analyse the linguistic differences be-
tween targeted and untargeted insults, group- and
individual-targeted insults and so on. Further ar-
chitectural changes include collecting more in-
stances of hashtags frequently found in offensive
tweets as extra unsupervised data, and we can seek
to include author embeddings, a technique found
to greatly improve the performance of Mishra et
al’s system (Mishra et al., 2018a). Finally, we
would aim to evaluate our model on other offen-
sive text classification datasets, to discover how
well the design generalizes beyond OLID.
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Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
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