
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 355–359
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

355

UAIC at SemEval-2019 Task 3: Extracting Much from Little

Cristian Simionescu, Ingrid Stoleru, Diana Lucaci, Gheorghe Balan,
Iulian Bute, Adrian Iftene

Faculty of Computer Science, ”Alexandru Ioan Cuza” University of Iasi, Romania
cristian@nexusmedia.ro, ingridstoleru@gmail.com,
{diana.lucaci22, balangheorghe1997}@gmail.com,
iulian.bute@gmail.com, adiftene@info.uaic.ro

Abstract

In this paper, we present a system description
for implementing a sentiment analysis agent
capable of interpreting the state of an inter-
locutor engaged in short three message con-
versations. We present the results and obser-
vations of our work and which parts could be
further improved in the future.

1 Introduction

It is hard to understand emotions in textual conver-
sations in the absence of voice modulations and fa-
cial expressions (Gupta et al., 2017). In sentiment
analysis task researchers work on different levels
of sentiment analysis: document (when are con-
sidered single topics documents), sentence (when
single sentences are classified as positive, negative
or neutral), entity or aspect (which deal with find-
ing the aspects in the text and then classifying in
respective aspect) (Liu, 2012).

Similar to sentiment analysis at sentence level,
in last years tweets from Twitter were analyzed
and classified (Zhang and Liu, 2017), (Kumar and
Sebastian, 2012), (Mukherjee and Bhattacharyya,
2013) and (Singh and Husain, 2014). In the be-
ginning, a binary classification was used, which
linked opinions or opinions only to two classes:
positive or negative. In (Pak and Paroubek,
2010) the authors proposed a model for classi-
fying tweets in goals, positive and negative feel-
ings using a classifier based on multinomial Naive
Bayes to use features such as N-grams and tags
POS (part- of-Speech). In (Parikh and Movassate,
2009) the authors have implemented two models,
one based on the Naive Bayes bigrams model and
one using Maximum Entropy to classify tweets.

(Go et al., 2009) proposed a solution for analysing
feelings on Twitter using distant supervision, the
training data were tweets with emoticons, which
are regarded as noise data. They built several well
performing models using Naive Bayes, MaxEnt,
and SVM. (Barbosa and Feng, 2010) have mod-
eled an automated method to classify tweets us-
ing space features including retweets, hashtags,
links, punctuation mark amazement in combina-
tion with words and POS features polarity. (Luo
et al., 2013) have brought to light the difficulties
that they encounter when they want to classify
tweets. Spam and a variety of languages on Twit-
ter make the task of identifying opinions very dif-
ficult.

In SemEval 2019, in Task 3, EmoContext:
Contextual Emotion Detection in Text (Chatter-
jee et al., 2019), the organizers ask participants
to classify users messages in one of four classes:
Happy, Sad, Angry or Others. These are given
in the context of another two previous messages.
The textual dialogue is composed of short mes-
sages that appear to be from a chat conversation.
In such a context, the users express their thoughts
and ideas in a compact way. In this paper, we de-
scribe how we created one classifier to detect the
sentiment of short messages such as tweets.

2 Related Work

2.1 Word Embeddings

In order to incorporate the meaning of the words
in a software system that processes natural lan-
guage, distributed representations of words in a
vector space are used to achieve better results by
grouping similar words.



356

Previous work (Mikolov et al., 2013) intro-
duces two architectures CBOW (Continuous Bag-
of-Words) and Skip-gram model for learning word
representations using neural networks. The later
is more efficient for small training data, generat-
ing better representations for the infrequent words
(Naili et al., 2017).

When choosing the best representations for a
certain training dataset, one can either use pre-
trained word embeddings that were built using
large general corpora or train their own embed-
dings on a specific corpus which is similar to the
type of data the model will be working with. The
advantage of the first approach is that the repre-
sentations only need to add without any additional
computational cost, meanwhile, the second one
requires a large enough corpus that can lead to
meaningful representations that can capture both
syntactic and semantic regularities. While vec-
tors like Word2Vec, GloVe (Global Vectors for
Word Representation) or fastText capture the most
frequent semantic meaning of the words, training
new representation on social media data can bring
a number of advantages such as embedding the
specific informal language that is used on these
platforms and comprising numerous words that
might not be very frequent in general corpora (Ro-
tari et al., 2017) and (Flescan-Lovin-Arseni et al.,
2017).

3 System Architecture

In this section we will present the systems devel-
oped for the EmoContext task.

3.1 Data Pipeline

Starting off, a critical characteristic in our ar-
chitecture was the ease of configuration of dif-
ferent parameters of our system. We want our
system to require little additional work and trou-
bleshooting when changing, adding or remov-
ing pre-processing, feature extractions or post-
processing techniques.

As seen in Figure 1, the system can take any
configuration and order of pre-processing, feature
extraction and post-process methods as well as a
model to be fed the data.

Since a lot of small changes would sometimes
occur on the later stages of the pipeline, we imple-
mented an auto-save feature in all components of
the system which will simply use the cached pro-
cessed data up to the point of the last modified step

Figure 1: Pipeline structure

in the pipeline.

3.2 Data Processing

The dataset in from EmoContext task presented
some clear challenges. Since we had to learn
the expected sentiment of one of the interlocutors
from a relatively small amount of text it was of
utmost importance to remove noise from the data
with minimal loss of potentially useful informa-
tion. With such small amount of data (≈ 4 words
per message) in each column, we decided to con-
catenate all three messages in every entry in order
to be able to infer more information from it.

3.3 Pre-processing Stage

In the pre-processing stage, we implemented a
number of steps progressively remove noise such
as non utf-8 encoded symbols or random punctu-
ation or characters, from which no important in-
formation could be extracted, using regex rewrit-
ing rules. After which we transform all misspelled
words to the closest correct English word (closest
in terms of Hamming distance) while some words
would be transformed wrongly, the system per-
formed better when using the ”corrected” dataset.

We considered emoticons to be important in de-
termining the sentiment state of the communicat-
ing parties, as such we identified as many stan-
dard use emoticons. With these emoticons, we an-
alyzed the distribution of where they appear. For
example: ”:)” appeared predominantly in entries
labeled ”happy”. Using these we replaced each
emoticon with the keywords: ”happyemoticon”,
”angryemoticon”, ”angryemoticon” and ”othere-
moticon” respectively.

In terms of the actual noise reducing rewriting
rules:



357

• Eliminating any elongated series of charac-
ters greater than two, to a size of two;

• Reducing any repetition of English symbols
or punctuation marks to just one, since it
would not lead to any loss of information but
it will remove noise;

• Removal of spaces between punctuation
marks;

• Removal of any number with more than one
decimal;

• Rewriting Unicode characters into utf-8
equivalents or complete removals when not
possible;

• Isolated characters get deleted;

• Deletion of ASCII emoticons.

We have observed that this combination of pre-
processes leads to the best results, without elimi-
nating too much or leaving too much noise. Exten-
sive empirical experimentation was done to assert
the performance of various combinations of pre-
processes and parameters.

We have to keep in mind, that before applying
these modifications the average length of the con-
catenated messages is around 12 words, afterward,
it became around 10.

3.4 Feature Selection
For the actual features we wanted to use in our
system, we have attempted a number of syntactic
features we thought of extracting.

All of these features proved to be either not
helpful in the aid of the model performance or
detrimental in the sense that it left any model
we attempted prone to overfitting, such as getting
stuck in the local maxima of classifying all in-
stances as ”others”.

As such, we chose to use embeddings as our
only form of feature selection. We have tried to
utilize pre-trained embeddings offered online such
as GloVe, FastText and Word2vec.

Sadly, all of the embeddings we have attempted
to incorporate into the system produced weaker
results compared to training the embedding from
scratch on the data.

For this, we tokenized the data and padded it
to have 200 elements per list. Even though these
vectors were trained on a relatively small corpus,

due to the high usage of jargon, rare abbrevia-
tions and bad grammar which made our dataset
very much different compared to the corpus used
by any of the above mentioned pre-trained word
embeddings this was most likely the cause of im-
proved performance when our own embedding
even though the corpus is extremely small com-
pared to what would be required to create a good
embedding.

3.5 Model

In constructing our machine learning model, we
chose to use artificial neural networks with the use
of the ”Keras” python library1.

For the actual model of the system, we have
made use of very simple and small architectures
since any attempt of creating a deeper or wider ar-
tificial neural network models resulted in drastic
overfitting. Even with other overfitting alleviat-
ing techniques such as regularization, dropout and
batch normalization we had to stick to a shallow
architecture. We suspect this is due to the fact that
we trained our embedding on such a small dataset,
perhaps if more similar data can be collected and
a more general word vector is created, overfitting
would also be reduced. As such, the model we are
presenting does not suffer from overfitting but it is
relatively shallow.

Figure 2: Model

As seen in Figure 2, we used a trainable embed-
ding layer of size 256 as input to fit on our training
data. Next we used a single hidden layer of 128
Bidirectional LSTM cells with a 30% dropout and
a tanh activation function. Finally outputting the
result in a 4 neuron layer using the softmax func-
tion to learn the correct expected labels.

The model was trained using the RMSprop op-
timization algorithm.



358

Metrics

micro F1 Accuracy Precision Recall Sensitivity

Others 0.92459089 0.87620258 0.95740783 0.89394911 0.77644231
Angry 0.61855670 0.94626974 0.50209205 0.80536913 0.95432738
Sad 0.63508772 0.96224360 0.56562500 0.72400000 0.97356912
Happy 0.56877323 0.95788709 0.60236220 0.53873239 0.98066986
Average 0.68675210 0.93565070 0.65687170 0.74051260 0.92125210

Table 1: Submission metrics

4 Results

Using that simple model and an extensive meta-
parameter tuning we were able to reach an average
micro F1 score of 0.6895, this being the last sub-
mission we were able to upload during the work-
shop. See Table 1 for complete metrics of this sub-
mission, calculated by training the model 5 times,
to factor in for randomness of shuffled data and
weight initialization (all runs had comparably sim-
ilar results).

We noticed that the greatest difficulty our sys-
tem faces is correctly classifying instances belong-
ing to the ”happy” class. As such, we should look
into what data pre-processing we could use in or-
der to decrease the high number of false-negatives.

Another potential improvement would be to add
weights to the loss function based on the profi-
ciency we observe the system to exhibit on each
type of entry.

Applying the pre-processing we described pre-
viously we managed to boost that result to average
micro F1 of 0.7362.

Both of these models were trained using a K-
fold cross-validation with four splits and a batch
size of 64.

What we observed time and time again, the
main issue we faced was overfitting of the training
data, as we can see when looking at the progres-
sion on the validation data, see Figure 3.

5 Conclusions

This paper presents the system developed by our
group for the EmoContext task. The architecture
of the system includes data processing, feature se-
lection, and machine learning model. The results
are promising, but they also expose the need for
more experiments that should be done in this field
in the next period.

1https://keras.io/

Figure 3: Training / Validation F1 - red validation data
set, blue train data set

For the future, we believe a CNN approach
could prove fruitful. As well as a different or
deeper network and configuration while using a
similar pre-processing process which we believe
is the main contributor to our relatively successful
result.

Another direction worth investigating would be
a Mixture of Experts approach, using various vari-
ations of the system even if they prove sub-optimal
individually, such as The currently proposed sys-
tem; A system using a pre-trained embedding;
Three sub-systems each trained to only classify
one of the classes; A system with three input lay-
ers, one for each message reply, removing the con-
catenation of the text pre-processing; A system
which only looks at the emoticons present in the
text.

Acknowledgments

This work is partially supported by POC-A1-
A1.2.3-G-2015 program, as part of the PrivateSky
project (P 40 371/13/01.09.2016).

References
Luciano Barbosa and Junlan Feng. 2010. Robust sen-

timent detection on twitter from biased and noisy



359

data. volume 2, pages 36–44.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Iuliana Alexandra Flescan-Lovin-Arseni, Ramona An-
dreea Turcu, Cristina Sirbu, Larisa Alexa, San-
dra Maria Amarandei, Nichita Herciu, Constantin
Scutaru, Diana Trandabat, and Adrian Iftene. 2017.
warteam at semeval-2017 task 6: Using neural
networks for discovering humorous tweets. Se-
mEval@ACL 2017, pages 407–410.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
Processing, pages 1–6.

Umang Gupta, Ankush Chatterjee, Radhakrish-
nan Srikanth, and Puneet Agrawal. 2017. A
sentiment-and-semantics-based approach for emo-
tion detection in textual conversations. CoRR,
abs/1707.06996.

Akshi Kumar and Teeja Mary Sebastian. 2012. Senti-
ment analysis on twitter. IJCSI International Jour-
nal of Computer Science Issues, 9.

Bing Liu. 2012. Sentiment Analysis and Opinion Min-
ing. Morgan Claypool Publishers.

Tiejian Luo, Su Chen, Guandong Xu, and Jia Zhou.
2013. Sentiment Analysis.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. ICLR Workshop.

Subhabrata Mukherjee and Pushpak Bhattacharyya.
2013. Sentiment analysis : A literature survey.

Marwa Naili, Anja Habacha Chaibi, and Henda Ha-
jjami Ben Ghezala. 2017. Comparative study of
word embedding methods in topic segmentation. In-
ternational Conference on Knowledge Based and In-
telligent Information and Engineering Systems.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In LREC.

Ravi Parikh and Matin Movassate. 2009. Sentiment
analysis of user-generated twitter updates using var-
ious classication techniques.

Razvan-Gabriel Rotari, Ionut Hulub, Stefan Oprea,
Mihaela Plamad-Onofrei, Alina Beatrice Lorent,
Raluca Preisler, Adrian Iftene, and Diana Trandabat.
2017. Wild devs at semeval-2017 task 2: Using
neural networks to discover word similarity. Se-
mEval@ACL 2017, pages 267–270.

Pravesh Kumar Singh and Mohd Shahid Husain. 2014.
Methodological study of opinion minng and senti-
ment analysis techniques. IJSC International Jour-
nal of Soft Computing, 5.

Lei Zhang and Bing Liu. 2017. Sentiment Analysis and
Opinion Mining. Springer US, Boston, MA.

http://www.stanford.edu/~alecmgo/papers/TwitterDistantSupervision09.pdf
http://www.stanford.edu/~alecmgo/papers/TwitterDistantSupervision09.pdf
https://doi.org/10.1007/978-1-4614-7202-5_4
https://doi.org/10.1007/978-1-4899-7687-1_907
https://doi.org/10.1007/978-1-4899-7687-1_907

