TDBot at SemEval-2019 Task 3: Context Aware Emotion Detection Using
A Conditioned Classification Approach

Sourabh Maity
Teradata India Pvt. Ltd.
Hyderabad, India
sourabh.maity@teradata.com

Abstract

This paper presents the system developed
to detect the contextual emotion (SemEvall9
Task 3 (Chatterjee et al., 2019)) from con-
versational dialogue. The system models the
fact that emotion of a dialogue depends on the
context of the conversation and not indepen-
dent. It uses multiple layers in the deep learn-
ing model where each layer bootstraps with
the context of what has already been said in
the conversation.

1 Introduction

Over the years, we are getting more and more
comfortable in text based conversations over the
web, leading to increased interest in emotion anal-
ysis. Such a conversation is no longer limited be-
tween humans, it is now mainstream to use chat
bots at various domains, e.g., customer care, HR
management, virtual doctor etc.

Needless to say that in a conversation human emo-
tions needed to be handled with care and empa-
thy. Due to this, the task of emotion detection
is very important when our aim to use chat bots
and voice assistants more effectively. It is more
difficult when the conversation is text based, lack
of facial expressions and voice modulations make
detecting emotions in text a challenging problem
(Gupta et al., 2017).

In this SemEvall9 Task 3 there were total three
turns of dialogues; rurnl and turn3 were spoken
by one participant of the conversation and turn2
was spoken by another participant as a reply of
turnl. We are tasked to detect the emotion of
turn3. So, turnl and turn2 act as context for turn3.
There are four different emotions in the data set,
namely, happy, sad, angry and others. The prob-
lem is modeled as a four class classification prob-
lem where each of the emotions listed above is the
target class.

335

2 System Description

2.1 Preprocessing

This section describes the preprocessing steps of
the system. Few of the steps are standard; the steps
are just mentioned and are not discussed in detail.
Rather the steps which are critical for the perfor-
mance in the task are discussed in detail. Standard
steps are: converting all letters to lower case, re-
moving numbers, removing white spaces, remov-
ing stop words, sparse terms and particular words.
The most important preprocessing steps are:
Expanding abbreviations: In chat data there are
infinite number of possible abbreviations or short-
hand uses, most of which are not standard. Those
abbreviations can not be left in the data set as is,
because there are no embedding for those. In my
system , it is chosen to expand the top 10% of such
abbreviations and others are ignored. For this, I
created a map of abbreviation to expansion manu-
ally by inspecting the data set.

Few examples: lol — laugh out loud, ur — you
are etc.

Handling emojis: Emojis are the single most im-
portant piece of information in chat data. In most
of the cases it is a huge clue about the emotion
of the party in conservation. I had two options to
handle emojis, one, to use some kind of embed-
ding (Eisner et al., 2016) for emojis; two, convert
emojis into text and then use word embedding. I
chose to convert emojis into text; partly because
of the robust performance of the word embeddings
and partly because of lack of a proven quality em-
bedding for emojis. Also, this conversion made
the weight of evidence feature (see section 2.2.2)
more effective.

Examples: © — beaming face with smiling eyes,
® — sad face etc.

But, a conversion scheme shown in the above ex-
amples leads to infiltration of words like face,
with. To avoid this, I created a list of stop-words

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 335-339
Minneapolis, Minnesota, USA, June 67, 2019. ©2019 Association for Computational Linguistics

and removed those from the expanded text. With
this modification the above examples will look
like:

— beaming smiling eyes, © — sad.

2.2 Features

There were mainly two features, word embedding
and weight of evidence. Each word in the con-
versation is embedded into a 300 dimensional em-
bedding space and for each turn the weight of ev-
idence is computed. I intentionally refrained my-
self from using any sentence encoder like BERT
(Devlin et al., 2018) or ELMo (Peters et al., 2018),
as I wanted to explore the lower level embedding
of words rather than using sentence embeddings as
back boxes.

2.2.1 Word Embeddings

In the system, word embeddings are created as an
average of three word vectors, GloVe (Pennington
et al., 2014), FastText (Bojanowski et al., 2016)
and Paragram (John Wieting and Livescu, 2015).
I used 300 dimensional word embeddings. The
embedding vocabulary could cover ~85% of the
data set vocabulary (unique words in the data set)
which in turn covered ~97% of the entire text of
the data set.

2.2.2 Weight of Evidence

Weight of evidence (WOE) is a measure of how
much the evidence supports or undermines a hy-
pothesis. Here the intention is to weigh the evi-
dence of each word in determining the emotion of
the conversation. WOE is defined as:

non—event
w7rd
totalnon—event
}onrd

WOEword,event =1In

event

word
totalevent
word

where,

non—event,
Nword .
has the word
totalnon—event,
Nword .

records
Nevent .

word *
the word

totalevent.
Nword .

number of other class records that
total number of other class
number of records of the class that has
total number of records of the class

Top 1000 most common words for each of

the emotion classes were collected and then their
WOE is computed for each of the four emotion

336

classes. In the example below the words are rep-
resented by four dimensional vector, those dimen-
sions belong to the four emotion classes.

Word
WOEword,event smiling | sad
WOEwordnappy | 0.9 02
WO Eyord.sad 0.1 0.8
WOFEwordangry | 02 0.1
WOEword,others 0.6 0.5

Table 1: WOE ord,event for words.

For each turn I add up the WOUF vectors of the
words in that turn. So, each turn also has a WOFE
embedding of four dimensions. This embedding is
fed into the model as an auxiliary feature. When
emojis were converted into text, the WOE vec-
tor of the words explaining an important emoji re-
flected the emotion nicely. Also, when an emoji is
used multiple times, its effect is multiplied into the
WOFE embedding of the turn. For example, “©
” in a turn produces the below WOFE embed-
ding:

WOEword,event turn =
WOEsmiling,happy 2.7

WOEsmilmg,sad 0.3
WOEsmiling,angry 0.6
WOEsmiling,others 1.8

Table 2: WOE embedding for turn “©

Please note that “© ” was first converted
into text as: beaming smiling eyes beaming smil-
ing eyes beaming smiling eyes. In the above ta-
ble WOE vector for the word ”smiling” is shown.
Similar exercise can be done for other words.

2.3 Deep Learning Model

Given the turns of a conversation, the target emo-
tion label can be modeled in different ways. One,
model the target label based on furn3 only. Two,
Consider all the turns as one single input of text
(may be separated by EOS tokens) and from this
learn the target label. But, none of the options are
truly context aware. Construction of my model is
based on the idea that every turn in a conversa-
tion builds on top of the previous turn. Also this
task is treated as a multi-class classification prob-
lem where each emotion is treated as individual
classes.

At the core of the system are three bi-directional

(Schuster and Paliwal, 1997) Gated Recurrent
Unit (GRU) (Cho et al., 2014) layers, one each
for the three turns in the conversation. Second and
third layer are derived from their immediate pre-
vious layer. This is achieved by using the hidden
states of a turn GRU layer to initialize the subse-
quent turn’s GRU layer. Hence, when turn three
layer starts with the hidden state of turn two layer
which has already summarized the context of the
ongoing conversation, it is building on top of the
existing context. I see it as each layer is condi-
tioned on the what has already been conversed be-
fore it. Used model is depicted in Figure 2. Then
the additional features, i.e., the W OF values were
introduced into the model by concatenating with
the intermediate latent representation of the con-
versation.

2.3.1 Gated Recurrent Unit: GRU

A GRU unit (in Figure 1) can be represented by
the following equations:

2 = a(:thz + ht_lwz)

Ty = a(:thT + hHW?")

h; = tanh (l’tUh + (7 % ht,l)Wh)
hy = (l—zt)*htq—l-zt*ﬁt

Here r is the reset gate, and z is the update gate.
Intuitively, the reset gate determines how to com-
bine the new input with the previous memory, and
the update gate defines how much of the previous
memory to keep. And h; is the new hidden state.

hy
e ™
Pt o—a—1p
Tt <t ;lt
(0] 0] tanh
—_—)
i J
Tt

Figure 1: Gated Recurrent Unit. Figure adapted from
(Olah, 2015).

2.3.2 Class Weights

The given data set is not well balanced (see
Table 4 for details). To combat this issue I used

337

class_weights for weighting the loss function,
in a way it is to say the model which class to
concentrate on. A balanced class weight is used
to automatically adjust weights to be inversely
proportional to class frequencies in the input
training data. Weight of a class ¢; is given by:

n_samples

weight,,

n_class x n_samples,

Where,

n_samples: total number of data sample
n_class: number of class present

n_samples,,: number of samples of class c;

The class_weights that were used are listed in Ta-
ble 3.

class | class_weights
angry 2.145
happy 0.841

sad 1.085
others 0.702

Table 3: class_weights for the input classes.

2.4 Data Description

We were provided 48544 data points to train our
model. The class representations are shown in
Table 4. It can be clearly seen that the data is
highly imbalanced. This imbalance is handled by
using weighted loss function and by fine tuning the
model based on the micro-averaged f1 score (see
section 2.5 for details).

Label | # data points
angry 5656
happy 14426
sad 11176
others 17286

Table 4: Class representation in training data.

2.5 Training Details

Data set is split (90 : 10) into train and valida-
tion. For class representation in the whole data
set please see Table 4. In validation data gener-
ation, the proportion of class representation was
kept similar to the data set. Table 5 shows the data
split details.

I trained the model on the training data set and
fine-tuned on the validation data set based on the

Input: tum 1 Embedding |— Bi-dir GRU Input: WOE 1
hidden|state [
¥ Input: WOE 2 o
Input: turn 2 » Embedding |—» Bi-dir GRU
Input: WOE 3 & - "
hidden|state E ﬁ § £
| u] =
A gl B & A
€ l_T_J
y B | - *
Input: turn 3 s Embedding |—s Bi-dir GRU | E g B
=
| I J
I I
300 258
Figure 2: The deep learning model used in the system.
#Label | Training | Validation confusion matrix of different classes.
#angry 5091 565
#happy 12983 1443 label | others | happy | sad | angry
#sad 10058 1118 others | 4246 162 119 150
#others | 15557 | 1729 happy | 69| 211 | 4 | 0
sad 36 3 200 11
Table 5: Class representation in training and validation angry 52 0 5 241

data.

micro-F1 score. Since the data set is highly unbal-
anced, a weighted categorical cross-entropy loss
is used, see Table 1 for the class weights. Adam
(Kingma and Ba, 2015) optimizer is used with
a learning rate of 0.001 and batch size of 128.
Learning rate was decreased by 15% after each 3
epochs. Hidden state size of 256 is used for the bi-
GRU gates. All the dense layers are of dimension
128 and a dropout of 0.5 is used for all of those.

3 Results

Here the detailed result of the system performance
is presented. The performance shown in Table 6 is
on the test data set.

label | precision | recall | fl-score | support
others 0.96 0.91 0.94 4677
happy 0.56 0.74 0.64 284
sad 0.61 0.80 0.69 250
angry 0.60 0.81 0.69 298

Table 6: System performance details

In the task the evaluation metric is micro-
averaged F1 score only for the three emotion
classes happy, sad and angry. Table 7 shows the

338

Table 7: Confusion matrix.

Precision and recall values for happy, sad and
angry classes are 0.783653 and 0.589511 respec-
tively. My system score is 0.6729 thereby beats
the baseline (score 0.5868) convincingly.

4 Conclusion

With the system it is shown how to use the con-
text information while detecting the emotion in a
dialogue. Some guidelines about how to handle
emojis is also laid out. While developing this sys-
tem I realized the importance of pre-processing in
conversational text data, or in general NLP related
tasks; it can not be over emphasized.

Acknowledgments

I want to thank my mentors at Teradata, Ramesh
Bhashyam and C Jaiprakash for the never ending
support and to my teammates Lovlean Arora and
Naveen TS for all the engaging discussions we
had.

I want to apologize to my wife Samarpita, for all
the weekend plans which were cancelled due to
me working on TDBot. I promise to make up for
those!

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota, USA.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Giilcehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ben Eisner, Tim Rocktischel, Isabelle Augenstein,
Matko Bosnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. CoRR, abs/1609.08359.

Umang Gupta, Ankush Chatterjee, Radhakrish-
nan Srikanth, and Puneet Agrawal. 2017. A
sentiment-and-semantics-based approach for emo-
tion detection in textual conversations. CoRR,
abs/1707.06996.

Kevin Gimpel John Wieting, Mohit Bansal and Karen
Livescu. 2015. From paraphrase database to com-
positional paraphrase model and back. volume 3,
pages 345-358.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Christopher Olah. 2015. Understanding lstm net-
works. http://colah.github.io/posts/
2015-08-Understanding-LSTMs/. Online;
visited 29/03/2019.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532—
1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Trans. Sig-
nal Processing, 45:2673-2681.

339

http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1609.08359
http://arxiv.org/abs/1609.08359
http://arxiv.org/abs/1707.06996
http://arxiv.org/abs/1707.06996
http://arxiv.org/abs/1707.06996
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

