
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 292–296
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

292

Podlab at SemEval-2019 Task 3: The Importance of Being Shallow

Andrew Nguyen1,2, Tobin South1,2, Nigel G. Bean1,2, Jonathan Tuke1,2 and Lewis Mitchell1,2,3
1ARC Centre of Excellence in Mathematical and Statistical Frontiers

2School of Mathematical Sciences, The University of Adelaide
3Stream Leader, Data to Decisions CRC

Abstract

This paper describes our linear SVM system
for emotion classification from conversational
dialogue, entered in SemEval2019 Task 3. We
used off-the-shelf tools coupled with feature
engineering and parameter tuning to create
a simple, interpretable, yet high-performing,
classification model. Our system achieves a
micro F1 score of 0.7357, which is 92% of the
top score for the competition, demonstrating
that “shallow” classification approaches can
perform well when coupled with detailed fea-
ture selection and statistical analysis.

1 Introduction

Sentiment analysis from textual data is a well-
studied topic, however the particular problem of
inferring the emotional context of text-based con-
versations is relatively little-studied. With the in-
creasing abundance of conversational text-based
datasets, particularly from social media, there is
increasing interest in studying such datasets across
a wide range of domains, from unsolicited opinion
polling (Cody et al., 2015) to mental health mon-
itoring (Miner et al., 2016). Highly sophisticated
systems for emotion detection on conversational
data exist (Gupta et al., 2017), however these may
not be appropriate for researchers in other fields,
and it is desirable to develop interpretable mod-
els where the informative features can be readily
interpreted and measures of confidence can be as-
signed to individual predictions.

Our aim in entering SemEval2019 therefore
was to build a high-performing model using only
off-the-shelf tools and some feature engineering,
without resorting to deep neural network archi-
tectures or overly sophisticated approaches. This
model only uses linear Support Vector Machines
(SVMs) (Hastie et al., 2009) and feature engineer-
ing using the Natural Language Toolkit (NLTK)

(Bird et al., 2009). These relatively “shallow” (as
opposed to “deep”) approaches to classification
from text have been used, for example, in event
prediction from social media data (Tuke et al.,
2018). Despite its simplicity, our system per-
formed very well, achieving a maximum score in
the top 22% of all submissions.

2 Task

The task for Semeval 2019 Task 3 is classify-
ing the correct emotion (happy, angry, sad
or others) on a 3-turn text communication di-
alogue (Chatterjee et al., 2019). Table 1 shows an
example conversation.

Turn 1 You are funny
Turn 2 LOL I know that :p
Turn 3 =)
Label Happy

Table 1: A example of the 3-turn text dialogue.

The Training dataset contained 5 columns:

• ID: a unique number to identify each training
sample;

• Turn 1: the first turn in the 3-turn conversa-
tion, written by User A;

• Turn 2: a reply to Turn 1 by User B;

• Turn 3: reply to Turn 2, written again by
User A;

• Label: the human-judged label of emotion
of Turn 3 based on the conversation for the
given training sample. It is always one of
the four labels: happy, sad, angry and
others.

The organisers provided three datasets:



293

• Training contains 30,160 examples with
the correct labels and approximately 50%
others;

• Dev contains 2,755 examples with correct la-
bels (approximately 88% others);

• Test contains 5,509 examples without la-
bels, but participants are told that the split is
approximately the same as the Dev set, i.e.,
≈88% others.

This last piece of information given by the or-
ganisers regarding the balance of the Test set
will be critial to our system described below, as we
will employ a post hoc class balancing technique
to match these proportions.

Evaluation is performed using the micro-
averaged F1 score for the three emotion classes i.e.
happy, sad and angry on the Test set.

3 Proposed System

Figure 1 shows an overview of our system, which
we describe below in detail.

Core Model

Class Tuning

Happy vs Rest

Happy vs Rest
Override

Predictions

Figure 1: Model pipeline. Our core SVM model per-
forms well for the sad and angry classes, but un-
derestimates the happy class. The “Happy vs Rest”
override classifier therefore is designed to achieve high
accuracy on this class specifically.

3.1 Feature Engineering
Given a 3-turn text conversation between two
users, our system only relied on Turns 1 and 3
while discarding Turn 2 altogether. This was mo-
tivated by the insight that the label for each con-
versation was “the human judged label of Emo-
tion of Turn 3 based on the conversation” (from
the competition website, emphasis ours). This
means the overall emotional context of the con-
versation is dictated by the reaction of User A to
the chatbot User B’s response to A’s initial post in
Turn 1. Therefore, we hypothesised that the most

informative features regarding the emotional con-
text would come from User A’s text (with Turn 3
likely to be more informative than Turn 1), and
that Turn 2 would largely degrade the impact of
these features. This was borne out by experimen-
tation, where inclusion of features from Turn 2
only ever decreased the score compared with mod-
els using only data from Turn 1 and Turn 3. Table
2 shows the results of our experiments using dif-
ferent combinations of turns in terms of F1 score.

Turns 1 and 3 were then tokenized using the
NLTK Tweet Tokenizer with additional rules1 to
handle symbols, and odd tokens.

These tokens were then scanned for nega-
tion words such as {‘not’, ‘isnt’, ‘no’,
‘dont’} and combined with the next neighbour-
ing token to create one new token. For example,
the sentence: ‘not happy jane’ tokenized
turns into ‘not’, ‘happy’, ‘jane’ finally
combining negations turns into ‘not happy’,
‘jane’.

Next the tokens were turn-encoded, meaning
each token is prepended with ‘1 ’ or ‘3 ’ based
on which turn the token was extracted from. For
example, tokens from Turn 1 {‘you’, ‘are’,
‘funny’} are prepended to {‘1 you’,
‘1 are’, ‘1 funny’}, while Turn 3 tokens
{‘=)’} turn into {‘3 =)’}.

3.2 Feature selection using TFIDF

The previous section constructs all the tokens
found in the Training, Dev and Test data. We
then use only the vocabulary found in the intersec-
tion of all the datasets. This was done because
features which do not appear in the test set have
no predictive power on that set. We found in prac-
tice that including these features did not improve
the scores obtained by our system.

The term frequency inverse document fre-
quency (TFIDF) score was then computed for each
term per label basis. The token importance score
is computed using the highest TFIDF score for
that token across classes minus the second high-
est. In this manner the importance score used was
a measure of a feature’s ability to discriminate be-
tween classes. Experimentation on the Dev set
showed that this produced better results than fil-
tering based on, for example, the highest TFIDF
score across classes. Figure 2 shows the top 10

1https://github.com/andrew-
ai/EmoContext2019/blob/master/tokenzie.py



294

features based on the importance scores.
A cutoff importance score was experimentally

selected to further filter down the vocabulary to
use only the most informative tokens and avoid
overfitting (see Figure 3).

We note that the system is robust to variations
in this parameter above a certain threshold – as
shown in Figure 3, while the F1 score varies
greatly for cutoff values between 0 and 0.005,
above 0.005 the F1 score varies only between
0.720 and 0.725.

The features were then one-hot encoded as our
final transformation.

Figure 2: Top 10 features based on the importance
score computed and their associated labels.

3.3 Model pipeline: Core Model

The sklearn Linear Support Vector Classifier (Lin-
earSVC) was used as our classifier. We used
a gridsearch strategy with a simple hold out set
(Training set to train and Dev set to validate) to
tune the best performing hyper parameters based
on F1 score for the Training and Dev datasets.
We used sklearn’s default LinearSVC parameters,
except for the cost penalty (C) which we tuned and
set to C = 0.3.

3.4 Model pipeline: Class tuning

Once the core model and model parameters were
well tuned, we further tuned the predictions out-
put by the system. Each class of predictions was

Figure 3: F1 score and vocabulary size as a function
of the happy importance score cutoff. The importance
scores for the angry, sad and others classes was
set to 0.001 from prior tuning. Tuning individually on
the happy importance score was performed due to it
being the weakest classification class and in the end,
0.007 was chosen, which was a local max.

ranked and the least confident predictions based
on sklearn’s LinearSVC decision function were
shifted to the others class. Shifting the classes
to have angry ≈ 5%, happy ≈ 4.5% and sad
≈ 4% maximised our F1 score. The results of
these experiments are shown in Table 2. We note
that this relies on the observation that the Dev
and Test sets have approximately the same class-
wise distributions, which of course may not hold
true if the model is to be used in other contexts.

3.5 Model pipeline: Happy vs Rest override

This model tended to under-predict the happy
class in terms of precision and recall, therefore
an additional model was built to boost classifica-
tions within this class. A Happy vs Rest classifier
was trained, using the same LinearSVC model and
parameters but this time trained on the Training
data relabeled as ‘happy’ or ‘rest’ (angry, sad,
others).

After the Core Model predictions and the class
tuning, the Happy vs Rest predictions were com-
pared and the most confident predictions based on
a confidence threshold was used to override the
Core Models predictions. This threshold was cho-
sen by ranking the predictions from the Happy vs
Rest classifier in decreasing order of confidence,
and converting the top n most confident predic-
tions to happy over this threshold. In this case,
all predictions from the Happy vs Rest linearSVC
decision function with a signed distance over -0.6
were converted. Here the threshold was chosen
by inspection of where the predictions appeared to



295

change from being correct to dubious.
This allowed a more focused model to boost

happy predictions that the Core Model had
missed.

4 Results

Table 2 shows the results of all the system vari-
ants described in Section 3. The best overall micro
F1 score achieved by our system was 0.735719, or
92.4% of the overall top score in the competition.
This placed us in the top 22% of all submissions,
and resulted in a final ranking of 37th place.

We note that for each variant of the model, using
only Turn 1 + Turn 3 consistently improved the
F1 score over using all turns. Adding the Happy
vs Rest classifier boosted the happy predictions
from: Precision = 0.7490, Recall = 0.6514, F1 =
0.6968 to Precision = 0.7368, Recall = 0.6901, F1
= 0.7127. This boosted our overall micro F1 score
from 0.729352 to 0.735719. While not shown in
Table 2, our post hoc class balancing of the final
predictions to match the proportions in the Dev
set was consistently also beneficial in improving
our model, as shown in Figure 3.

T123 T13
NCB 0.7155 0.7188
CB 0.7255 0.7294
NCB + HvR 0.7175 0.7198
CB + HvR 0.7294 0.7357

Table 2: Experimental results for system variants
where: T123 = Turn 1 + Turn 2 + Turn 3, T13 = Turn 1
+ Turn 3, NCB = No class balancing, CB = Class bal-
ancing against test set, HvR = With Happy vs Rest over-
ride. Note that in each case using using T13 improves
over using T123.

Figure 4 shows a confusion matrix for predic-
tions made by our system. In general, the worst
misclassifications made by our system were pre-
dictions of the others class when the correct la-
bel was one of the other emotions (or vice versa),
rather than misclassifications between emotions,
which were negligible.

Figure 5 shows the top 5 “mistakes” – where our
system was highly confident in its prediction, but
turned out to be wrong. All of these top mislabels
were when we incorrectly predicted an emotional
class (angry, happy, sad) rather than others,
and generally when the text contained emojis.

Figure 4: Confusion matrix of misclassifications by our
system.

Figure 5: Top misclassifications by our system. All
errors were when the correct label was “others” but our
system predicted an emotion.

5 Conclusion

That our system performed so well using such a
simple approach was very satisfying, and demon-
strates that high-quality emotion detection is
achievable by practitioners across a range of dis-
ciplines. Future work using this system will inves-
tigate a longitudinal study of long-term changes in
the emotional context of conversations conducted
over online social network platforms.



296

References
Steven Bird, Edward Loper, and Ewan Klein.

2009. Natural Language Processing with Python.
O’Reilly Media Inc.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Emily M Cody, Andrew J Reagan, Lewis Mitchell,
Peter Sheridan Dodds, and Christopher M Dan-
forth. 2015. Climate change Sentiment on Twit-
ter: An unsolicited public opinion poll. PLoS ONE,
10(8):e0136092.

Umang Gupta, Ankush Chatterjee, Radhakrishnan
Srikanth, and Puneet Agrawal. 2017. A Sentiment-
and-Semantics-Based Approach for Emotion De-
tection in Textual Conversations. In Proceedings
ofNeu-IR 2017 SIGIR Workshop on Neural Informa-
tion Retrieval, Shinjuku, Tokyo, Japan, August 11,
2017 (Neu-IR ’17), pages 1–6.

Trevor Hastie, Robert Tibshirani, and Jerome Fried-
man. 2009. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer.

Adam S Miner, Arnold Milstein, Stephen Schueller,
Roshini Hegde, Christina Mangurian, and Eleni
Linos. 2016. Smartphone-based conversational
agents and responses to questions about mental
health, interpersonal violence, and physical health.
JAMA Internal Medicine, 176(5):619–625.

Jonathan Tuke, Andrew Nguyen, Mehwish Nasim,
Drew Mellor, Asanga Wickramasinghe, Nigel Bean,
and Lewis Mitchell. 2018. Pachinko Prediction: A
Bayesian method for event prediction from social
media data. arXiv preprint: 1809.08427.

https://doi.org/10.1371/journal.pone.0136092
https://doi.org/10.1371/journal.pone.0136092
http://arxiv.org/abs/arXiv:1707.06996v4
http://arxiv.org/abs/arXiv:1707.06996v4
http://arxiv.org/abs/arXiv:1707.06996v4
https://doi.org/10.1001/jamainternmed.2016.0400
https://doi.org/10.1001/jamainternmed.2016.0400
https://doi.org/10.1001/jamainternmed.2016.0400
http://arxiv.org/abs/1809.08427
http://arxiv.org/abs/1809.08427
http://arxiv.org/abs/1809.08427

