NL-FIIT at SemEval-2019 Task 3: Emotion Detection From
Conversational Triplets Using Hierarchical Encoders

Michal Farkas, Peter Lacko
Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies
Ilkovicova 2, 842 16 Bratislava, Slovakia
michal.farkas@stuba.sk, peter.lacko@stuba.sk

Abstract

In this paper, we present our system submis-
sion for the EmoContext, the third task of
the SemEval 2019 workshop. Our solution is
a hierarchical recurrent neural network with
ELMo embeddings and regularization through
dropout and Gaussian noise. We have mainly
experimented with two main model architec-
tures: simple and hierarchical LSTM network.
We have also examined ensembling of the
models and various variants of an ensemble.
We have achieved microF1 score of 0.7481,
which is significantly higher than baseline and
currently the 19th best submission.

1 Introduction

Sentiment analysis has a long and successful his-
tory in the context of natural language processing.
As with the majority of the problems in this do-
main, we have seen a gradual shift towards so-
lutions based on neural models. Nowadays, such
models can be readily used as a part of a larger so-
lution, for example to analyse communication on
social networks.

Then, perhaps unsurprisingly, the EmoContext
task (Chatterjee et al., 2019b) with its format is
highly evocative of the social networks. That is, it
consists of conversational triplets, where the task
is to correctly guess the emotion category of the
last conversational turn.

Over the years, there was a number of differ-
ent sentiment analysis and recognition competi-
tions, workshops and shared tasks (Klinger et al.,
2018; Rosenthal et al., 2017), however the conver-
sational nature of the data is not common.

Our system is based on the recurrent neural
networks, both simple and hierarchical architec-
tures. We have experimented with various tech-
niques and hyper-parameters, such as regular-
ization, class weights, embeddings, strength of

272

dropout and added noise. Finally, we have im-
proved our results by creating an ensemble, with
various voting methods and sample reweighing.

2 Approach

The first step in any natural language processing
system is to preprocess the input data so it can be
easily understood by the system. Since prepro-
cessing was the major part of our previous work
(Pecar et al., 2018), we have decided to prior-
itize work on the model instead. Nevertheless,
we need to do some kind of preprocessing, hence
we used the readily available Ekphrasis (Baziotis
et al., 2017) tool.

We have experimented with both standard
GloVe embeddings (Pennington et al., 2014) and
more sophisticated ELMo embeddings (Peters
et al., 2018). The improvements contextual em-
beddings, like ELMo, can bring are already well
known and there is little need for additional com-
parisons, however the model that uses standard
embeddings is considerably faster and hence more
useful for quick experiments. Since training
ELMo can be quite time consuming and resource
intense, we have opted for pretrained models that
are part of the AllenNLP library (Gardner et al.,
2017).

It should be noted that the character sensitive
nature of the ELMo embeddings should help with
typos, which were not fixed by preprocessing, and
other similar errors.

2.1 Model

We have experimented with two main model
variants. First model variant uses a simple
bi-directional LSTM encoder (Hochreiter and
Schmidhuber, 1997), second variant uses a hier-
archical encoder, both can be seen in the figure 1.
In both cases, the encoders are followed by dense

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 272-276
Minneapolis, Minnesota, USA, June 67, 2019. ©2019 Association for Computational Linguistics

Dense layer)

!

LSTM cell |« ---{LSTM cell |- - --' LSTM cell

A A A

LSTM cell } - - 4| LSTM cell

)

LSTM cell } -

)
m
=
o

—/

a) Simple encoder model.

C Dense layer)

Top LSTM Top LSTM
Cell T Cell T

A A

Utterance Utterance Utterance
LSTM LST™M LSTM

AAA AAA AAA

ELMO ELMO ELMO
Cae) (oo) (oo)

| Turn 1 | | Turn 2 | | Turn 3 |

b) Hierarchical encoder model.

Figure 1: Architecture of the main model variants.

layer which outputs probability distribution of la-
bels.

Simple encoder works on concatenated utter-
ances, utterances are part of a single string sepa-
rated by semicolon. During the development we
have also ran several runs only on the last utter-
ance.

Hierachical model consists of two different en-
coders, at the utterance level and on the dialog
level. This is fairly common practice in the dia-
log system domain (Serban et al., 2016). The ut-
terance encoder is a bi-directional LSTM which
encodes utterances into their representations. This
utterance representation is then sent to the dialog
encoder, which is a uni-directional LSTM.

Much of our model was dictated by a lack of
GPU memory !, we had to prioritize what to in-
clude in the model. Fully-connected layer as a dia-
log encoder, separate encoder for each turn, dense
layer as a top encoder and attention mechanisms,
did not achieve significantly better results and in
some cases resulted in insufficient memory.

In the end, we had better results with the sim-
pler, larger model rather than with the more com-
plex, smaller model.

2.2 Training

We have opted to use Adam optimizer due to its
far better performance on the hierarchical model
where stochastic gradient descent did not perform
up to our expectations.

'We used a single RTX 2070 with 8GB of memory

273

To properly regularize the model we have used
the dropout (Srivastava et al., 2014) combined
with the gaussian noise applied to word embed-
dings. Since we did not use multi-layer LSTMs
we did not apply dropout in any other place in the
model.

In the case of ensembles, we scheduled 90%
reduction of the learning rate at the third epoch.
This was done in the hopes of achieving less vari-
ance in the performance of various runs. Since a
single model is trained considerably faster than an
entire ensemble, we did not schedule learning rate
change, as we were able to pick the best model or
average from a variety of runs.

The class imbalance in the dataset, both for the
train, validation and test set, was an issue we had
to deal with. We have opted for class reweighing
instead of a weighted sampling, due to ease of im-
plementation. We have experimented with various
weight setups.

2.3 Ensemble

To improve our results and help with significant
variance in performance of different experiment
runs, we have used an ensemble of multiple mod-
els. It should be noted that they are the exact same
model, trained several times.

We have experimented both with voting through
summation of the probabilities and with stacked
classifier on top of the ensemble results. Stacked
classifier is a single dense layer with the rec-
tified linear activation and softmax. As input
it takes a tensor of shape (batch_size, ensem-

Model Size Input data Embeddings | MicroF1
Hierarchical | 3076/1024 | all ELMo 0.733
Hierarchical | 2048/1024 | all ELMo 0.7213
Hierarchical | 1024/512 | all ELMo 0.7172
Simple 2048 concatenated | ELMo 0.7123
Simple 4096 concatenated | ELMo 0.7079
Simple 2048 last only ELMo 0.7076
Hierarchical | 2048/1024 | all GloVe 0.6394
Simple 4096 concatenated | GloVe 0.639
Simple 2048 concatenated | GloVe 0.6312
Hierarchical | 1024/512 | all GloVe 0.6294
Hierarchical | 3076/1024 | all GloVe 0.6291
Simple 2048 last only GloVe 0.5984
Table 1: Comparison of various model variants.
Size | Voting | Reweighing | Max Average | Combined
3 sum No 0.7371 | 0.7265 | 0.7481(+0.0110/+0.0216)
5 sum No 0.7426 | 0.7295 | 0.7454(+0.0028/+0.0159)
5 sum Yes 0.7369 | 0.7272 | 0.7430(+0.0061/4+0.0158)
3 sum Yes 0.7306 | 0.7144 | 0.7381(+0.0075/4+0.0237)
5 sum Yes* 0.7281 | 0.7191 | 0.7373(+0.0093/+0.018)
3 stack | No 0.7248 | 0.7103 | 0.7326(+0.0078/+0.0223)
5 stack | Yes 0.7338 | 0.7270 | 0.7310(-0.0028/+0.004)
3 stack | Yes 0.7336 | 0.7257 | 0.7289(-0.0047/+0.0032)
Table 2: Comparison of various ensemble setups.
Distribution Weights MicroF1 3 Evaluation
train set 1.0/1.0/1.0/1.0 0.6924 ,) ,
prra— 025/025/025/17 1 0.733 .In this section, we cover metrics used, our exper-
balanced I | 1.56/1.56/1.56/0.5 | 0.6888 E:‘;t:czgiSa:felzlilﬁlzfezué;‘z;‘;lzSt ‘;“eli results in
balanced 2 1.56/1.56/1.56/0.3 | 0.6651 For evaluation we have modified code. that is the
test w/o others | 1.33/1.33/1.33/0. | 0.2429

Table 3: Effect of different class weight setups.

ble_size*num_labels) and outputs a tensor of shape
(batch_size, num_labels).

To ensure that the single models in the ensem-
ble will specialize on different samples, we have
included the option for sample weight rebalance,
based on their performance on the already trained
models. However, error in the code caused that the
rebalance calculation took into account only the
last model and that the sample weights were grad-
ually rising for the latter models in an ensemble.
This was fixed only after the submissions were
closed.

274

part of the starter kit (Chatterjee et al., 2019a). Out
of all metrics this function calculates we have pri-
marily used microF1 score, which is the score re-
ported in all our tables.

3.1 Results

In our experiments, we have explored a variety of
different models, setups, ensembling approaches
and effects of class weights. If not specified oth-
erwise, models are using categorical crossentropy
and following parameters:

e batch size: 32

e gaussian noise after embedding layer: 0.5 for
simple, 3 for the hierarchical model

e dropout after embedding layer: 0.5 for sim-
ple, 0.6 for the hierarchical model

Class Precision | Recall | Fl

Angry 0.6948 0.8020 | 0.7445
Happy 0.7303 0.6866 | 0.7078
Sad 0.7687 0.8240 | 0.7954
Micro Average | 0.7281 0.7692 | 0.7481

Table 4: Summary of the best submission.

Our first set of experiments are targeted at the
model architecture and the effect of the used em-
beddings, results can be seen in table 1. In this
table, all results are an average of three different
runs. Unsurprisingly, the most significant effect
is from the type of embeddings used. The effect
of the rest of the factors seems to be in this or-
der: model/input and size. At least for the ELMo
embeddings, hierarchical models universally out-
performed simple models. For the GloVe embed-
dings there is no clear separation, however the dif-
ferences are rather small and if we averaged from
more experiment runs a distinction could appear.
The model that takes only the last turn into account
was last when compared with the same embed-
dings, however we expected a more pronounced
difference.

The next batch of experiments examines setup
of our ensembles as seen in the table 2. In these
experiments each row represent a single run of the
entire ensemble. The combined score is the score
of the ensemble after voting, in the parentheses we
see change in respect to the max and average of
the constituent models. Since the flawed reweigh-
ing does not seem to have a significant effect we
have decided to left these experiments in. The
experiment with asterisk, done after the submis-
sions were closed, was run with the rebalancing
fixed and while it shows second best improvement
it is hard to tell if this is just a noise or a real ef-
fect. The most significant finding of this batch is
that the stacked classifier performed rather poorly
compared to the summation. For the stacked clas-
sifier, in two cases out of three, the combined score
is actually worse than the best model in an ensem-
ble.

Lastly, we have taken a look at the effect of dif-
ferent class weights, which can be seen in table
3, where the first column signifies distribution re-
sulting from the given reweighing. We have ex-
perimented with ignoring others class due to the
way the evaluation is done. The effect of such re-
balancing is that all of the samples belonging to

275

the ’others’ class is classified as one of the other
classes, which causes extremely high recall. Since
the test set distribution is closer to the distribution
of the train set than to the balanced dataset, trying
to reweigh the data to obtain a balanced dataset? is
worse than doing nothing. The best results are ob-
tained when the reweighed distribution is the same
as the test set, even though score is not averaged
over the "others’ class.

Detailed summary of our best submission can
be seen in the table 4.

4 Conclusion

In this paper, we have presented our models and
experiments for emotion detection in conversa-
tional triples. We have also discussed results, var-
ious setups and model variants.

The bulk of our work was focused on simple vs.
hierarchical models. We observed that the hier-
archical model outperformed simple model. Ad-
ditionally, simple model with only the last turn
of conversation was only slightly worse than the
model with the entire context.

We managed to improve our results by using an
ensemble of multiple instances of the same model.
During our experiments summation method of re-
sult combination proved to be superior to using
stacked classifier. Interestingly, the stacked clas-
sifier could be perhaps a way to adapt model to
different class distribution.

Our efforts were hindered by insufficient
amount of memory on our GPU, thus we could not
include every feature we wanted into our model.
Perhaps, using GPU with more memory available,
we could achieve slightly better results.

The source code of our system is available at
GitHub *.

Acknowledgements

This work was partially supported by the project
Development of research infrastructure STU,
project no. 003STU-2-3/2016 by the Ministry of
Education, Science, Research and Sport of the
Slovak Republic, Slovak Research and Develop-
ment Agency under the contract No. APVV-16-
0213 and APVV-16-0213 and by financial contri-
bution from the STU Grant scheme for Support of
Young Researchers.

“balanced_2 slightly supresses the others class
*https://github.com/michalfarkas/
nl-fiit_emocontext

https://github.com/michalfarkas/nl-fiit_emocontext
https://github.com/michalfarkas/nl-fiit_emocontext

References

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep Istm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747-754, Vancouver,
Canada. Association for Computational Linguistics.

Ankush Chatterjee, Umang Gupta, Manoj Kumar
Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019a. Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior, 93:309-317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Roman Klinger, Orphee De Clercq, Saif Mohammad,
and Alexandra Balahur. 2018. Iest: Wassa-2018
implicit emotions shared task. In Proceedings of
the 9th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 31-42. Association for Computational Lin-
guistics.

Samuel Pecar, Michal Farkas$, Marian Simko, Peter
Lacko, and Maria Bielikova. 2018. NI-fiit at iest-
2018: Emotion recognition utilizing neural networks
and multi-level preprocessing. In Proceedings of
the 9th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 217-223. Association for Computational Lin-
guistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532—-1543. Associa-
tion for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume I (Long Papers), pages 2227—
2237. Association for Computational Linguistics.

276

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 1l1th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502-518, Vancouver, Canada. Association for
Computational Linguistics.

Tulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hier-
archical neural network models. In Thirtieth AAAI
Conference on Artificial Intelligence.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929-1958.

https://doi.org/10.18653/v1/S17-2126
https://doi.org/10.18653/v1/S17-2126
https://doi.org/10.18653/v1/S17-2126
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
http://aclweb.org/anthology/W18-6206
http://aclweb.org/anthology/W18-6206
http://aclweb.org/anthology/W18-6231
http://aclweb.org/anthology/W18-6231
http://aclweb.org/anthology/W18-6231
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/S17-2088
https://doi.org/10.18653/v1/S17-2088

