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Abstract

This paper describes our recursive system for

SemEval-2019 Task 1: Cross-lingual Seman-

tic Parsing with UCCA. Each recursive step

consists of two parts. We first perform seman-

tic parsing using a sequence tagger to estimate

the probabilities of the UCCA categories in the

sentence. Then, we apply a decoding policy

which interprets these probabilities and builds

the graph nodes. Parsing is done recursively,

we perform a first inference on the sentence to

extract the main scenes and links and then we

recursively apply our model on the sentence

using a masking feature that reflects the deci-

sions made in previous steps. Process contin-

ues until the terminal nodes are reached. We

choose a standard neural tagger and we fo-

cused on our recursive parsing strategy and on

the cross lingual transfer problem to develop

a robust model for the French language, using

only few training samples.

1 Introduction

Semantic representation is an essential part of

NLP. For this reason, several semantic represen-

tation paradigms have been proposed. Among

them we find PropBank (Palmer et al., 2005) and

FrameNet Semantics (Baker et al., 1998), Ab-

stract Meaning Representation (AMR) (Banarescu

et al., 2013), Universal Decompositional Seman-

tics (White et al., 2016) and Universal Conceptual

Cognitive Annotation (UCCA) (Abend and Rap-

poport, 2013). These constantly improving rep-

resentations, along with the advances in semantic

parsing, have proven to be beneficial in many NLU

tasks such as Question Answering (Shen and La-

pata, 2007), text summarization (Genest and La-

palme, 2011), dialog systems (Tur et al., 2005), in-

formation extraction (Bastianelli et al., 2013) and

machine translation (Liu and Gildea, 2010).

UCCA is a cross-lingual semantic representa-

tion scheme, has demonstrated applicability in En-

glish, French and German (with pilot annotation

projects on Czech, Russian and Hebrew). De-

spite the newness of UCCA, it has proven useful

for defining semantic evaluation measures in text-

to-text generation and machine translation (Birch

et al., 2016). UCCA represents the semantics of

a sentence using directed acyclic graphs (DAGs),

where terminal nodes correspond to text tokens,

and non-terminal nodes to higher level semantic

units. Edges are labelled, indicating the role of

a child in the relation to its parent. UCCA pars-

ing is a recent task and since UCCA has several

unique properties, adapting syntactic parsers or

parsers from other semantic representations is not

straight-forward. Current state of the art parser

TUPA (Hershcovich et al., 2017) uses a transition

based parsing to build UCCA representations.

Building over previous work on FrameNet Se-

mantic Parsing (Marzinotto et al., 2018a,b) we

chose to perform UCCA parsing using sequence

tagging methods along with a graph decoding pol-

icy. To do this we propose a recursive strategy in

which we perform a first inference on the sentence

to extract the main scenes and links and then we

recursively apply our model on the sentence with

a masking mechanism at the input in order to feed

information about the previous parsing decisions.

2 Model

Our system consists of a sequence tagger that is

first applied on the sentence to extract the main

scenes and links and then it is recursively applied

on the extracted element to build the semantic

graph. At each step of the recursion we use a

masking mechanism to feed information about the

previous stages into the model. In order to convert

the sequence labels into nodes of the UCCA graph

we also apply a decoding policy at each stage.

Our tagger is implemented using deep bi-
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directional GRU (biGRU). This simple architec-

ture is frequently used in semantic parsers across

different representation paradigms. Besides its

flexibility, it is a powerful model, with close to

state of the art performance on both PropBank (He

et al., 2017) and FrameNet semantic parsing (Yang

and Mitchell, 2017; Marzinotto et al., 2018b).

More precisely, the model consists of a 4 layer

bi-directional Gated Recurrent Unit (GRU) with

highway connections (Srivastava et al., 2015). Our

model uses has a rich set of features including syn-

tactic, morphological, lexical and surface features,

which have shown to be useful in language ab-

stracted representations. The list is given below:

• Word embeddings of 300 dimensions 1.

• Syntactic dependencies of each token2.

• Part-of-speech and morphological features

such as gender, number, voice and degree2.

• Capitalization and word length encoding.

• Prefixes and Suffixes of 2 and 3 characters.

• A language indicator feature.

• Boolean indicator of idioms and multi word

expression. Detailed in section 3.2.

• Masking mechanism, which indicates, for a

given node in the graph, the tokens within the

span as well as the arc label between the node

and its parent. See details in section 2.1.

Except for words where we use pre-trained em-

beddings, we use randomly initialized embedding

layers for categorical features.

2.1 Masking Mechanism

We introduce an original masking mechanism in

order to feed information about the previous pars-

ing stages into the model. During parsing, we

first do an initial inference step to extract the main

scenes and links. Then, for each resulting node,

we build a new input which is essentially the same,

but with a categorical sequence masking feature.

For the input tokens in the node span, this feature

is equal to the label of the arc between the node

and its parent. Outside of the node span, this mask

is equal to O. A diagram of this masking process

is shown in figure 1. The process continues and

the model recursively extracts the inner semantic

structures (the node’s children) in the graph, until

the terminal nodes are reached.

1Obtained from https://github.com/facebookresearch/MUSE
2 Using Universal Dependencies categories.

To train such a model, we build a new training

corpus in which the sentences are repeated several

times. More precisely, a sentence appears N times

(N being the number of non terminal nodes in the

UCCA graph) each one a with different mask.

2.2 Multi-Task UCCA Objective

Along with the UCCA-XML graph representa-

tions, a simplified tree representation in CoNLL

format was also provided. Our model combines

both representations using a multitask objective

with two tasks. TASK1 consists in, for a given

node and its corresponding mask, predicting the

children and their arc labels. TASK1 encodes

the children spans using a BIO scheme. The

TASK2 consists in predicting the CoNLL sim-

plified UCCA structure of the sentence. More

precisely, TASK2 is a sequence tagger that pre-

dicts the UCCA-CoNLL function of each token.

TASK2 is not used for inference purposes. It is

only a support that help the model to extract rele-

vant features, allowing it to model the whole sen-

tence even when parsing small pre-terminal nodes.

2.3 Label Encoding

We have previously stated that TASK1 uses BIO

encoded labels to model the structure of the chil-

dren of each node in the semantic graph. In some

rare cases, the BIO encoding scheme is not suf-

ficient to model the interaction between parallel

scenes. For example, when we have two paral-

lel scenes and one of them appears as a clause

inside the other. In such cases, BIO encoding

does not allow to determine whether the last part

of the sentence belongs to the first scene or to

the clause. Despite this issue, prior experiments

testing more complete label encoding schemes

(BIEO, BIEOW) showed that BIO outperforms the

other schemes on the validation sets.

2.4 Graph Decoding

During the decoding phase, we convert the BIO la-

bels into graph nodes. To do so, we add a few con-

straints to ensure the outputs are feasible UCCA

graphs that respect the sentence’s structure:

• We merge parallel scenes (H) that do not have

either a verb or an action noun to the nearest

previous scene having one.

• Within each parallel scene, we force the ex-

istence of one and only one State (S) or

Process (P) by selecting the token with the

highest probability of State or Process.
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Figure 1: Masking mechanism through recursive calls. Step 1 parses the sentence to extract parallel

scenes (H) and links (L). Then Steps 2.A 2.B use a different mask to parse these scenes and extract

arguments (A) and processes (P) which will be recursively parsed until terminal nodes are reached.

• For scenes (H) and arguments (A) we do not

allow to split multi word expressions (MWE)

and chunks into different graph nodes. If the

boundary between two segments lies inside a

chunk or MWE segments are merged.

2.5 Remote Edges

Our approach easily handles remote edges. We

consider remote arguments as those detected out-

side the parent’s node span (see REM in Fig.1). Our

earlier models showed low recall on remotes. To

fix this, we introduced a detection threshold on the

output probabilities. This increased the recall at

the cost of some precision. The optimal detection

threshold was optimized on the validation set.

3 Data

3.1 UCCA Task Data

In table 1 we show the number of annotations for

each language and domain. Our objective is to

build a model that generalizes to the French lan-

guage despite of having only 15 training samples.

When we analyse data in details we observe that

there are several tokenization errors. Specially in

the French corpus. These errors propagate to the

POS tagging and dependency parsing as well. For

this reason, we retokenized and parsed all the cor-

pus using a enriched version of UDpipe that we

trained ourselves (Straka and Straková, 2017) us-

Corpus Train Dev Test

English Wiki 4113 514 515

English 20K - - 492

German 20K 5211 651 652

French 20K 15 238 239

Table 1: number of UCCA annotated sentences in

the partitions for each language and domain

ing the Treebanks from Universial Dependencies3.

For French we enriched the Treebank with XPOS

from our lexicon. Finally, since tokenization is

pre-established in the UCCA corpus we projected

the improved POS and dependency parsing into

the original tokenization of the task.

3.2 Supplementary lexicon

We observed that a major difficulty in UCCA pars-

ing is analyzing idioms and phrases. The unaware-

ness about these expressions, which are mostly

used as links between scenes, mislead the model

during the early stages of the inference and er-

rors get propagated through the graph. To boost

the performance of our model when detecting

links and parallel scenes we developed an inter-

nal list with about 500 expression for each lan-

guage. These lists include prepositional, adverbial

and conjunctive expressions and are used to com-

pute Boolean features indicating the words in the

sentence which are part of an expression.

3https://universaldependencies.org/

https://universaldependencies.org/
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Ours Labeled Ours Unlabeled TUPA Labeled TUPA Unlabeled

Open Tracks Avg

F1

Prim

F1

Rem

F1

Avg

F1

Prim

F1

Rem

F1

Avg

F1

Prim

F1

Rem

F1

Avg

F1

Prim

F1

Rem

F1

Dev English Wiki 70.8 71.3 58.7 82.5 83.8 37.5 74.8 75.3 51.4 86.3 87.0 51.4

Dev German 20K 74.7 75.4 40.5 87.4 88.6 40.9 79.2 79.7 58.7 90.7 91.5 59.0

Dev French 20K 63.6 64.4 19.0 78.9 79.6 20.5 51.4 52.3 1.6 74.9 76.2 1.6

Test English Wiki 68.9 69.4 42.5 82.3 83.1 42.8 73.5 73.9 53.5 85.1 85.7 54.3

Test English 20K 66.6 67.7 24.6 82.0 83.4 24.9 68.4 69.4 25.9 82.5 83.9 26.2

Test German 20K 74.2 74.8 47.3 87.1 88.0 47.6 79.1 79.6 59.9 90.3 91.0 60.5

Test French 20K 65.4 66.6 24.3 80.9 82.5 25.8 48.7 49.6 2.4 74.0 75.3 3.2

Table 2: Our model vs TUPA baseline performance for each open track

Tracks D C N E F G L H A P U R S

EN Wiki 64.3 71.4 68.5 69.6 76.7 0.0 71.4 61.3 60.0 64.0 99.7 89.2 25.1

EN 20K 47.2 75.2 62.5 72.3 71.5 0.2 57.9 49.5 55.7 69.8 99.7 83.2 19.5

DE 20K 69.4 83.8 57.7 80.5 83.8 59.2 68.4 62.2 67.5 68.9 97.1 86.9 25.9

FR 20K 46.1 76.0 58.9 71.2 53.3 4.8 59.4 50.4 52.8 67.6 99.6 83.5 16.9

Table 3: Our model’s Fine-grained F1 by label on Test Open Tracks

3.3 Multilingual Training

This model uses multilingual word embeddings

trained using fastText (Bojanowski et al., 2017)

and aligned using MUSE (Conneau et al., 2017).

This is done in order to ease cross-lingual training.

In prior experiments we introduced an adversarial

objective similar to (Kim et al., 2017; Marzinotto

et al., 2019) to build a language independent rep-

resentation. However, the language imbalance on

the training data did not allow us to take advantage

from this technique. Hence, we simply merged

training data from different languages.

4 Experiments

We focus on obtaining the model that best general-

izes on the French language. We trained our model

for 50 epochs and we selected the best one on the

validation set. In our experiments we did not use

any product of experts or bagging technique and

we did not run any hyper parameter optimization.

We trained several models building different

training corpora composed of different language

combinations. We obtained our best model us-

ing the training data for all the languages. This

model FR+DE+EN achieved 63.6% avg. F1 on

the French validation set. Compared to 63.1% for

FR+DE, 62.9% for FR+EN and 50.8% for only FR.

4.1 Main Results

In Table 2 we provide the performance of our

model for all the open tracks and we provide the

results for TUPA baseline in order to establish a

comparison. Our model finishes 4th in the French

Open Track with an average F1 score of 65.4%,

very close to the 3rd place which had a 65.6%

F1. For languages with larger training corpus, our

model did not outperform the monolingual TUPA.

4.2 Error Analysis

In Table 3 we give the performance by arc type.

We observe that the main performance bottleneck

is in the parallel scene segmentation (H). Due to

our recursive parsing approach, this kind of er-

ror is particularly harmful to the model perfor-

mance, because scene segmentation errors at the

early steps of the parsing may induce errors in the

rest of the graph. To assert this, we used the vali-

dation set to compare the performance of the mono

scene sentences (with no potential scene segmen-

tation problems) with the multi scene sentences.

For the French track we obtained 67.2% avg. F1

on the 114 mono scene sentences compared to

61.9% avg. F1 on the 124 multi scene sentences.

5 Conclusions

We described an original approach to recursively

build the UCCA semantic graph using a sequence

tagger along with a masking mechanism and a de-

coding policy. Even though this approach did not

yield the best results in the UCCA task, we believe

that our original recursive, mask-based parsing

can be helpful in low resource languages. More-

over, we believe that this model could be further

improved by introducing a global criterion and by

performing further hyper parameter tuning.
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