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Abstract

Human Needs categories have been used to
characterize the reason why an affective event
is positive or negative. For example, “I got the
flu” and “I got fired” are both negative (unde-
sirable) events, but getting the flu is a Health
problem while getting fired is a Financial
problem. Previous work created learning mod-
els to assign events to Human Needs categories
based on their words and contexts. In this
paper, we introduce an intermediate step that
assigns words to relevant semantic concepts.
We create lightly supervised models that learn
to label words with respect to 10 semantic
concepts associated with Human Needs cat-
egories, and incorporate these labels as fea-
tures for event categorization. Our results
show that recognizing relevant semantic con-
cepts improves both the recall and precision of
Human Needs categorization for events.

1 Introduction

Affective events have a positive or negative impact
on the people who experience the event. For ex-
ample, being hired for a job is typically a bene-
ficial (positive) event, but being fired is usually a
detrimental (negative) event. Recognizing affec-
tive events is critical to understand people’s mo-
tivations, goals, desires, and empathy in narrative
stories and conversations. Previous research has
proposed several methods to recognize affective
events and their polarity (e.g., (Deng et al., 2013;
Vu et al., 2014; Reed et al., 2017; Ding and Riloff,
2016)). To achieve a deeper level of understand-
ing, Ding and Riloff (2018a) further classified af-
fective events into categories associated with the-
ories of Human Needs (Maslow et al., 1970; Max-
Neef et al., 1991) in psychology: Physiological,
Health, Leisure, Social, Finance, and Cognition,
to characterize the reason for the event’s affective
polarity. For example, breaking your arm is a neg-
ative event because it violates a need to maintain
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one’s Health, but fighting with your spouse is neg-
ative because it violates a need for good Social re-
lations with friends and family.

Human Needs categories naturally align with
several broad conceptual classes, and we hypoth-
esized that learning to recognize relevant seman-
tic concepts would lead to more effective Human
Needs categorization. For example, the Physiolog-
ical need corresponds to basic functions such as
breathing, sleeping, eating, and drinking. Learn-
ing to recognize FOOD/DRINK concepts should
help identify events that belong to this category.
Broadly, semantic concepts should help in two
ways. First, semantic features are more gen-
eral than words, which can suffer from sparsity.
Second, given semantic features, a classifier can
directly learn interactions between them, which
should be more robust than interactions between
individual words.

In this paper, we present lightly supervised clas-
sifiers that label words with respect to 10 se-
mantic concepts associated with Human Needs
categories: EMOTION, ENTERTAINMENT, EQUIP-
MENT, FOOD/DRINK, INTERPERSONAL, MEDI-
CAL, MENTAL-PROCESS, MONEY/JOB, PEOPLE,
and OTHER. Seed words for each semantic class
are used as supervision, and pre-trained embed-
ding vectors are used as word features. We explore
three classification models: logistic regression,
instance-based learning, and prototypical neural
networks (Snell et al., 2017). Finally, the semantic
class predictions are used as features for Human
Needs event categorization, improving both recall
and precision for this task.

2 Related Work

Previous work in NLP on affective events has pri-
marily focused on identifying the affective po-
larity of events in narrative fables (Goyal et al.,
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2013), tweets (Li et al., 2014), news (Deng et al.,
2013; Deng and Wiebe, 2014), and personal blogs
(Ding and Riloff, 2016; Reed et al., 2017; Ding
and Riloff, 2018b). Recently, Ding et al. (2018)
further characterized affective events in terms of
human needs categories: Physiological, Health,
Leisure, Social, Financial, Cognition, and Free-
dom, which can explain why an event is positive or
negative. Subsequently, Ding and Riloff (2018a)
designed supervised learning models and a semi-
supervised co-training model to assign affective
events to Human Needs categories.

Our work exploits recent advances in dis-
tributed word representations and semantic em-
beddings (e.g., (Mikolov et al., 2013; Penning-
ton et al., 2014; Peters et al., 2018; Devlin et al.,
2018)), and is related to domain adaptation of
word embeddings (e.g., (Sarma et al., 2018)). But
we aim to recognize a specific set of semantic
concepts, rather than a specialized domain with
domain-specific texts. The LIWC dictionary (Pen-
nebaker et al., 2007) contains word lists for se-
mantic categories that are similar to our targeted
semantic concepts, but its coverage is insufficient.
Our work is also related to semantic lexicon induc-
tion (Thelen and Riloff, 2002; McIntosh and Cur-
ran, 2009; Qadir and Riloff, 2012; De Benedictis
et al., 2013; Gupta and Manning, 2015), contex-
tual semantic tagging (Huang and Riloff, 2010),
and fine-grained entity recognition (Fleischman
and Hovy, 2002; Ling and Weld, 2012). Our goal,
however, is not to generate a dictionary, or assign
semantic meanings in sentence contexts. Instead,
our classifier learns to recognize words that belong
to a small set of relevant semantic classes based
only on their pre-trained embedding vectors.

3 Lightly Supervised Semantic
Classification

We hypothesized that Human Needs categoriza-
tion would benefit from recognizing words that be-
long to the 10 semantic concepts listed in Table 1,
based on our analysis of the Human Needs def-
initions presented in (Ding et al., 2018). In this
section, we present lightly supervised models that
learn to assign words to these classes.

3.1 Seeding

The input to our classifiers is a small set of seed
words for each targeted semantic class. The affec-
tive events data set that we will use for our study
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ENTERTAINMENT: play game movie story trip party
birthday song music video

INTERPERSONAL: meet visit kiss share lie relation-
ship hug marry agree admit

MENTAL-PROCESS: know remember read guess
dream forget understand explain study memory
MEDICAL: die hurt pain kill sick blood hospital dead
drug surgery

MONEY/JOB: job pay money deal sell business price
sale purchase dollar

EQUIPMENT: car phone computer bike camera chair
boat machine desk laptop

FOOD/DRINK: eat water food dinner drink lunch
breakfast cake meal chocolate

PEOPLE: people friend guy girl man kid mom someone
everyone family

EMOTION: good love nice fun bad happy best better
smile enjoy laugh hate kind beautiful wrong amazing
awesome funny crazy worry

OTHER: be have do get go time say make think take
day come look thing tell start way try last year

Table 1: Semantic Concepts and Seed Words

(Section 5) was generated from the ICWSM 2009
and 2011 blog corpora (Burton et al., 2009, 2011),
so we selected seed words from these corpora as
well. We used the following procedure to iden-
tify commonly used words for each category: we
sorted all word lemmas by frequency and selected
the k top-ranked words belonging to each seman-
tic concept. We set k=10 for all classes, except we
set k=20 for EMOTION and OTHER because they
are extremely large categories.! Table 1 shows the
seeds selected for each semantic class.

3.2 Classification

We created three classification models: logistic re-
gression, instance-based learning, and prototyp-
ical neural networks. For all three classifiers,
we used the Word2Vec 300D pre-trained embed-
dings (Mikolov et al., 2013) as features. The
seed words served as training examples, along
with 500 randomly selected unlabeled words as
additional seeds for the OTHER category, since it
needs to represent a large and diverse “None-of-
the-Above” class.

The first model is a one-vs.-rest logistic regres-
sion classifier, built using the scikit-learn toolkit
(Pedregosa et al., 2011) with default parameters.

The second model uses instance-based classifi-
cation. This method first creates a prototype rep-
resentation for each semantic class as the mean of
the word embeddings of its seeds. Given a new

"The k values were chosen arbitrarily without experimen-
tation, so tuning these values could potentially further im-
prove performance.



word, a probability distribution is computed over
the semantic classes as the softmax of the negative
Euclidean distance to each class prototype. The
class with the highest probability is chosen.

The third model uses prototypical neural net-
works (Snell et al., 2017), which have performed
well on “few-shot” learning tasks with limited la-
beled training data, because of its simple induc-
tive bias. We created a single layer feed-forward
network with ReLU activations as the embedding
function f. To learn parameters for f, we use
the same training algorithm as Snell et al. (2017)
except that we train on all semantic classes in
each training episode, and both the support set and
query set consist of 5 randomly selected examples
per class. During training, we use the following
parameters: the dimension of the embedding rep-
resentation layer is 32, the learning rate is .01, and
the weight decay is .0001. We train the model for
20 epochs with 100 episodes for each epoch.

To predict the class label for a new word, the
process is the same as the instance-based model,
except that the learned embedding is used. First,
we create a prototype embedding ¢y, for each se-
mantic class k using Equation 1, where S con-
tains all the labeled seed words for class k.

> f=i)

X, €S},

(1)

Cr =
|5k|

Given a new word, a probability distribution over
the classes is computed as the softmax of the neg-
ative Euclidean distance d to each prototype, as
shown in Equation 2.

exp(—d(f(z), cr))
2w exp(—d(f (), ex))

4 Human Needs Categorization

p(y =klz) = (2)

Our goal is to explore whether semantic classifi-
cation of terms can improve Human Needs cate-
gorization of affective events. Toward this end,
we used the Human Needs categorization frame-
work described in Ding and Riloff (2018a) which
is a co-training model that iteratively trains two
models with different views of the data: (1) an
event expression classifier that uses the words in
an event expression as input, and (2) an event con-
text classifier that uses the sentence contexts that
mention an event as input. An event expression
is represented as a tuple consisting of 4 compo-
nents: (Agent, Predicate, Theme, PP). The event
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expression classifier is a logistic regression model
that takes the embedding of an event expression as
input, which is computed as the average over the
embeddings of its individual words. The architec-
ture and models are the same, but in this paper we
aim to improve the event expression classifier by
incorporating semantic classification.

Given an event expression, we extract two types
of semantic features from the head words of its 4
components. For each of the 4 head words, we cre-
ate 10 real-valued features representing the confi-
dence scores produced by the classifier for each
of the 10 semantic classes. In addition, we create
10 binary features (one per semantic class) indi-
cating whether any of the head words belongs to
each class, based on the classifier’s predicted la-
bels. Consequently, for each event expression the
semantic classifier generates 50 semantic features.

5 Evaluation

We conducted two sets of experiments to evaluate
the impact of our semantic classifiers. First, we
show the results of adding semantic features to the
event expression classifier for Human Needs cate-
gorization. Second, we evaluate the impact of the
enhanced event expression classifier in the full co-
training model. We used the evaluation data set
created by Ding and Riloff (2018a), which con-
tains 542 affective events with manually assigned
Human Needs labels. To ensure a fair comparison,
we used the same evaluation settings: we perform
3-fold cross-validation on the evaluation data and
report the average Precision, Recall, and F1 scores
over the folds.

5.1 Human Needs Categorization Results

Table 2 shows the results of experiments with
the event expression classifier. The first row,
Embed (D&R 2018a), shows the performance of
Ding & Riloff’s original event expression clas-
sifier, which is a logistic regression model with
event expression embeddings as features. The next
three rows show the performance of a logistic re-
gression model that uses our semantic features in-
stead. We show results for semantic features pro-
duced by each of our three models: instance-based
classification (Sem:InstBased), logistic regression
(Sem:LR), and the prototypical neural network
(Sem:ProtoNets). The LR and ProtoNets models



Features Precision  Recall F1

Embed (D&R 2018a) 64.2 51.7 54.8
Sem:InstBased 53.7 42.4 45.1
Sem:LR 72.3 46.8 52.0
Sem:ProtoNets 63.1 48.8 52.4
Embed+Sem:InstBased 64.2 55.2 58.1
Embed+Sem:LR 68.7 57.3 60.8
Embed+Sem:ProtoNets 67.5 58.7 61.9

Table 2: Results for Human Needs Categorization with
Event Expression Classifiers

achieve an F1 score? > .52, which is not far be-
low the performance of the D&R model that uses
embedding features.

The last three rows of Table 2 show results for
the event expression classifier with features for
both the event expression embedding and the 50
semantic features produced by one of our three se-
mantic classifiers. All of these models outperform
the original D&R model. The best model, Pro-
toNets, substantially improves Human Needs cat-
egorization from 54.8% — 61.9%.

Human Need D&R 2018a Our Results

Category Pr R Fl Pr R Fl

Physio 81 68 74 86.7 68.3 76.3
Health 68 50 57 71.6 59.3 64.8
Leisure 69 63 66 | 748 64.0 68.8
Social 68 79 73 739 824 779
Finance 67 44 52 1 605 47.8 529
Cognition 92 46 58 83.8 542 65.5
Emotion 64 74 69 65.5 742 69.6
None 48 52 50 | 49.0 53.3 511
[ AVG [ 69.7 59.5 62.4 [ 70.7 62.9 65.9 ]

Table 3: Results for Human Needs Categorization with
Co-Training Models

In the next set of experiments, we evaluated the
impact of the new event expression classifier in
the co-training model for Human Needs catego-
rization. Table 3 shows the results for the original
co-training model reported in our previous work
(Ding and Riloff, 2018a) alongside the results for
our enhanced co-training model, which is identical
except that we replaced the original event expres-
sion classifier with our Embed+Sem:ProtoNets
model. We used the same experimental settings,
running our co-training model for 20 iterations and
reporting the best results®. Table 3 shows the Pre-
cision (Pr), Recall (R), and F1 scores for each

Note that this result is the average F1 score over the
cross-validation folds, not the F1 score of the average pre-
cision and average recall.

30ur co-training method achieved the best result after 17
iterations.
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Human Needs category and the macro-averaged
(AVG) scores. The enhanced co-training model
improves performance on every Human Needs cat-
egory, increasing the average F1 score from 62.4%
to0 65.9%.

70.0
67.5
65.0
62.5

F1

60.0
57.5

55.0
—o— D&R 2018a
Our Method
50.0 T T T T
0 5 10 15 20
Number of Iterations

52.5 A

Figure 1: Performance of Co-training Models with Se-
mantic Class Features at Different Iterations

Figure 1 shows the performance of the origi-
nal co-training method D&R 2018a and our new
method with semantic features learned by Em-
bed+Sem:ProtoNets model after each iteration.
This result shows that enhancing the event expres-
sion classifier with semantic features helps the co-
training model improve more rapidly and achieve
better performance than the original model for
each iteration.

5.2 Analysis of Semantic Classification

We also informally evaluated the quality of the
semantic labels assigned by the semantic classi-
fier, to better understand its strengths and weak-
nesses. One of the authors assigned each word*
in the evaluation data to one of the 10 semantic
classes. Then we compared these human labels to
the predicted labels from the semantic classifier.
Table 4 shows the performance for each seman-
tic class. Overall, the classifier achieved a macro-
averaged F1 score of 68.8%. Performance across
the semantic classes varies, with several classes
achieving high precision and high or moderate re-
call (OTHER, PEOPLE, ENTERTAINMENT, EMO-
TION, INTERPERSONAL, MENTAL-PROCESS), a
few achieving high recall but low to moderate pre-
cision (FOOD/DRINK, MONEY/JOB), and a few
with moderate recall and precision (EQUIPMENT,
MEDICAL). Overall, these results demonstrate

“Except not pronouns.



Semantic Classes Precision  Recall F1
OTHER 79.5 91.0 84.9
PEOPLE 94.2 75.4 83.8
FOOD/DRINK 57.1 92.3 70.6
ENTERTAINMENT 89.1 54.7 67.8
EQUIPMENT 62.5 66.7 64.5
EMOTION 80.0 51.2 62.5
INTERPERSONAL 84.6 47.8 61.1
MENTAL-PROCESS 71.3 48.6 59.6
MEDICAL 64.5 51.3 57.1
MONEY/JOB 37.9 73.3 50.0
[ AVG [ 72.7 65.2 68.8 ]

Table 4: Semantic Classification Results

that the semantic classifier produced fairly good
predictions for most categories given only light su-
pervision. One could almost certainly further im-
prove these scores with more seed examples or by
incorporating readily available external resources
for categories such as EMOTION and MEDICAL,
which would likely yield further gains for Human
Needs categorization. More generally, our lightly
supervised approach for training a semantic clas-
sifier demonstrates that one can rapidly create a
classifier for a specific set of semantic concepts
that are important for an application domain.

I, gain, pleasuregyorion, )

L, be, busy, with my homeworkygenrar-Process )
we, finish, tourgxrerravmENT; )

our plzzaFOOD/DR]NKa aITlVC, . >

my eye, hurtyepicar, badgmorions » )

I, try to cooperateinrrrpERSONALS > )
I, dancegnterTainment, » With my mompgop g >

I, dancegnrertainment, » With my friendpgopr g >
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day, be, magicalgyorion, )

peoplepeopLe, BUYMonEY/JoB, hOME, >
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I, not learnygntar-ProcEss, Something, )
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Table 5: Examples of Affective Events with Automati-
cally Predicted Semantic Classes

Table 5 presents some examples of affective
events and their semantic classes that are as-
signed by the Prototypical Networks Model.
All the unlabeled words in the table were as-
signed to OTHER class’. Besides the words

>In our experiments, we did not apply the semantic clas-
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(e.g., ‘pleasuregyorion”, “PizZaroop/DRINK >
“cooperaternterpersonar ) that were classified
correctly, some words in events also received
incorrect semantic category labels. For example,
the “work” in “house phone not work” and
“epidural start to work” was incorrectly classified
to MONEY/JOB, which suggests that it may be
beneficial to further improve the performance of
semantic categorization of words in events by
considering the contextual meaning of polyse-
mous words. In addition, our set of semantic
classes was selected based on our intuition about
what concepts are most relevant to the human
needs categories, but it might be worthwhile for
future work to more thoroughly explore a large
set of semantic concepts.

6 Conclusions

We proposed to improve human needs categoriza-
tion of affective events by adding semantic fea-
tures that classify terms into related semantic con-
cepts. We designed lightly supervised models that
learn to classify words with respect to semantic
concepts using only their pre-trained word embed-
ding vectors and seed words as training data. We
then showed that representing semantic concepts
improves both the precision and recall for Human
Needs categorization of events.
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