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Abstract

Knowledge graphs, which provide numerous
facts in a machine-friendly format, are incom-
plete. Information that we induce from such
graphs – e.g. entity embeddings, relation rep-
resentations or patterns – will be affected by
the imbalance in the information captured in
the graph – by biasing representations, or caus-
ing us to miss potential patterns. To par-
tially compensate for this situation we describe
a method for representing knowledge graphs
that capture an intensional representation of
the original extensional information. This rep-
resentation is very compact, and it abstracts
away from individual links, allowing us to find
better path candidates, as shown by the results
of link prediction using this information.

1 Introduction

Knowledge graphs have become a very useful
framework to organize and store knowledge. Their
interconnected nature is not just a natural way to
represent facts, but it has potential that the separate
storage of facts does not have, such as: (i) we can
use it as a relational model of meaning, and de-
rive jointly representations for nodes (entities) and
edges (relations); (ii) the structure can be explored
to discover systematic patterns that reveal interest-
ing and exploitable regularities, such as paths con-
necting nodes in direct relations, (iii) discovering
and inducing new connections.

Link prediction methods in knowledge graphs
(see (Nickel et al., 2016) for an overview) pre-
dict additional edges in the graph, based on in-
duced node and edge representations that encode
the structure of the graph and thus capture regular-
ities (such as homophily).

Lao and Cohen (2010) introduced a new method
that predicts direct links based on paths that con-
nect the source and target nodes. Such paths are
not only useful for link prediction (Lao et al.,

2011; Gardner et al., 2014), but also for finding
explanations for direct links and help with targeted
information extraction to fill in incomplete knowl-
edge repositories (Yin et al., 2018; Zhou and Nas-
tase, 2018).

These approaches rely on the structure of the
knowledge graph, which is inherently incomplete.
This incompleteness can affect the process in dif-
ferent ways, e.g. it leads to representations for
nodes with few connection that are not very in-
formative, it can miss relevant patterns/paths (or
derive misleading patterns/paths).

In this paper we investigate whether a higher-
level view of a graph – an abstract graph that cap-
tures an intensional view of the original exten-
sional graph – can help derive more robust and
informative patterns. Such patterns are paths (i.e.
sequences of relations) that could be used not only
for link prediction, but also for targeted informa-
tion extraction for completing the graph with ex-
ternal information. This abstract graph will con-
tain only one edge for each relation type, that
will connect a node representing the relation’s do-
main (or source) to its range (or target). Ad-
ditional edges will link the nodes to capture set
relations (intersection, subset, superset) informa-
tion between the different relations’ domains and
ranges. This step drastically reduces the graph
size, making many different graph processing ap-
proaches more tractable. We investigate whether
in this graph that represents a more general ver-
sion of the information in the original KG, good
patterns/paths are stronger and easier to find, be-
cause the aggregated view compensates for indi-
vidual missing edges throughout the graph. We
test the extracted paths through the link predic-
tion task on Freebase (Bollacker et al., 2008) and
NELL (Carlson et al., 2010a), using Gardner et al.
(2014)’s experimental set-up: pairs of nodes are
represented using their connected paths as fea-
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tures, and a model for predicting the direct rela-
tions is learned and tested on training and test sets
for 24 relations in Freebase and 10 relations in
NELL. Our analysis shows that we find different
and much fewer paths than the PRA method does
(mostly because the abstract paths do not contain
back-and-forth sequences of generalizing or type
relations). The paths found in the abstract graphs
lead to better performance on NELL than the PRA
paths, which could be explained by the fact that
NELL’s relation inventory was designed to cap-
ture interdependencies (Carlson et al., 2010a). On
Freebase the results we obtain are lower, but this
could be due to a different negative sampling pro-
cess. Inspection of the paths produced reveal that
they seem to capture legitimate dependencies.

2 Related Work

Representing facts in a knowledge graph has mul-
tiple advantages: (i) they provide knowledge in an
easily accessible and machine-friendly format; (ii)
they facilitate various ways of encoding this infor-
mation and deriving representations for nodes and
edges that reflect their connectivity in the graph;
(iii) they allow for the discovery of connectivity
patterns, and possibly more.

In recent years, projecting the knowledge graph
in an n-dimensional vector space, or learning em-
beddings for predicting missing facts has attracted
a lot of interest. Embedding models aim to map
entities, relations and triples to vector space such
that additional facts can be inferred from known
facts using notions of vector similarity. A class of
embedding models that aim to factorize the graph
are termed as latent factor models. Neural net-
work based models such as ER-MLP (Dong et al.,
2014), NTN (Socher et al., 2013), RNNs (Nee-
lakantan et al., 2015; Das et al., 2016) and Graph
CNNs (Schlichtkrull et al., 2018) are examples of
embedding models while RESCAL (Nickel et al.,
2012), DistMult (Yang et al., 2015), TransE (Bor-
des et al., 2013), ComplEx (Trouillon et al., 2017)
are examples of latent factor models.

Lao and Cohen (2010) introduced a novel way
to exploit information in knowledge graphs: using
weighted extracted paths as features in four dif-
ferent recommendation tasks, which can be mod-
eled as typed proximity queries. The idea of us-
ing paths in the graph has then been applied to the
task of link prediction (Lao et al., 2011), and ex-
tended to incorporate textual information (Gard-

ner et al., 2014). Lao et al. (2011) obtain paths
for given node pairs using random walks over the
knowledge graph. To be used as features shared by
multiple instances, the information about nodes on
the paths is removed, transforming the actual paths
into ”meta-paths”.

The paths themselves can be incorporated in
different ways in a model – as features (Lao et al.,
2011; Gardner et al., 2014), as Horn clauses to
provide rules for inference in KGs whether di-
rectly or through scores that represent the strength
of the path as a direct relation (Neelakantan et al.,
2015; Guu et al., 2015), also taking into ac-
count information about intermediary nodes (Das
et al., 2017; Yin et al., 2018). Gardner and
Mitchell (2015) perform link prediction using ran-
dom walks but do not attempt to connect a source
and target node, but rather to characterize the lo-
cal structure around a (source or target) node us-
ing such localized paths. Using these subgraph
features leads to better results for the knowledge
graph completion task.

We focus here on discovering useful and ex-
planatory paths, not on optimizing or further im-
proving the KGC task. Using paths can lead to in-
terpretable models because the paths can help ex-
plain the predicted fact. Meng et al. (2015) present
a method to automate the induction of meta-
paths in large heterogeneous information networks
(a.k.a. knowledge graphs) for given node pairs,
even if the given node pairs are not connected by
a direct relation.

Path information is also found to improve per-
formance since paths help the model learn logical
rules. However, mining paths from a large knowl-
edge graph is often computationally expensive
since it involves performing a traversal through
the graph. To overcome this limitation (Das et al.,
2017) proposed deep reinforcement learning and
(Chen et al., 2018) proposed RNNS for generat-
ing paths. However, many datasets suffer from
paths sparsity, lack of enough paths connecting
source target pairs, resulting in poor performance
for many relations.

Wang et al. (2013) have a different approach –
they start with patterns in the form of first-order
probabilistic rules, which they then ground in a
small subgraph of a large knowledge graph.

The approach we present here combines dif-
ferent elements of these previous approaches in a
novel way: we build an abstract graph to find pat-
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terns that would be similar to those used by (Wang
et al., 2013). To test the quality of these paths we
ground them using the original KG and use these
grounded paths in a learning framework similar to
(Gardner et al., 2014).

3 Abstract Graphs and Abstract Paths

Knowledge graphs are incomplete in an imbal-
anced way. Figures 1a-1b show how much the
relation and node frequencies for Freebase 15k
and NELL vary, and the fact that numerous
nodes and edges have very low frequency (each
data point corresponds to a node/relation, and
the value is the degree of the node/frequency of
the relation respectively). Freebase and NELL
have a helpful characteristic: they have strongly
typed relations, i.e. the source and target of
a relation have a very specific type. NELL
for example, has relations such as like Ac-
torStarredinMovie, StateHasLake, and Freebase
has /film/film/rating, /book/literary series/author,
whose arguments have type Person, Movie, State,
etc.

Previous work has shown that using node type
information – provided in Freebase through the
domain and range types for each relation – can
help optimize computation for link prediction by
filtering the entity matrix for each relation based
on the relation’s domain and range types (Chang
et al., 2014), improve prediction by adding a fac-
tor in the loss function that accounts for the type of
the entities involved in a relation (Kotnis and Nas-
tase, 2017), or improve predictions based on paths
in the graph by using the types of intermediary en-
tities (Yin et al., 2018).

Entity types and the type of the domain and
range of a relation have been proven to be useful
for improving link prediction models. We inves-
tigate here the hypothesis that by relying on the
fact that such strong constraints on the arguments
of relations in Freebase exist, we can build an in-
tensional graph of the knowledge repository that is
smaller and thus easier to analyze than the full KG.
We also hypothesize that at this abstract level we
can induce better patterns/paths that are indicative
of direct relations, because individual missing re-
lation instances will not obfuscate useful patterns.
We verify whether these patterns are good by test-
ing their usefulness for link prediction. Finding
qualitative patterns would have additional benefits,
as they could be used to explain direct relation, and

fill in the KG through targeted information extrac-
tion (Zhou and Nastase, 2018).

3.1 Abstract graphs

A knowledge graph (KG) is an extensional
representation of a relation schema, where each
instance of a relation type r corresponds to an
edge connecting two nodes, a source s and a target
t, usually represented as a triple: < s, r, t >.
We replace this representation with an intesional
representation, where we have only one edge for
each relation type, and draw additional edges
to capture set relations (intersection, subset,
superset) between the (original graph’s) relations’
domain and ranges. These edges are weighed with
the size of the overlap between the sets. Formally:

for a knowledge graph
KG = (V, E ,R)

with:
vertices V = {v1, ..., vn},
relation typesR = {r1, ..., rk}
relation instances (i.e. edges)
E = {(vi, rx, vj)|vi, vj ∈ V; rx ∈ R},

we build the abstract graph
KGA = (VA, EA,RA)

with:
vertices VA = {V1,s, V1,t, V2,s, V2,t, ..., Vk,s, Vk,t},
where:
the source node of relation ri in the abstract graph
is the set of source nodes (the domain) of relation
ri in KG:
Vi,s = {vx|(vx, ri, ∗) ∈ E}
the target node of relation ri in the abstract graph
is the set of target nodes (the range) of ri in KG:
Vi,t = {vx|(∗, ri, vx) ∈ E}
relation typesRA = R∪Rset where:
R is the set of relation types of KG,
Rset = {intersection, subset, superset}1.
weighted edges
EA = {(Vi,s, ri, Vi,t, 1)|ri ∈ R, Vi,s, Vi,t ∈ VA}
∪ {(Vi,x, r, Vj,y, w)|r ∈ Rset, Vi,x, Vj,y ∈ VA

w = overlap(Vi,x, Vj,y))}

where the weight of a set relation between KGA’s
nodes quantifies the overlap between the two sets:
overlap(Vi,x, Vj,y) =

|Vi,x∩Vj,y |
|Vi,x|

1There is no equal relation because if two sets are equal
there will be only one node to represent them.
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(a) Freebase (b) NELL

Figure 1: Knowledge graphs statistics on a logarithmic scale: relation and nodes frequencies for Freebase and
NELL (the version used by (Gardner et al., 2014) and in this paper). Every data point is the degree of a node (top
plots), or frequency of a relation (bottom plots). The data points are ordered monotonically, the x axis is just an
index.

Building such a graph makes sense only for
knowledge repositories that have strongly typed
relations – like Freebase and NELL – but we do
not require knowledge of the types of the relations’
domains and ranges. Such information is not fine-
grained enough: for example, the relation capital
has a type City as a domain, but capital cities are a
very small subset of the set of all cities. Using an
”atomic” node to represent the domain/range of a
relation would not allow us to make finer grained
connections and distinctions between the domains
and ranges of the existing relations.

Figure 2 shows a subset of the abstract graph
built from the Freebase dataset. The blue edges
are set relations – intersection, superset, subset –
between the domains and ranges of a subset of the
relations in the dataset. The black edges corre-
spond to the actual relations in the dataset.

3.2 Abstract paths

The Path Ranking Algorithm formalism originally
proposed by (Lao and Cohen, 2010) performs two
main steps to represent of a pair of nodes in a
graph: (i) feature selection – adding paths that
connect the node pair; (ii) feature computation –

Figure 2: An abstract graph built on a subset of the
Freebase dataset. The blue edges are set relations be-
tween the domains and ranges of the included relations,
the black edges are the actual relations from the dataset.
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KB variation Freebase NELL
Original graph Abstract graph Original graph Abstract graph

# nodes # edges # nodes # edges # nodes # edges # nodes # edges
KB 20M 67M 4086 22,946 1.2M 3.4M 587 2746
KB + SVO 30M 97M 35,905 1.7M 20M 71M 68,149 512,503
KB + Vector SVO 30M 97M 4112 23,257 1.3M 4.3M 613 3383
KB + Clustered SVO 30M 125M 4138 24,098 1.3M 3.9M 639 3818

Table 1: Graph statistics on the datasets used by (Gardner et al., 2014), and their abstract versions

associating a value for each added path.
Obtaining paths from a large graph is a compu-

tationally intensive problem, particularly in graphs
that have numerous nodes with high degrees. Fig-
ure 1a shows that about 60% of Freebase nodes
have degree higher than 10, which leads to an ex-
ponential growth in the number of paths starting in
a node. Algorithms that harness path information
often mine paths either by performing costly ran-
dom walks (Guu et al., 2015), traversals (Gardner
et al., 2014; Neelakantan et al., 2015; Das et al.,
2016) or by constructing paths through generative
models (Das et al., 2017; Ding et al., 2018). Here,
we adopt a different approach, by abstracting the
graph first, then finding paths in this graph through
traversal algorithms.

For a relation ri, we start at its domain (source)
node Vi,s and search for a path to its range (tar-
get) node Vi,t using breadth first search. We con-
strain this path to contain at most k ”proper” rela-
tions2, and we do not allow consecutive set rela-
tions, thus forcing the algorithm to move from one
”proper” relation to another through a set relation
that connects the range of one with the domain of
the next. An abstract path, just like a meta-path ex-
tracted by previous work, is a sequence of relation
types: πj =< rj,1, rj,2, ...rj,m >, some of which
are ”proper” relations, some are set relations.

Because of the more general view of the graph,
we lose information about individual paths (i.e. in-
stances of a path in the original graph). Because of
this, the paths we extract are hypothetical, but will
have associated a confidence score based on the
frequency of occurrence of relations in the origi-
nal KG, and the strength of the connection of the
range of one relation on the path with the domain
of the next one. The weight of an abstract path πj
is computed as:

w(πj) =
m∏
i=1

w(rj,i)

2In our experiments we used k = 5

where the weight w(rj,i) of an individual relation
is defined based on whether ri,j is a ”proper” rela-
tion or a set relation as:

w(rj,i) =

{ |{<∗,rj,i,∗>∈E}
|E| if rj,i ∈ R

overlap(rj,i) if rj,i ∈ Rset

We use this weight to rank abstract relations for
potential filtering, and to compute the weight of its
grounding for specific node pairs.

3.3 Grounded paths
The abstract paths are hypothetical paths that
could connect the source s and target t of a <
s, r, t > tuple. They can be used in different ways,
e.g. (i) as features in a link prediction system (e.g.
(Gardner et al., 2014)), (ii) to fill in larger por-
tions of the graph by producing, rather than find-
ing, groundings of the path for specific instances.

In the work presented here we test the abstract
paths through the link prediction task, so we will
try to ground abstract paths for relation instances
in the training and test data. After finding the set of
abstract paths {πi,r} associated with a relation r,
for a given instance of the relation r –< s, r, t > –
we can (try to) ground the paths as follows: (i) we
first eliminate set relations from the abstract paths:
at this point set relations between relation types
domain and ranges are not useful (they were nec-
essary only for the connectivity and search process
in the abstract graph). Set relations have no coun-
terpart in the extensional graph, as at this level
nodes themselves make the connection between
successive relations (ii) starting at the source node,
we follow again a breadth first traversal, constrain-
ing at each step the type of relation to follow based
on the ”cleaned up” abstract path.

We compute the weight of a grounded path
gp =< v0, rx1 , v1, ..., vl−1, rxl

, vl > (where v0 =
s and vl = t) as a combination of the weight of the
corresponding abstract path π =< r1, ..., rm >
(rxi ∈ π) and specific information for the current
node pair (s, t):
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w(π) =
∏l

i=1w(vi−1, ri, vi)

where the weights of the relations on the grounded
path reflect the specificity of the relation to its
source node:

w(vi−1, ri, vi) =

{
1

|{<vi−1,ri,∗>∈E} if ri ∈ gp
1 if ri ∈ Rset

4 Experiments

Because we want to compare the abstract paths
found using the abstract graph with paths found
using PRA, we use the experimental set-up of
(Gardner et al., 2014), where we replace the fea-
ture selection and feature computation steps with
the approach presented here. A big difference will
be caused by the negative sampling, which also
makes the results not directly comparable. The is-
sues are explained in the negative sampling para-
graph below. The data thus obtained is used for
training a linear regression model (similarly to
(Gardner et al., 2014)), and tested on the provided
test sets and evaluated using mean average preci-
sion (MAP).

4.1 Data

We build abstract graphs and paths from the Free-
base and NELL data described in (Gardner et al.,
2014). We then use the extracted paths for link
prediction.

The graphs built by Gardner et al. (2014) cover
several variations, where the KGs were enhanced
with < subject, verb, object > triples extracted
from dependency parses of ClueWeb documents.
Table 1 shows the statistics for each original and
abstract graph. The generated abstract graph is
several degrees of magnitude smaller compared
to the original KG. The abstract graph approach
we present here does not fit well the combina-
tion of the knowledge base (Freebase or NELL)
with unstructured SVO triples, because we rely on
strongly typed relations to build node sets. The
SVO triples bring in numerous low frequency re-
lations, that without additional processing are not
beneficial. The results presented by Gardner et al.
(2014) show that this configuration very rarely
(and never overall) leads to better results than the
other graph variations. The numerous relation
types brought in by the SVO triples also lead to
high computation time for the abstract graph: its
shortcoming is the computation of set relations be-
tween the different relations’ domains and ranges,

KG Avg. no. inst min max
NELL train 650.7 81 1468
NELL test 163.2 21 367
Freebase train 122.9 10 600
Freebase test 41.6 4 200

Table 2: Statistics on the size of the training and test
sets

which grows quadratically with the number of re-
lation types. We will skip this graph variation in
the rest of the experiments presented here.

Gardner et al. (2014) use these graphs to gen-
erate paths for augmenting the representation of
node pairs, for link prediction, for a subset of 24
relation types from Freebase’s inventory, and 10
relations from NELL. Each relation has a training
and test set, whose numbers vary quite a bit, as
shown through the statistics in Table 2.

Negative sampling The number of negative
instances used in (Gardner et al., 2014) is not
clearly stated. Both the number and methods of
generating the negative samples can impact the
results (Kotnis and Nastase, 2018). We use (up to)
200 negative samples for each positive pair: for a
pair (s, t) in the provided training or test sets for
each relation r, we make 100 negative samples
by corrupting the source s, and 100 negative
samples by corrupting the target t. The corrupted
s′ and t′ are chosen from r’s domain Vr,s and
range Vr,t respectively, such that these corrupted
triples are not part of the training, test or graph. If
100 instances do not exist, we extract as many as
possible.

Neg(s, r, t) = {(s′, r, t)|s′ ∈ Vr,s, (s′, r, t) 6∈ E}
∪ {(s, r, t′)|t′ ∈ Vr,t, (s, r, t′) 6∈ E}

Because the relations are strongly typed, pro-
ducing negative instances by corrupting the
source/target nodes from the relation’s domain and
range leads to difficult negative instances. In-
stances with source and target nodes that don’t
match the argument types of the direct relation we
want to predict can be filtered out before the link
prediction.

Representing instances For each of these 24
Freebase and 10 NELL relations we mine paths in
the abstract graph using depth first traversal. An
example of abstract path found for the NELL rela-
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Source_401

Source_266 Source_260

Target_260Target_266

Target_401stadium located in city

inters

stadium home team                 
inters

                    team plays in city

inters

Figure 3: An abstract path for relation StadiumLocate-
dInCity from NELL

tion StadiumLocatedInCity is shown in figure 3.
Each of the 24 Freebase and 10 NELL relations

has a set of training and test examples. After build-
ing abstract paths, for each instance < s, r, t >
in these datasets we will ground the correspond-
ing abstract paths as described in Section 3.3. For
each relation type the set of features representing
the corresponding data will be twice the number of
abstract paths. We produce two features for each
abstract path: one that is the weight of this path,
and one that is the weight of its grounding for a
given relation instance. If a relation instance does
not have a grounding for an abstract path, the val-
ues of these features will be 0.

4.2 Results and discussion

The overall results of the experiments are pre-
sented in Table 3, and the relation-level results are
in Tables 4 for NELL, and 5 for Freebase.

graph Freebase NELL
MAPG MAPKGA

MAPG MAPKGA

KB 0.278 0.186 0.193 0.246
KBCl 0.326 0.233 0.276 0.411
KBVec 0.350 0.223 0.301 0.306

Table 3: Results on the three graph variations of Free-
base and NELL as reported by (Gardner et al., 2014)
(G) and using abstract graphs (KGA).

Overall, the results indicate that enhanc-
ing Freebase and NELL with additional facts
from textual sources leads to better results,
particularly when these additional facts (<
subject, verb, object > triples) are processed and
clustered using low dimensional dense representa-
tions (Gardner et al.; Gardner et al. (2014; 2013)
use embeddings obtained by running PCA on the
matrix of SVO triples).

Freebase has 4200+ relation types, and NELL
500+. More than 500 relation types in Freebase
have less than 10 instances, wheres NELL does
not have this issue (see Figures 1a and 1b). Be-
cause we test the approach for knowledge graph
completion using classification based on the pat-
terns as features, having features that appear too

Relation PRA
best

KB KB Cl KB
Vec

ActorStarredInMovie 0.037 0 0 0
AthletePlaysForTeam 0.589 0.145 0.089 0.136
CityLocatedInCountry 0.347 0.078 0.071 0.057
JournalistWritesForPub. 0.319 0.317 0.515 0.436
RiverFlowsThroughCity 0.076 0.027 0.146 0.058
SportsTeamPos.ForSport 0.217 0 0.615 0
StadiumLocatedInCity 0.321 0.316 0.414 0.110
StateHasLake 0.000 0 0.688 0.681
TeamPlaysInLeague 0.947 0.910 0.916 0.917
WriterWroteBook 0.202 0.661 0.659 0.661

Table 4: Relation results for the NELL KB. The second
column is the best result for each relation reported by
(Gardner et al., 2014).

few times will not help the system find a robust
model. For the purpose of the presented experi-
ments we filter the Freebase abstract graph to use
only relation types that have at least 10 instances
(Table 1 shows the statistics for this configura-
tion).

It is not surprising that overall the results for
NELL are higher – NELL has been designed on
the principle of coupled learning, where connec-
tions between different relations are the basis of
the resource and its continuous growth (Carlson
et al., 2010b). It also has more training data for
each relation (see table in Section 4.1). There is
no consistent trend – for some relations using the
paths extracted with this approach leads to better
results, for others it does not (although, as we fre-
quently mentioned, the fact that we used different
negative sampling methods, the results are not di-
rectly comparable).

A more complete picture emerges when we look
at the paths found, and compare them with the
paths obtained with the PRA approach3. For all
Freebase KG configurations, Gardner et al. (2014)
have 1000 paths for most relations (approx. 6
of the relations have between 230 and 973). For
NELL the number varies more, between 58 and
5509, 6 of the relations have more than 1000 meta-
paths. With the abstract graphs the numbers are
much lower. For Freebase we find between 1 and
258 abstract paths, most of the relations (21) hav-
ing fewer than 30 abstract paths for all KG con-
figurations. For NELL we find between 1 and 157
paths, 5 of the relations having more than 100 ab-

3We used the archive shared by Matt Gardner https:
//github.com/matt-gardner/pra, in particular the
translated paths for each relation.

https://github.com/matt-gardner/pra
https://github.com/matt-gardner/pra
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Relation PRA KB KB Cl KB
best Vec

/amusement/parks/park rides 0.013 0.503 0.503 0.503
/arch./arch./ struc. designed 0.376 0 0 0
/astronomy/constel./contains 0.017 0.503 0.503 0.503
/autom./auto. class/examples 0.006 0 0 0
/autom./model/auto. class 0.768 0.009 0.009 0.009
/aviation/airline/hubs 0.336 0.279 0.279 0.330
/book/literary series/author 0.830 0.461 0.461 0.461
/comp./sw genre/sw. in genre 0.001 0.002 0.002 0.002
/edu./field of study/ jour-
nals in this disc.

0.003 0.005 0.005 0.005

/film/film/rating 0.914 0.087 0.096 0.136
/geo./island/body of water 0.602 0.286 0.286 0.286
/geo./lake/basin countries 0.437 0.083 0.075 0.112
/geo./lake/cities 0.177 0.003 0.442 0.442
/geo./river/cities 0.066 0 0.127 0.127
/ice h./h. player/h. position 0.364 0.007 0.007 0.007
/loc./adm. division/ country 0.991 0.189 0.199 0.199
/medicine/disease/symptoms 0.078 0.035 0.088 0.060
/medicine/drug/drug class 0.169 0 0.212 0.002
/people/ethnicity/lang. spoken0.226 0.128 0.135 0.115
/spaceflight/astronaut/miss. 0.848 0.272 0.272 0.272
/transp./bridge/body of water
spanned

0.727 0.190 0.384 0.384

/tv/tv prog. cr./prog. created 0.181 0.646 0.646 0.646
/vis. art/art period movement/
assoc. artists

0.046 0.318 0.340 0.340

/vis. art/vis. artist/assoc. per.
or mov.

0.295 0.474 0.509 0.516

Table 5: Statistics of the number of instances in the
training and testing sets for the relations analyzed, and
the number of paths extracted for each set (in parenthe-
ses the number of abstract paths for each graph).

stract paths. The overlap between the sets of paths
discovered with the two methods is very small:
for Freebase the average overlap with respect to
PRA is around 0.004 (for the different graph con-
figurations), and with respect to the abstract paths
around 0.2; for NELL around 0.003 relative to
PRA and 0.27 relative to the abstract paths.

We note that overall, the system found more
paths than what could be grounded for the
given training instances for both Freebase and
NELL. Another general observation is that rela-
tions for which we found the most patterns (Ath-
letePlaysForTeam and StateHasLake for NELL,
/medicine/disease/symptoms and /film/film/rating
for Freebase) do not necessarily perform the best.

NELL The results for each relation in terms of
average precision are presented in Table 4. We
include the best result on PRA (on any varia-
tion of the graph), as reported by (Gardner et al.,
2014), although since we used different negative

instances the results are not directly comparable.
Several of the NELL target relations have interest-
ing patterns in the abstract graph, in particular Sta-
diumLocatedInCity, TeamPlaysInLeague. In sev-
eral cases, the algorithm has discovered ”parallel”
relations. For the relation WriterWroteBook, the
most useful feature is the relation AgentCreated,
which connects many of the source-target pairs in
the WriterWroteBook relation. We found a simi-
lar situation with the relation JournalistWritesFor-
Publication, which has WorksFor paralleling it in
the graph.

Looking at specific relations, the paths ex-
tracted from the abstract graph are more focused.
An example of this is the relation StadiumLocate-
dInCity. Numerous paths detected by PRA seem
irrelevant, as illustrated by the following (highest
frequency) paths:

generalizations → generalizations−1

generalizations → generalizations−1

→ generalizations → generalizations−1

generalizations → generalizations−1

→ CityHotels
generalizations → generalizations−1

→ StadiumLocatedInCity
generalizations → generalizations−1

→ BuildingLocatedInCity

The paths found in the abstract graph, as the ex-
ample in Figure 3 shows, seem to capture more
informative relation interdependencies.

Our system does not always find high qual-
ity patterns. It also finds surprising and most
probably idiosyncratic patterns. In particular, for
the StateHasLake relation, from the paths found,
some very unexpected ones had groundings for
the given training data:

Agric.Prod.GrowingInStateOrProv.−1

→ Agric.Prod.GrowingInStateOrProv.
→ StateHasLake

MaleMovedToStateOrProv.−1

→MaleMovedToStateOrProv.
→ StateHasLake

While the first rule could be justified (having
lakes may favour the growing of certain types
of agricultural products), the second one seems
completely accidental. With a stronger filtering
method based on the computed path scores we
could eliminate some of these false patterns.
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Paths extracted using PRA

/type/object/type→ /type/object/type−1 → /film/content rating/film−1

/film/performance/film−1 → /type/object/type→ /type/object/type−1

→ /film/performance/film→ /film/film/rating

/type/object/type→ /type/object/type−1 → /film/film/rating

/film/performance/film−1 → /type/object/type→ /type/object/type−1

→ /film/performance/film→ /film/content rating/film−1

/film/film genre/films in this genre−1 → /film/film/genre−1 → /film/film/rating

/film/film/genre→ /film/film/genre−1 → /film/film/rating

/film/film/language→ /film/film/language−1 → /film/film/rating

Paths extracted using abstract graphs

/film/film/edited by → /film/editor/film→ /film/film/rating

/film/film/directed by → /film/producer/film→ /film/film/rating

/film/film/cinematography → /film/cinematographer/film→ /film/film/rating

/film/film/costume design by → /film/film/costumer designer costume design for film
→ /film/film/rating

/film/film/music→ /film/music/contributor film→ /film/film/rating

/film/film/film production design by → /film/film prod. designer/films prod. designed
→ /film/film/rating

Table 6: Sample relations extracted using PRA and abstract graphs, respectively

Freebase The fine-grained results for Freebase,
in terms of average precision, are presented in Ta-
ble 5. We make the same observation as for NELL
– for several relations, the paths obtained from the
abstract graph are different and more focused than
the PRA ones. For the relation /film/film/rating for
which the PRA approach gives very high results
with the abstract graph has lower scores, some of
the highest scoring paths found by the PRA are
presented in Table 6. For comparison we also in-
clude the highest rated paths obtained using the
abstract graph. While some of these paths were
also found by the PRA, they are much lower in
the list of extracted paths. The highest weighted
paths found in the abstract graph connect specific
properties of films with their rating.

An archive containing the abstract graphs, the
abstract paths, the train/test data, negative samples
and the groundings of the abstract paths for these
relations for the variations of Freebase and NELL
presented here is available from the University of
Heidelberg4.

4https://www.cl.uni-heidelberg.de/
english/research/downloads/resource_
pages/AbstractGraphs/AbstractGraphs.
shtml

5 Conclusions

We proposed and evaluated a method for obtaining
paths from large knowledge graphs by compress-
ing them into their intensional versions. We relied
on the fact that these graphs have strongly typed
relations, such that their domain and ranges con-
sist of homogeneous sets that have overlaps only
with the domains and ranges of a small number
of other relations. This compression step leads
to a smaller graph to work with, where we found
paths that seem to capture qualitative patterns in
the data. The results on link prediction on Free-
base and NELL show the advantage of using such
paths for some of the relations, but the task does
not showcase the full potential of this represen-
tation. Further work will explore the potential
of such patterns as explanatory links between di-
rectly connected nodes, or as a source of additional
patterns for filling in the knowledge graphs not
only with missing links, but also missing nodes,
either by predicting intermediate nodes or by us-
ing the paths as patterns for targeted information
extraction.

https://www.cl.uni-heidelberg.de/english/research/downloads/resource_pages/AbstractGraphs/AbstractGraphs.shtml
https://www.cl.uni-heidelberg.de/english/research/downloads/resource_pages/AbstractGraphs/AbstractGraphs.shtml
https://www.cl.uni-heidelberg.de/english/research/downloads/resource_pages/AbstractGraphs/AbstractGraphs.shtml
https://www.cl.uni-heidelberg.de/english/research/downloads/resource_pages/AbstractGraphs/AbstractGraphs.shtml
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