
Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM), pages 125–135
Minneapolis, June 6–7, 2019. c©2019 Association for Computational Linguistics

125

Learning Graph Embeddings from WordNet-based Similarity Measures

Andrey Kutuzov1, Mohammad Dorgham2, Oleksiy Oliynyk2,
Chris Biemann2, and Alexander Panchenko2,3

1Language Technology Group, University of Oslo, Oslo, Norway
2Language Technology Group, University of Hamburg, Hamburg, Germany

3Skolkovo Institute of Science and Technology, Moscow, Russia
andreku@ifi.uio.no

{5dorgham,6oliinyk,biemann,panchenko}@informatik.uni-hamburg.de

Abstract

We present path2vec, a new approach for
learning graph embeddings that relies on struc-
tural measures of pairwise node similarities.
The model learns representations for nodes in
a dense space that approximate a given user-
defined graph distance measure, such as e.g.
the shortest path distance or distance measures
that take information beyond the graph struc-
ture into account. Evaluation of the proposed
model on semantic similarity and word sense
disambiguation tasks, using various WordNet-
based similarity measures, show that our ap-
proach yields competitive results, outperform-
ing strong graph embedding baselines. The
model is computationally efficient, being or-
ders of magnitude faster than the direct com-
putation of graph-based distances.

1 Introduction

Developing applications making use of large
graphs, such as networks of roads, social media
users, or word senses, often involves the design of
a domain-specific graph node similarity measure
sim : V × V → R defined on a set of nodes V of
a graph G = (V,E). For instance, it can represent
the shortest distance from home to work, a com-
munity of interest in a social network for a user,
or a semantically related sense to a given synset in
WordNet (Miller, 1995). There exist a wide vari-
ety of such measures greatly ranging in their com-
plexity and design from simple deterministic ones,
e.g. based on shortest paths in a network (Lea-
cock and Chodorow, 1998) to more complex ones,
e.g. based on random walks (Fouss et al., 2007;
Pilehvar and Navigli, 2015; Lebichot et al., 2018).
Naturally, the majority of such measures rely on
walks along edges E of the graph, often resulting
in effective, but prohibitively inefficient measures
requiring complex and computationally expensive
graph traversals. Also, there are measures that in

addition take e.g. corpus information into account
beyond what is directly given in the graph, see e.g.
(Budanitsky and Hirst, 2006). We propose a solu-
tion to this problem by decoupling development
and use of graph-based measures. Namely, once a
node similarity measure is defined, we learn vec-
tor representations of nodes that enable efficient
computation of this measure. We represent nodes
in a graph with dense embeddings that are good
in approximating such custom, e.g. application-
specific, pairwise node similarity measures. Sim-
ilarity computations in a vector space are several
orders of magnitude faster than computations di-
rectly using the graph. Additionally, graph em-
beddings can be of importance in privacy-sensitive
network datasets, since in this setup, explicitly
storing edges is not required anymore. The main
advantage over other graph embeddings is that our
model can learn a custom user-defined application
or domain specific similarity measure.

We show the effectiveness of the proposed ap-
proach intrinsically on a word similarity task,
by learning synset vectors of the WordNet graph
based on several similarity measures. Our model
is not only able to closely approximate vari-
ous measures, but also to improve the results of
the original measures in terms of (1) correlation
with human judgments and (2) computational ef-
ficiency, with gains up to 4 orders of magni-
tude. Our method outperforms other state-of-the-
art graph embeddings models.

Besides, we evaluate it extrinsically in a WSD
task (Navigli, 2009) by replacing the original
structural measures with their vectorized counter-
parts in a graph-based WSD algorithm by Sinha
and Mihalcea (2007), reaching comparable perfor-
mance. Because of being inspired by the word2vec
architecture, we dub our model ‘path2vec’1 mean-

1https://github.com/uhh-lt/path2vec

mailto:andreku@ifi.uio.no
mailto:panchenko@informatik.uni-hamburg.de
https://github.com/uhh-lt/path2vec

126

ing it encodes paths (or other similarities) between
graph nodes into dense vectors.

Our first contribution is an effective and effi-
cient approach to learn graph embeddings based
on a user-defined custom similarity measure sim
on a set of nodes V , e.g. the shortest path dis-
tance. The second contribution is an applica-
tion of state-of-the-art graph embeddings to word
sense disambiguation task.

2 Related Work

Various methods have been employed in NLP to
derive lexical similarity directly from geometri-
cal properties of the WordNet graph, from ran-
dom walks in (Rao et al., 2008) to kernels in
(Ó Séaghdha, 2009). More recently, representa-
tion learning on graphs (Bordes et al., 2011) re-
ceived much attention in various research commu-
nities; see (Hamilton et al., 2017a) for a thorough
survey on the existing methods. All of them (in-
cluding ours) are based on the idea of projecting
graph nodes into a latent vector space with a much
lower dimensionality than the number of nodes.

The method described in this paper falls into the
category of ‘shallow embeddings’, meaning that
we do not attempt to embed entire communities
or neighborhoods: our aim is to approximate dis-
tances or similarities between (single) nodes. Ex-
isting approaches to solving this task mostly use
either factorization of the graph adjacency ma-
trix (Cao et al., 2015; Ou et al., 2016) or ran-
dom walks over the graph as in Deepwalk (Perozzi
et al., 2014) and node2vec (Grover and Leskovec,
2016). A completely different approach is taken
by Subercaze et al. (2015), who directly embed
the WordNet tree graph into Hamming hypercube
binary representations. Their model is dubbed
‘Fast similarity embedding’ (FSE) and also op-
timizes one of our objectives, i.e. to provide a
much quicker way of calculating semantic simi-
larities based on WordNet knowledge. However,
the FSE embeddings are not differentiable, lim-
iting their use in many deep neural architectures,
especially if fine-tuning is needed.

TransE (Bordes et al., 2013) interprets enti-
ties as vectors in the low-dimensional embeddings
space and relations as a translation operation be-
tween two entity vectors. For a triplet (head, re-
lation, tail) which holds, the embedding of the tail
is close to the embedding of the head plus embed-
ding of the relation. TransH (Wang et al., 2014)

models each relation as a specific hyperplane and
projects entity vectors onto the hyperplane. If con-
nection holds then projected vectors of head and
tail are connected by a translation vector with low
error. As a result, entities have different represen-
tations for hyperplanes of different relations where
they are involved. TransR (Lin et al., 2015) ex-
tends TransE (Bordes et al., 2013) and TransH
(Wang et al., 2014), and is based on the idea that
an entity may have a few aspects and different rela-
tions are focused on them. So the same entities can
be close or far from each other depending on the
type of the relation. TransR projects entity vectors
into a relation specific space, and learns embed-
dings via translation between projected entities.

We quantitatively compare path2vec to these
methods in Section 5. We did not compare our ap-
proach to the GraphSAGE embeddings (Hamilton
et al., 2017b) and Graph Convolutional Networks
(Schlichtkrull et al., 2018), since they make use of
input node features, which are absent in our setup.

Also note that unlike retro-fitting and similar
techniques (Rothe and Schütze, 2015; Pilehvar
and Collier, 2016; Mrkšić et al., 2017), our ap-
proach does not use any training corpus or pre-
trained input embeddings. The synset representa-
tions are trained on the WordNet graph alone.

3 Learning Graph Metric Embeddings

Definition of the Model The path2vec model
learns low-dimensional vectors for the graph
nodes {vi, vj} ∈ V (synsets in the case of Word-
Net) such that the dot products between pairs of
the respective vectors (vi·vj) are close to the user-
defined similarities between the nodes sij . This
first component of the objective encodes poten-
tially long distances in the graph (the global struc-
ture). In addition, the model reinforces direct con-
nections between nodes: We add to the objec-
tive similarities vi · vn and vj · vm between the
nodes vi and vj and their respective adjacent nodes
{vn : ∃(vi, vn) ∈ E} and {vm : ∃(vj , vm) ∈ E}
to preserve local structure of the graph. Therefore,
the model preserves both global and local relations
between nodes by minimizing the following loss
function L:

1

|B|
∑

(vi,vj)∈B

(
(vT

i vj − sij)2 − α(vT
i vn + vT

j vm)
)
,

where sij = sim(vi, vj) is the value of a ‘gold’
similarity measure between a pair of nodes vi and

127

vj , vi and vj are the embeddings of the first and
the second node, B is a training batch, α is a regu-
larization coefficient. The second term (vi · vn +
vj · vm) in the objective function is a regularizer
which aids the model to simultaneously maximize
the similarity between adjacent nodes (which is
maximum by definition) while learning the simi-
larity between the two target nodes.

We use negative sampling to form a training
batch B adding n negative samples (sij = 0) for
each real (sij > 0) training instance: each real
node (synset) pair (vi, vj) with ‘gold’ similarity
sij is accompanied with n ‘negative’ node pairs
(vi, vk) and (vj , vl) with zero similarities, where
vk and vl are randomly sampled nodes from V .
Embeddings are initialized randomly and trained
with the Adam optimizer (Kingma and Ba, 2014)
with early stopping.2

Once the model is trained, the computation of
node similarities is approximated with the dot
product of the learned node vectors, making the
computations efficient: ŝij = vi · vj .

Relation to Similar Models Our model is simi-
lar to the Skip-gram model (Mikolov et al., 2013),
where pairs of words (vi, vj) from a training cor-
pus are optimized to have their corresponding vec-
tors dot product vi · ṽj close to 1, while randomly
generated pairs (‘negative samples’) are optimized
to have their dot product close to 0. In the Skip-
gram model, the target is to minimize the log like-
lihood of the conditional probabilities of context
words vj given current words vi, which is in the
case on the negative sampling amounts to mini-
mization of: L = −

∑
(vi,vj)∈Bp

log σ(vi · ṽj) −∑
(vi,vj)∈Bn

log σ(−vi · ṽj)
)

, where Bp is the
batch of positive training samples, Bn is the batch
of the generated negative samples, and σ is the sig-
moid function. The model uses local information.
However, in path2vec, the target values sij for the
dot product are not binary, but can take arbitrary
values in the [0...1] range, depending on the path-
based measure on the input graph, e.g. the normal-
ized shortest path length in the WordNet between
motor.n.01 and rocket.n.02 is 0.389.

Further, in our model there is no difference be-
tween ‘word’ and ‘context’ spaces: we use a single

2In our experiments, we identified the optimal values of
n = 3 negative samples, batch size of |B| = 100, training for
15 epochs, α = 0.01. We report on the influence of the em-
bedding dimensionality parameter d in Section 5. We found
it also beneficial to use additionally L1 weight regularization.

embedding matrix, with the number of rows equal
to the number of nodes and column width set to the
desired embedding dimensionality. Finally, unlike
the Skip-gram, we do not use any non-linearities.

Another closely related model is Global Vec-
tors (GloVe) (Pennington et al., 2014), which
approximates the co-occurrence probabilities in
a given corpus. The objective function to
be minimized in GloVe model is L =∑

(vi,vj)∈B f(sij)(vi · ṽj − log sij + bi + bj)
2,

where sij counts the number of co-occurrence of
words vi and vj , bi and bj are additional biases
for each word, and f(sij) is a weighting function
to give appropriate weight for rare co-occurrences.
Like the Skip-gram, GloVe also uses two embed-
ding matrices, but it relies on global information.

4 Computing Pairwise Similarities

4.1 Selection of the Similarity Measures

Our aim is to produce node embeddings that cap-
ture given similarities between nodes in a graph.
In our case, the graph is WordNet, and the nodes
are its 82,115 noun synsets. We focused on nouns
since in WordNet and SimLex999 they are repre-
sented better than other parts of speech. Embed-
dings for synsets of different part of speech can be
generated analogously.

The training datasets consist of pairs of noun
synsets and their ‘ground truth’ similarity val-
ues. There exist several methods to calculate
synset similarities on the WordNet (Budanitsky
and Hirst, 2006). We compile four datasets,
with different similarity functions: Leacock-
Chodorow similarities (LCH); Jiang-Conrath sim-
ilarities calculated over the SemCor corpus (JCN-
S); Wu-Palmer similarities (WuP); and Shortest
path similarities (ShP). LCH similarity (Leacock
and Chodorow, 1998) is based on the shortest
path between two synsets in the WordNet hyper-
nym/hyponym taxonomy and its maximum depth,
while JCN similarity (Jiang and Conrath, 1997)
uses the lowest common parent of two synsets in
the same taxonomy. JCN is significantly faster but
additionally requires a corpus as a source of proba-
bilistic data about the distributions of synsets (‘in-
formation content’). We employed the SemCor
subset of the Brown corpus, manually annotated
with word senses (Kucera and Francis, 1982).

WuP similarities (Wu and Palmer, 1994) are
based on the depth of the two nodes in the tax-
onomy and the depth of their most specific ances-

128

tor node. ShP is a simple length of the shortest
path between two nodes in the graph. We used the
NLTK (Bird et al., 2009) implementations of all
the aforementioned similarity functions.

Pairwise similarities for all synset pairs can be
pre-computed. For the 82,115 noun synsets in the
WordNet, this results in about 3 billion unique
synset pairs. Producing these similarities using
10 threads takes about 30 hours on an Intel Xeon
E5-2603v4@1.70GHz CPU for LCH, and about
5 hours for JCN-S. The resulting similarities lists
are quite large (45 GB compressed each) and thus
difficult to use in applications. But they can be
used in path2vec to learn dense embeddings Rd

for these 82,115 synsets, such that d � 82, 115
and the dot products between the embeddings ap-
proximate the ‘raw’ WordNet similarity functions.

4.2 Pruning the Dissimilar Pairs of Nodes

In principle, one can use all unique synset pairs
with their WordNet similarities as the training
data. However, this seems impractical. As ex-
pected due to the small-world nature of the Word-
Net graph (Steyvers and Tenenbaum, 2005), most
synsets are not similar at all: with JCN-S, the over-
whelming majority of pairs feature similarity very
close to zero; with LCH, most pairs have similarity
below 1.0. Thus, we filtered low-similarity pairs
out, using similarity threshold of 0.1 for the JCN-
S and ShP datasets, 0.3 for the WuP dataset and
1.5 for the LCH dataset (due to substantial differ-
ences in similarities distributions, as shown in Fig-
ure 1). This dramatically reduced the size of the
training data (e.g., to less than 1.5 million pairs
for the JCN-S dataset and to 125 million pairs for
the LCH dataset), thus making the training much
faster and at the same time improving the quality
of the resulting embeddings (see the description of
our evaluation setup below).

With this being the case, we additionally pruned
these reduced datasets by keeping only the first
50 most similar ‘neighbors’ of each synset: the
rationale behind this is that some nodes in the
WordNet graph are very central and thus have
many neighbors with high similarity, but for our
procedure only the nearest/most similar ones suf-
fice. This again reduced training time and im-
proved the results, so we hypothesize that such
pruning makes the models more generally applica-
ble and more focused on the meaningful relations
between synsets. The final sizes of the pruned

Figure 1: Distribution of similarities between WordNet
noun synsets with different distance measures.

Figure 2: Distributions of pairwise similarities in
path2vec models trained on different measures.

training datasets are 694,762 pairs for the JCN-S,
4,008,446 pairs for the LCH, 4,063,293 pairs for
the ShP and 4,100,599 pairs for the WuP3.

Note also that the LCH similarity can take val-
ues well above 1.0. After the pruning, we scaled
similarities in all datasets to the [0...1] range by
unity-based normalization. Also, in some rare
cases, NLTK produces JCN similarities of in-
finitely large values (probably due to the absence
of particular synsets in SemCor). We clipped these
similarities to the value of 1. All the datasets were
shuffled prior to training.

3All the datasets and the trained graph embeddings can
be downloaded from https://github.com/uhh-lt/
path2vec

https://github.com/uhh-lt/path2vec
https://github.com/uhh-lt/path2vec

129

5 Experiment 1: Intrinsic Evaluation
based on Semantic Similarity

Experimental Setting It is possible to evalu-
ate the models by calculating the rank correlation
of their cosine similarities with the corresponding
similarities for all the unique pairs from the train-
ing dataset, or at least a large part of them. Suber-
caze et al. (2015) evaluated their approach on LCH
similarities for all unique noun synset pairs from
WordNet Core (about 5 million similarities total);
their model achieves Spearman rank correlation of
0.732 on this task. However, this kind of evalua-
tion does not measure the ability of the model to
produce meaningful predictions, at least for lan-
guage data: the overwhelming part of these unique
pairs are synsets not related to each other at all.
For most tasks, it is useless to ‘know’ that, e.g.,
‘ambulance’ and ‘general’ are less similar than
‘ambulance’ and ‘president’. While the distances
between these node pairs are indeed different on
the WordNet graph, we find it much more impor-
tant for the model to be able to robustly tell really
similar pairs from the unrelated ones so that they
could benefit applications.

As a more balanced and relevant test set, we
use noun pairs (666 total) from the SimLex999
semantic similarity dataset (Hill et al., 2015).
SimLex999 contains lemmas; as some lemmas
may map to several WordNet synsets, for each
word pair we choose the synset pair maximizing
the WordNet similarity, following (Resnik, 1999).
Then, we measure the Spearman rank correlation
between these ‘gold’ scores and the similarities
produced by the graph embedding models trained
on the WordNet. Further on, we call this evalua-
tion score the ‘correlation with WordNet similar-
ities’. This evaluation method directly measures
how well the model fits the training objective4.

We also would like to check whether our mod-
els generalize to extrinsic tasks. Thus, we addi-
tionally used human-annotated semantic similar-
ities from the same SimLex999. This additional
evaluation strategy directly tests the models’ cor-
respondence to human judgments independently
of WordNet. These correlations were tested in two
synset selection setups, important to distinguish:

1. WordNet-based synset selection (static
4Note, however, that it does not mean testing on the train-

ing data: for example, 75% of synset pairs from the Sim-
Lex999 are not present in our pruned JCN-S training dataset;
for the LCH dataset it is 82%. Evaluating these absent pairs
only does not substantially change the results.

synsets): this setup uses the same lemma-to-synset
mappings, based on maximizing WordNet similar-
ity for each SimLex999 word pair with the cor-
responding similarity function. It means that all
the models are tested on exactly the same set of
synset pairs (but the similarities themselves are
taken from SimLex999, not from the WordNet).

2. Model-based synset selection (dynamic
synsets): in this setup, lemmas are converted
to synsets dynamically as a part of the evalua-
tion workflow. We choose the synsets that max-
imize word pair similarity using the vectors from
the model itself, not similarity functions on the
WordNet. Then the resulting ranking is evaluated
against the original SimLex999 ranking.

The second (dynamic) setup in principle allows
the models to find better lemma-to-synset map-
pings than those provided by the WordNet simi-
larity functions. This setup essentially evaluates
two abilities of the model: 1) to find the best pair
of synsets for a given pair of lemmas (sort of a dis-
ambiguation task), and 2) to produce the similar-
ity score for the chosen synsets. We are not aware
of any ‘gold’ lemma-to-synset mapping for Sim-
Lex999, thus we directly evaluate only the sec-
ond part, but implicitly the first one still influ-
ences the resulting scores. Models often choose
different synsets. For example, for the word pair
‘atom, carbon’, the synset pair maximizing the
JCN-S similarity calculated on the ‘raw’ WordNet
would be ‘atom.n.02 (‘a tiny piece of anything’),
carbon.n.01 (‘an abundant nonmetallic tetravalent
element’)’ with the similarity 0.11. However, in
a path2vec model trained on the same gold sim-
ilarities, the synset pair with the highest similar-
ity 0.14 has a different first element: ‘atom.n.01
(‘the smallest component of an element having
the chemical properties of the element’)’, which
seems to be at least as good a decision as the one
from the raw WordNet.

Baselines path2vec is compared against five
baselines (more on them in Section 2): raw Word-
Net similarities by respective measures; Deep-
walk (Perozzi et al., 2014); node2vec (Grover and
Leskovec, 2016); FSE (Subercaze et al., 2015);
and TransR (Lin et al., 2015).

DeepWalk, node2vec, and TransR models were
trained on the same WordNet graph. We used
all 82,115 noun synsets as vertices and hyper-
nym/hyponym relations between them as edges.
Since the node2vec C++ implementation accepts

130

Selection of synsets
Model JCN-S LCH ShP WuP

WordNet 1.0 1.0 1.0 1.0

TransR 0.568 0.776 0.776 0.725
node2vec 0.726 0.759 0.759 0.787
Deepwalk 0.775 0.868 0.868 0.850
FSE 0.830 0.900 0.900 0.890

path2vec 0.931 0.935 0.952 0.931

Table 1: Spearman correlation scores with WordNet
similarities on the 666 noun pairs in SimLex999.

an edge list as input, we had to add a self-
connection for all nodes (synsets) that lack edges
in WordNet. During the training of DeepWalk and
node2vec models, we tested different values for
the number of random walks (in the range from
10 to 100), and the vector size (100 to 600). For
DeepWalk, we additionally experimented with the
window size (5 to 100). All other hyperparameters
were left at their default values. FSE embeddings
of the WordNet noun synsets were provided to us
by the authors, and consist of 128-bit vectors.

Discussion of Results Table 1 presents the com-
parison of path2vec and the baselines with regards
to how well they approximate the WordNet simi-
larity functions output (the raw WordNet similari-
ties always get the perfect correlation in this eval-
uation setup). All the reported rank correlation
value differences in this and other tables are statis-
tically significant based on the standard two-sided
p-value. We report the results for the best models
for each method, all of them (except FSE) using
vector size 300 for comparability.

Path2vec outperform other baseline embed-
dings, achieving high correlation with the raw
WordNet similarities. This shows that our simple
model can approximate different graph measures.
Figure 2 shows the similarities’ distributions in the
resulting models, reflecting the original measures’
distributions in Figure 1.

As expected, vector dimensionality greatly in-
fluences the performance of all graph embedding
models. As an example, Figure 3 plots the perfor-
mance of the path2vec models trained on JCN-S
and WuP datasets, when using ‘dynamic synset se-
lection’ evaluation setup (that is, each model can
decide for itself how to map SimLex999 lemmas
to WordNet synsets). The red horizontal line is
the correlation of WordNet similarities with Sim-
Lex999 human scores. For the path2vec models,

Selection of synsets
Model JCN-S LCH ShP WuP

WordNet 0.487 0.513 0.513 0.474

TransR 0.394 0.395 0.395 0.379
node2vec 0.426 0.434 0.434 0.400
Deepwalk 0.468 0.468 0.468 0.450
FSE 0.490 0.502 0.502 0.483

path2vec 0.501 0.470 0.512 0.491

Table 2: Spearman correlations with human Sim-
Lex999 noun similarities (WordNet synset selection).

there is a tendency to improve the performance
when the vector size is increased, until a plateau is
reached beyond 600 dimensions. Note that Deep-
walk5 does not benefit much from increased vector
size, while node2vec6 yields strangely low scores
for 200 dimensions. Interestingly, path2vec and
Deepwalk models consistently outperform the raw
WordNet (this is also true for FSE). This means
these embeddings are in some sense ‘regularized’,
leading to better ‘disambiguation’ of senses be-
hind SimLex999 word pairs and eventually to bet-
ter similarities ranking.

In Tables 2 and 3, we select the best 300D
path2vec models from the experiments described
above and compare them against the best 300D
baseline models and 128D FSE embeddings in
static and dynamic evaluation setups. When
WordNet-defined lemma-to-synset mappings are
used (Table 2), the raw WordNet similarities
are non-surprisingly the best, although FSE and
path2vec embeddings achieve nearly the same per-
formance (even slightly better for the JCN-S and
WuP mappings). Following them are the Deep-
walk models, which in turn outperform node2vec
and TransR. In the dynamic synset selection setup
(see Table 3), all the models except node2vec and
TransR are superior to raw WordNet, and the best
models are FSE and path2vec ShP/WuP, signifi-
cantly outperforming the others. Path2vec models
trained on JCN-S and LCH are on par with Deep-
walk and much better than node2vec and TransR.
We believe it to interesting, considering that it
does not use random walks on graphs and is con-
ceptually simpler than FSE.

Note that word embedding models trained on
text perform worse than the WordNet-based em-

5The reported best Deepwalk models were trained with
the number of walks 10 and window size 70.

6The reported best node2vec models were trained with the
number of walks 25.

131

Figure 3: Evaluation on SimLex999 noun pairs, model-based synset selection: JCN-S (left) and WuP (right).

Model Correlation

TransR (Lin et al., 2015) 0.386
node2vec (Grover and Leskovec, 2016) 0.462
Deepwalk (Perozzi et al., 2014) 0.533
FSE (Subercaze et al., 2015) 0.556

Raw WordNet JCN-S 0.487
Raw WordNet LCH 0.513
Raw WordNet ShP 0.513
Raw WordNet WuP 0.474

path2vec JCN-S 0.533
path2vec LCH 0.532
path2vec ShP 0.555
path2vec WuP 0.555

Table 3: Spearman correlations with human Sim-
Lex999 noun similarities (model synset selection).

beddings (including path2vec) on the semantic
similarity task. For example, the word2vec model
of vector size 300 trained on the Google News cor-
pus (Mikolov et al., 2013) achieves Spearman cor-
relation of only 0.449 with SimLex999, when test-
ing only on nouns. The GloVe embeddings (Pen-
nington et al., 2014) of the same vector size trained
on the Common Crawl corpus achieve 0.404.

6 Experiment 2: Extrinsic Evaluation
based on Word Sense Disambiguation

Experimental Setting As an additional extrin-
sic evaluation, we turned to word sense disam-
biguation task, reproducing the WSD approach
from (Sinha and Mihalcea, 2007). The original al-
gorithm uses WordNet similarities; we tested how
using dot products and the learned embeddings in-
stead will influence the WSD performance.

The employed WSD algorithm starts with build-
ing a graph where the nodes are the WordNet

synsets of the words in the input sentence. The
nodes are then connected by edges weighted with
the similarity values between the synset pairs
(only if the similarity exceeds a threshold, which is
a hyperparameter; we set it to 0.95). The final step
is selecting the most likely sense for each word
based on the weighted in-degree centrality score
for each synset (in case of ties, the first synset is
chosen). Figure 4 shows a graph generated for the
sentence ‘More often than not, ringers think of the
church as something stuck on the bottom of the
belfry’. Note that we disambiguate nouns only.

Discussion of Results Table 4 presents the WSD
micro-F1 scores using raw WordNet similarities,
300D path2vec, Deepwalk and node2vec mod-
els, and the 128D FSE model. We evaluate on
the following all-words English WSD test sets:
Senseval-2 (Palmer et al., 2001), Senseval-3 (Mi-
halcea et al., 2004), and SemEval-15 Task 13 (Ra-
ganato et al., 2017). Raw WordNet similarities are
still the best, but the path2vec models are consis-
tently the second after them (and orders of mag-
nitude faster), outperforming other graph embed-
ding baselines. The largest drop between the origi-
nal and vector-based measures is for JCN-S, which
is also the only one which relies not only on graph
but also on external information from a corpus,
making it more difficult to approximate (see also
Figure 2, where this measure distribution seems
to be the most difficult to reproduce). Note that
both the original graph-based measures and graph
embeddings do not outperform the most frequent
sense (MFS) baseline, which is in line with the
original algorithm (Sinha and Mihalcea, 2007).

Here our aim was not to improve WSD systems

132

Figure 4: A sentence graph for WSD, where a column lists all the possible synsets of a corresponding word.

Model Senseval2 Senseval3 SemEval-15

Random sense 0.381 0.312 0.393

Baselines (various graph embeddings)

TransR 0.540 0.466 0.536
node2vec 0.503 0.467 0.489
Deepwalk 0.528 0.476 0.552
FSE 0.536 0.476 0.523

WordNet (graph-based measures)

JCN-S 0.620 0.558 0.597
LCH 0.547 0.494 0.550
ShP 0.548 0.495 0.550
WuP 0.547 0.487 0.542

path2vec (vector-based measures)

JCN-S 0.511 0.463 0.508
LCH 0.527 0.472 0.536
ShP 0.534 0.489 0.563
WuP 0.543 0.489 0.545

Table 4: F1 scores on all-words WSD tasks.

but to compare path2vec against other graph em-
bedding methods in an extrinsic, task-based eval-
uation. This is also the reason why we do not
compare against many other existing WordNet-
based WSD systems: we are interested only in the
approaches which learn dense representations of
graph nodes, as path2vec does.

7 Computational Efficiency Evaluation

Pairwise Similarity Computation One of the
reasons to use path2vec embeddings is computa-
tional efficiency. Directly employing the Word-
Net graph to find semantic similarities between
synsets is expensive. The dot product computa-
tion is much faster as compared to shortest path
computation (and other complex walks) on a large

graph. Also, dense low-dimensional vector repre-
sentations of nodes take much less space than the
pairwise similarities between all the nodes.

The time complexity of calculating the short-
est path between graph nodes (as in ShP or LCH)
is in the best case linear in the number of nodes
and edges (Leacock and Chodorow, 1998). JCN-S
compares favorably since it is linear in the height
of the taxonomy tree (Jiang and Conrath, 1997);
however, it still cannot leverage highly-optimized
routines and hardware capabilities, which makes
the use of vectorized representations so efficient.
Calculating Hamming distance between binary
strings (as in the FSE algorithm) is linear in the
sum of string lengths, which are equivalent of vec-
tor sizes (Hamming, 1950). At the same time,
the complexity of calculating dot product between
float vectors (as in path2vec) is linear in the vec-
tor size by the definition of the dot product and is
easily and routinely parallelized.

As an example, let us consider the popular prob-
lem of ranking the graph nodes by their similar-
ity to one particular node of interest (finding the
‘nearest neighbors’). Table 5 shows the time for
computing similarities of one node to all other
WordNet noun nodes, using either standard graph
similarity functions from NLTK, Hamming dis-
tance between 128D binary embeddings, or dot
product between a 300D float vector (representing
this node) and all rows of a 82115 × 300 matrix.
Using float vectors is 4 orders of magnitude faster
than LCH, 3 orders faster than JCN, and 2 orders
faster than Hamming distance.

Construction of the Training Set Despite its
computational efficiency at test time, construct-

133

Model Running time

LCH in NLTK 30 sec.
JCN-S in NLTK 6.7 sec.
FSE embeddings 0.713 sec.
path2vec and other float vectors 0.007 sec.

Table 5: Computation of 82,115 similarities between
one noun synset and all other noun synsets in WordNet.

ing a training dataset for path2vec (following the
workflow described in Section 4) requires calcu-
lating pairwise similarities between all possible
pairs of graph nodes. This leads to a number of
similarity calculations quadratic in the number of
nodes, which can be prohibitive in case of very
large graphs. However, instead of this, the train-
ing datasets for path2vec can be constructed much
faster by taking the graph structure into account.
In essence, this implies finding for each node v the
set of other nodes directly connected to it or to its
direct graph neighbors (set of second order graph
neighbors, V2). Then, graph similarity is calcu-
lated only for the pairs consisting of each v and
the nodes in their respective V2; these pairs consti-
tute the training dataset (the same thresholds and
normalization procedures apply).

The amount of pairwise similarity calculations
is then linear in the number of nodes times the av-
erage number of neighbors in V2, which is much
better. Particularly, in the case of WordNet, each
node (synset) has 36 synsets in its V2 on average,
and half of the nodes do not have any neighbors at
all. Thus, only 2,935,829 pairwise similarity cal-
culations are needed, 1,000 times less than when
calculating similarities between all synset pairs.

Following that, e.g., the training dataset for
JCN-S can be constructed in 3 minutes, instead
of 5 hours, with similar speedups for other graph
distance measures. The training datasets con-
structed in this ‘fast’ way showed negligible per-
formance decrease compared to the ‘full’ datasets
(0.07...0.03 drop in the semantic similarity experi-
ments, and< 0.03 drop in the WSD experiments).
It means that when using path2vec in practical
tasks, one can construct the training dataset very
quickly, preserving embeddings performance.

8 Discussion and Conclusion

We presented path2vec, a simple, effective, and ef-
ficient model for embedding graph similarity mea-
sures. It can be used to learn vector representa-
tions of graph nodes, approximating shortest path

distances or other node similarity measures of in-
terest. Additionally, if the similarity function is
based on the shortest path, this paves the way to a
quick and efficient calculation of the shortest dis-
tance between two nodes in large graphs.

Our model allow for much more efficient graph
distances calculations (3 or 4 orders of magnitude
faster depending on a similarity measure). In ap-
plications one could replace path-based measures
with dot product between path2vec embeddings,
gaining significant speedup in distance computa-
tion between nodes. Thus, our model could be
used to speed up various other graph-based al-
gorithms that make use of node distance com-
putations, such as Floyd (1962) algorithm, Dijk-
stra (1959) algorithm, or algorithms for computing
node betweenness centrality (Brandes, 2001).

In this paper, we used our model to learn em-
beddings of WordNet synsets and showed that in
the semantic similarity task, the resulting repre-
sentations perform better than the state-of-the-art
graph embedding approaches based on random
walks. Interestingly, the learned embeddings can
outperform the original WordNet similarities on
which they were trained. path2vec was also evalu-
ated on the WSD task (it has not been done before
for graph embeddings, to our knowledge), again
outperforming other approaches.

However, path2vec can be trained on arbitrary
graph measures and is not restricted to the shortest
path or to only tree-structured graphs. In the fu-
ture, we plan to explore the possibility of training
embeddings able to approximate multiple similar-
ity metrics at once. Another direction of further
research is to apply our model to other types of
data, such as social networks or graph of roads.

Acknowledgements

This work has been partially supported by
Deutsche Forschungsgemeinschaft (DFG) within
the JOIN-T (grant BI 1544/4-1 and SP 1999/1-1))
project and the ACQuA project (grant BI 1544/7-
1 and HA 5851/2-1), which is part of the Priority
Program Robust Argumentation Machines (RA-
TIO) (SPP-1999), and Young Scientist Mobility
Grant from the Faculty of Mathematics and Nat-
ural Sciences, University of Oslo. We thank three
anonymous reviewers for their most useful feed-
back. Last but not least, we are grateful to Sarah
Kohail who helped with computing the first ver-
sion of the node2vec baselines.

134

References
Steven Bird, Ewan Klein, and Edward Loper. 2009.

Natural language processing with Python: analyz-
ing text with the natural language toolkit. O’Reilly
Media, Inc.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 26, pages 2787–2795. Curran Associates,
Inc.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Twenty-Fifth AAAI
Conference on Artificial Intelligence, pages 301–
306, San Francisco, CA, USA. AAAI Press.

Ulrik Brandes. 2001. A faster algorithm for between-
ness centrality. Journal of mathematical sociology,
25(2):163–177.

Alexander Budanitsky and Graeme Hirst. 2006. Eval-
uating WordNet-based measures of lexical semantic
relatedness. Computational Linguistics, 32(1):13–
47.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015.
Grarep: Learning graph representations with global
structural information. In Proceedings of the
24th ACM International on Conference on Informa-
tion and Knowledge Management, pages 891–900.
ACM.

Edsger W Dijkstra. 1959. A note on two problems
in connexion with graphs. Numerische mathematik,
1(1):269–271.

Robert W Floyd. 1962. Algorithm 97: shortest path.
Communications of the ACM, 5(6):345.

Francois Fouss, Alain Pirotte, Jean-Michel Renders,
and Marco Saerens. 2007. Random-walk compu-
tation of similarities between nodes of a graph with
application to collaborative recommendation. IEEE
Transactions on knowledge and data engineering,
19(3):355–369.

Aditya Grover and Jure Leskovec. 2016. Node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 855–864. ACM.

William Hamilton, Rex Ying, and Jure Leskovec.
2017a. Representation learning on graphs: Methods
and applications. IEEE Data Engineering Bulletin,
40(3):52–74.

William Hamilton, Zhitao Ying, and Jure Leskovec.
2017b. Inductive representation learning on large
graphs. In Advances in Neural Information Process-
ing Systems, pages 1024–1034.

Richard Hamming. 1950. Error detecting and error
correcting codes. Bell System technical journal,
29(2):147–160.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating Semantic Models With
(Genuine) Similarity Estimation. Computational
Linguistics, 41(4):665–695.

Jay J. Jiang and David W. Conrath. 1997. Seman-
tic similarity based on corpus statistics and lexical
taxonomy. In Proceedings of the 10th Research
on Computational Linguistics International Confer-
ence, pages 19–33, Taipei, Taiwan. The Associa-
tion for Computational Linguistics and Chinese Lan-
guage Processing (ACLCLP).

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Henry Kucera and Nelson Francis. 1982. Frequency
analysis of English usage: Lexicon and grammar.
Boston: Houghton Mifflin.

Claudia Leacock and Martin Chodorow. 1998. Com-
bining local context and WordNet similarity for
word sense identification. WordNet: An electronic
lexical database, 49(2):265–283.

Bertrand Lebichot, Guillaume Guex, Ilkka Kivimäki,
and Marco Saerens. 2018. A constrained random-
ized shortest-paths framework for optimal explo-
ration. arXiv preprint arXiv:1807.04551.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, volume 15, pages 2181–2187,
Austin, TX, USA. AAAI Press.

Rada Mihalcea, Timothy Chklovski, and Adam Kilgar-
riff. 2004. The Senseval-3 English lexical sample
task. In Senseval-3: Third International Workshop
on the Evaluation of Systems for the Semantic Anal-
ysis of Text, pages 25–28, Barcelona, Spain. Associ-
ation for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In Advances in Neural Information Process-
ing Systems 26, pages 3111–3119, Lake Tahoe, NV,
USA. Curran Associates, Inc.

George A. Miller. 1995. WordNet: A lexical
database for English. Communications of the ACM,
38(11):39–41.

Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha, Ira
Leviant, Roi Reichart, Milica Gašić, Anna Korho-
nen, and Steve Young. 2017. Semantic special-
ization of distributional word vector spaces using
monolingual and cross-lingual constraints. Transac-
tions of the Association for Computational Linguis-
tics, 5:309–324.

http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf
http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf
http://www.aclweb.org/anthology/J06-1003
http://www.aclweb.org/anthology/J06-1003
http://www.aclweb.org/anthology/J06-1003
http://www.aclweb.org/anthology/O97-1002
http://www.aclweb.org/anthology/O97-1002
http://www.aclweb.org/anthology/O97-1002
http://aclweb.org/anthology/W04-0807
http://aclweb.org/anthology/W04-0807
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
http://aclweb.org/anthology/Q17-1022
http://aclweb.org/anthology/Q17-1022
http://aclweb.org/anthology/Q17-1022

135

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM Computing Surveys (CSUR), 41(2):10.

Diarmuid Ó Séaghdha. 2009. Semantic classification
with wordnet kernels. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, Companion Vol-
ume: Short Papers, pages 237–240, Boulder, CO,
USA. Association for Computational Linguistics.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and
Wenwu Zhu. 2016. Asymmetric transitivity preserv-
ing graph embedding. In Proceedings of the 22nd
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1105–1114.
ACM.

Martha Palmer, Christiane Fellbaum, Scott Cotton,
Lauren Delfs, and Hoa Trang Dang. 2001. En-
glish tasks: All-words and verb lexical sample. In
Proceedings of SENSEVAL-2 Second International
Workshop on Evaluating Word Sense Disambigua-
tion Systems, pages 21–24, Toulouse, France. Asso-
ciation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors
for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543,
Doha, Qatar. Association for Computational Lin-
guistics.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
2014. Deepwalk: Online learning of social rep-
resentations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710, New
York, NY, USA. ACM.

Mohammad Taher Pilehvar and Nigel Collier. 2016.
De-conflated semantic representations. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1680–1690,
Austin, TX, USA. Association for Computational
Linguistics.

Mohammad Taher Pilehvar and Roberto Navigli. 2015.
From senses to texts: An all-in-one graph-based ap-
proach for measuring semantic similarity. Artificial
Intelligence, 228:95–128.

Alessandro Raganato, Jose Camacho-Collados, and
Roberto Navigli. 2017. Word sense disambiguation:
A unified evaluation framework and empirical com-
parison. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, pages
99–110, Valencia, Spain. Association for Computa-
tional Linguistics.

Delip Rao, David Yarowsky, and Chris Callison-Burch.
2008. Affinity measures based on the graph Lapla-
cian. In Coling 2008: Proceedings of the 3rd

Textgraphs workshop on Graph-based Algorithms
for Natural Language Processing, pages 41–48,
Manchester, UK. Coling 2008 Organizing Commit-
tee.

Philip Resnik. 1999. Semantic similarity in a tax-
onomy: An information-based measure and its ap-
plication to problems of ambiguity in natural lan-
guage. Journal of Artificial Intelligence Research,
11(1):95–130.

Sascha Rothe and Hinrich Schütze. 2015. Autoex-
tend: Extending word embeddings to embeddings
for synsets and lexemes. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1793–1803, Beijing,
China. Association for Computational Linguistics.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European Semantic Web Confer-
ence, pages 593–607, Heraklion, Greece. Springer.

Ravi Sinha and Rada Mihalcea. 2007. Unsupervised
graph-based word sense disambiguation using mea-
sures of word semantic similarity. In International
Conference on Semantic Computing (ICSC), pages
363–369, Irvine, CA, USA. IEEE.

Mark Steyvers and Joshua B. Tenenbaum. 2005. The
large-scale structure of semantic networks: statisti-
cal analyses and a model of semantic growth. Cog-
nitive science, 29(1):41–78.

Julien Subercaze, Christophe Gravier, and Frédérique
Laforest. 2015. On metric embedding for boost-
ing semantic similarity computations. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), pages 8–14, Bei-
jing, China. Association for Computational Linguis-
tics.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI Conference on Ar-
tificial Intelligence, pages 1112–1119, Québec City,
QC, Canada.

Zhibiao Wu and Martha Palmer. 1994. Verb seman-
tics and lexical selection. In Proceedings of the
32nd Annual Meeting of the Association for Com-
putational Linguistics, pages 133–138, Las Cruces,
NM, USA. Association for Computational Linguis-
tics.

http://aclweb.org/anthology/N09-2060
http://aclweb.org/anthology/N09-2060
http://www.aclweb.org/anthology/S01-1005
http://www.aclweb.org/anthology/S01-1005
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.18653/v1/D16-1174
https://www.aclweb.org/anthology/E17-1010
https://www.aclweb.org/anthology/E17-1010
https://www.aclweb.org/anthology/E17-1010
http://aclweb.org/anthology/W08-2006
http://aclweb.org/anthology/W08-2006
http://dl.acm.org/citation.cfm?id=3013545.3013547
http://dl.acm.org/citation.cfm?id=3013545.3013547
http://dl.acm.org/citation.cfm?id=3013545.3013547
http://dl.acm.org/citation.cfm?id=3013545.3013547
https://doi.org/10.3115/v1/P15-1173
https://doi.org/10.3115/v1/P15-1173
https://doi.org/10.3115/v1/P15-1173
https://doi.org/10.1207/s15516709cog2901_3
https://doi.org/10.1207/s15516709cog2901_3
https://doi.org/10.1207/s15516709cog2901_3
https://doi.org/10.3115/v1/P15-2002
https://doi.org/10.3115/v1/P15-2002
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
https://doi.org/10.3115/981732.981751
https://doi.org/10.3115/981732.981751

