
Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM), pages 103–117
Minneapolis, June 6–7, 2019. c©2019 Association for Computational Linguistics

103

MCScript2.0: A Machine Comprehension Corpus Focused on Script
Events and Participants

Simon Ostermann1 Michael Roth1,2 Manfred Pinkal1

1Saarland University 2Stuttgart University
{simono|pinkal}@coli.uni-saarland.de rothml@ims.uni-stuttgart.de

Abstract

We introduce MCScript2.0, a machine
comprehension corpus for the end-to-end
evaluation of script knowledge. MCScript2.0
contains approx. 20,000 questions on approx.
3,500 texts, crowdsourced based on a new
collection process that results in challenging
questions. Half of the questions cannot be
answered from the reading texts, but require
the use of commonsense and, in particular,
script knowledge. We give a thorough analysis
of our corpus and show that while the task is
not challenging to humans, existing machine
comprehension models fail to perform well
on the data, even if they make use of a
commonsense knowledge base. The dataset
is available at http://www.sfb1102.
uni-saarland.de/?page_id=2582

1 Introduction

People have access to a wide range of common-
sense knowledge that is naturally acquired during
their lifetime. They make frequent use of such
knowledge while speaking to each other, which
makes communication highly efficient. The con-
versation in Example 1 illustrates this: For Max,
it is natural to assume that Rachel paid during her
restaurant visit, even if this fact was not mentioned
by Rachel.

(1) Rachel: “Yesterday, I went to this new Ar-
gentinian restaurant to have dinner. I en-
joyed a tasty steak.”
Max: “What did you pay?”

Script knowledge is one of the most important
types of commonsense knowledge and subsumes
such information (Schank and Abelson, 1977). It
is defined as knowledge about everyday situations,
also referred to as scenarios. It subsumes informa-
tion about the actions that take place during such
situations, and their typical temporal order, referred

to as events, as well as the persons and objects that
typically play a role in the situation, referred to
as participants. In the example, script knowledge
subsumes the fact that the paying event is a part of
the eating in a restaurant scenario.

Recent years have seen different approaches to
learning script knowledge, centered around two
strands: Work around narrative chains that are
learned from large text collections (Chambers and
Jurafsky, 2008, 2009), and the manual induction
of script knowledge via crowdsourcing (Regneri
et al., 2010; Wanzare et al., 2016). Script knowl-
edge has been represented both symbolically (Jans
et al., 2012; Pichotta and Mooney, 2014; Rudinger
et al., 2015) and with neural models (Modi and
Titov, 2014; Pichotta and Mooney, 2016). Scripts
have been evaluated mostly intrinsically (Wanzare
et al., 2017; Ostermann et al., 2017). An exception
is MCScript (Ostermann et al., 2018a), a reading
comprehension corpus with a focus on script knowl-
edge, and a predecessor to the data set presented
in this work. Previous work has shown, however,
that script knowledge is not required for perform-
ing well on the data set (Ostermann et al., 2018b).
Hence, to date, there exists no evaluation method
that allows one to systematically assess the contri-
bution of models of script knowledge to the task of
automated text understanding.

Our work closes this gap: We present MC-
Script2.0, a reading comprehension corpus focused
on script events and participants. It contains more
than 3,400 texts about everyday scenarios, together
with more than 19,000 multiple-choice questions
on these texts. All data were collected via crowd-
sourcing. About half of the questions require the
use of commonsense and script knowledge for find-
ing the correct answer (like the question in Ex-
ample 1), a notably higher number than in MC-
Script. We show that in comparison to MCScript,
commonsense-based questions in MCScript2.0 are

http://www.sfb1102.uni-saarland.de/?page_id=2582
http://www.sfb1102.uni-saarland.de/?page_id=2582

104

T (...) We put our ingredients together to
make sure they were at the right temper-
ature, preheated the oven, and pulled out
the proper utensils. We then prepared the
batter using eggs and some other materi-
als we purchased and then poured them
into a pan. After baking the cake in the
oven for the time the recipe told us to, we
then double checked to make sure it was
done by pushing a knife into the center.
We saw some crumbs sticking to the knife
when we pulled it out so we knew it was
ready to eat !

Q1 When did they put the pan in the oven and
bake it according to the instructions?
After eating the cake. 7

After mixing the batter. X
Q2 What did they put in the oven?

The cake mix. X
Utensils. 7

Figure 1: Example text fragment from MCScript2.0

also harder to answer, even for a model that makes
use of a commonsense database. Thus, we argue
that MCScript2.0 is the first resource which makes
it possible to evaluate how far models are able to
exploit script knowledge for automated text under-
standing.

Figure 1 shows a text snippet from a text in MC-
Script2.0, together with two questions with answer
alternatives1. To find an answer for question 1,
information about the temporal order of the steps
for baking a cake is required: The cake is put in
the oven after mixing the batter, and not after eat-
ing it—a piece of information not given in the text,
since the event of putting the cake in the oven is not
explicitly mentioned. Similarly, one needs script
knowledge about which participants are typically
involved in which events to know that the cake mix
rather than the utensils is put into the oven. Both
incorrect answer candidates are distractive: The
utensils as well as the action of eating the cake are
mentioned in the text, but wrong answers to the
question. Our contributions are as follows:

• We present a new collecting method for chal-
lenging questions whose answers require com-
monsense knowledge and in particular script
knowledge, as well as a new resource that was
created with this method.

1More text samples are given in the Supplemental Material.

• We show that the task is simple for humans,
but that existing benchmark models, includ-
ing a top-scoring machine comprehension
model that utilizes a resource for common-
sense knowledge, struggle on the questions
in MCScript2.0; especially on questions that
require commonsense knowledge.

• We compare MCScript2.0 to MCScript, the
first machine comprehension resource for eval-
uating models of script knowledge. We show
that in comparison to MCScript, the number
of questions that require script knowledge is
increased by a large margin and that such ques-
tions are hard to answer. Consequently, we
argue that our dataset provides a more robust
basis for future research on text understanding
models that use script knowledge.

2 Why another Machine Comprehension
Dataset on Script Knowledge?

MCScript (Ostermann et al., 2018a) is the first ma-
chine comprehension dataset designed to evaluate
script knowledge in an end-to-end machine com-
prehension application, and to our knowledge the
only other existing extrinsic evaluation dataset for
script knowledge. Recent research has shown, how-
ever, that commonsense knowledge is not required
for good performance on the dataset (Ostermann
et al., 2018b; Merkhofer et al., 2018).

We argue that this is due to the way in which
questions were collected. During the collection
process, workers were not shown a text, but only
a very short description of the text scenario. As a
result, many questions ask about general aspects
of the scenario, without referring to actual details.
This leads to the problem that there are many ques-
tions with standardized answers, i.e. questions that
can be answered irrespective of a concrete read-
ing text. Examples 2 and 3 show two such cases,
where the correct answer is almost exclusively in
the shower and on the stove, independent of the
text or even scenario.

(2) Where did they wash their hair?

(3) Where did they make the scrambled eggs?

Merkhofer et al. (2018) found that such infor-
mation can essentially be learned from only the
training data, using a simple logistic regression
classifier and surface features regarding words in
the text, question and answer candidates.

105

Also, many questions require vague inference
over general commonsense knowledge rather than
script knowledge. Example 4 illustrates this: The
simple fact that planting a tree gets easier if you
have help is not subsumed by script knowledge
about planting a tree, but a more general type of
commonsense knowledge.

(4) Text: Once you know where to dig , select
what type of tree you want. (...) Dig a hole
large enough for the tree and roots . Place
the tree in the hole and then fill the hole
back up with dirt . (...)
Q: Would it have been easier to plant the
tree if they had help?
yes X
no 7

We inspected a random sample of 50 ques-
tions from the publicly available development set
that were misclassified by the logistic model of
Merkhofer et al. (2018). We found that for over
90% of the inspected questions, the use of script
knowledge would be only marginally relevant.

We present a new data collection method and
corpus that results in a larger number of challeng-
ing questions that require script knowledge. In
particular, we define a revised question collection
procedure, which ensures a large proportion of non-
trivial commonsense questions.

3 Corpus Creation

Texts, questions, and answer candidates are re-
quired for a multiple choice machine comprehen-
sion dataset. Our data collection process for texts
and answers is based on the MCScript data and the
methods developed there, but with several crucial
differences. Like Ostermann et al. (2018a), we cre-
ate the data set via crowdsourcing. The question
collection is revised to account for the shortcom-
ings found with MCScript.

Similarly to Ostermann et al. (2018a), we are
interested in questions that require inference over
script knowledge for finding a correct answer. Cre-
ating such questions is challenging: When ques-
tions are collected by showing a reading text and
asking crowdsourcing workers to write questions,
their answer can usually be read off the text. The
authors of MCScript thus decided to not show a
reading text at all, but only a short summary of the
text scenario. This resulted in too general ques-
tions, so we decided for a third option: We identi-

fied a number of target sentences in the reading text
and guided workers to formulate questions about
script-related details in these sentences. The target
sentences were then hidden from the text, meaning
that relevant information would have to be inferred
from common sense during the answer collection
and also in the task itself. In the following sections,
we describe the three data collection steps in detail.

3.1 Text Collection

As a starting point, we reused all texts from MC-
Script (2,119 texts on 110 scenarios) for our data
set. To increase the topical coverage and diver-
sity of the data set, we added texts for 90 new
scenarios to our collection. As for MCScript, we
selected topically different and plausible everyday
scenarios of varying complexity, which were not
too fine-grained (such as opening a window). The
scenarios were taken from 3 sources: First, we
extracted scenarios from several script collections
(Wanzare et al., 2016; Regneri et al., 2010; Singh
et al., 2002) that are not part of MCScript. Second,
we inspected the spinn3r blog story corpus (Burton
et al., 2009), a large corpus of narrative blog stories
and identified additional scenarios in these stories.
Third, we added new scenarios that are related to
existing ones or that extend them.

We collected 20 texts per new scenario, using
the same text collection method as Ostermann et al.
(2018a): We asked workers to tell a story about a
certain everyday scenario “as if talking to a child”.
This instruction ensures that the resulting stories
are simple in language and clearly structured. Texts
collected this way have been found to explicitly
mention many script events and participants (Modi
et al., 2016; Ostermann et al., 2018a). They are
thus ideal to evaluate script-based inference.

3.2 Question Collection

For the question collection, we followed Oster-
mann et al. (2018a) in telling workers that the data
are collected for a reading comprehension task for
children, in order to get linguistically simple and
explicit questions. However, as mentioned above,
we guide workers towards asking questions about
target sentences rather than a complete text.

As target sentences, we selected every fourth
sentence in a text. In order to avoid selecting target
sentences with too much or too little content, we
only considered sentences with less than 20 tokens,

106

Figure 2: Screenshot of an item in the participant question collection experiment.

but that contained 2 or more noun phrases.2

In a series of pilot studies, we then showed the
texts with highlighted target sentences to workers
and asked them to write questions about these sen-
tences. We however found, that in many cases, the
written questions were too general or nonsensical.

We concluded that an even more structured task
was required and decided to concentrate on ques-
tions of two types: (1) questions that ask about
participants, and (2) questions about the tempo-
ral event structure of a scenario. Participants are
usually instantiated by noun phrases (NPs), while
events are described by verb phrases (VPs). We
thus used Stanford CoreNLP (Manning et al., 2014)
to extract both NPs and VPs in the target sentences
and split up the experiment into two parts: In the
first part, workers were required to write questions
that ask about the given noun phrase. Figure 2
shows a screenshot of an item from the first part.
The first column shows the reading text with the
target sentence highlighted. The second columns
shows all extracted phrases with a field for one
question per phrase.3 Full details of the experiment
instructions are given in the Supplemental Material.

In the second part, we then asked workers to
write a temporal question (when, how long, etc.)
using the given verb phrase. We found that an exact
repetition of the NP instructions for the second
part (“ask about the given verb phrase”) resulted in
unnatural questions, so we adapted the instructions.
A screenshot of the VP experiment is given in the
Supplemental Material.

We showed each text to two workers and asked

2All parameters were selected empirically, by testing dif-
ferent values and analyzing samples of the resulting data.

3If the noun phrase was part of a prepositional phrase or
a construction of the form “NP of NP”, we took the whole
phrase instead, because it is more natural to ask for the com-
plete phrase. In order to avoid redundancy, we only looked at
NPs that had no other NPs as parents. We also excluded noun
phrases that referred to the narrator (I, me etc.).

them to write one question per VP or NP. Workers
were only allowed to work on either the VP or
the NP part, since the instructions could easily be
confused. In order to exclude yes/no questions, we
did not accept inputs starting with an auxiliary or
modal verb. Also, all questions needed to contain
at least 4 words. We asked workers to use they to
refer to the protagonist of the story and other types
of mentions (e.g. pronouns like I, you, we or the
word narrator) were not accepted.

3.3 Answer Collection

For collecting answer candidates we hid the target
sentences from the texts and showed them with
up to 12 questions, to keep the workload at an
acceptable level. If there were more questions for
a text, we selected 12 questions at random.

Since the target sentences are hidden in the texts,
it can be expected that some questions cannot be an-
swered from the text anymore. However, the neces-
sary information for finding an answer might be in-
ferred from script knowledge, so workers were ex-
plicitly told that they might need commonsense to
find an answer. Some answers can still be read off
the text, if other parts of the texts contain the same
information as the hidden target sentences. For
other questions, neither the text nor script knowl-
edge provides sufficient information for finding an
answer.

As for the creation of MCScript, workers first
had to conduct a 4-way classification for each ques-
tion to account for these cases: text-based (answer
is in the text), script-based (answer can be inferred
from script knowledge), unfitting (question doesn’t
make sense), unknown (answer is not known). Hav-
ing such class annotations is not only useful for
evaluation, but it also sensitizes workers for the
fact that they are explicitly allowed to use back-
ground knowledge.

In the experiment, workers were also instructed

107

text-based script-based text-or-script unfitting unknown
9,357 12,433 2,403 3,240 6,457

total answerable: 24,193 total not answerable: 9,397

Table 1: Distribution of question labels, before validation.

to write both a correct and a plausible incorrect
answer for questions labeled as text-based of script-
based. We follow (Ostermann et al., 2018a) and
require workers to write an alternative question if
the labels unfitting or unknown are used, in order
to level out the workload.

We presented each question to 5 workers, result-
ing in 5 judgements and up to 5 incorrect and cor-
rect answer candidates per question. For the final
data set, we considered questions with a majority
vote (3 out of 5) on text-based or script-based. We
also included questions without a majority vote, but
for which at least 3 workers assigned one of text-
based or script-based. In that case, we assigned
the new label text-or-script and also accepted the
question for the final data set. This seemed rea-
sonable, since at least 3 workers wrote answers for
the question, meaning it could still be used in the
final data collection. The remaining questions were
discarded.

3.4 Answer Candidate Selection
In a last step, we selected one correct and one incor-
rect answer from all possible candidates per ques-
tion for the data set. To choose the most plausible
correct answer candidate, we adapt the procedure
from Ostermann et al. (2018a): We normalize all
correct answers (lowercasing, normalizing num-
bers4, deleting stopwords5) and then merge candi-
dates that are contained in another candidate, and
candidate pairs with a Levenshtein (1966) distance
of less than 3. The most frequent candidate is then
selected as correct answer. If there was no clear
majority, we selected a candidate at random.

To select an incorrect answer candidate, we
adapt the adversarial filtering algorithm from
Zellers et al. (2018). Our implementation uses
a simple classifier that utilizes shallow surface fea-
tures. The algorithm selects the incorrect answer
candidate from the set of possible candidates that
is most difficult for the classifier, i.e. an incorrect
answer that is hard to tell apart from the correct

4We used text2num, https://github.com/
ghewgill/text2num.

5and, or, to, the, a

answer (e.g. the incorrect answers in Figure 1: eat-
ing and utensils are also mentioned in the text). By
picking incorrect answers with the adversarial fil-
tering method, the dataset becomes robust against
surface-oriented methods.

Practically, the algorithm starts with a random as-
signment, i.e. a random incorrect answer candidate
per question. This assignment is refined iteratively,
such that the most difficult candidate is selected.
In each iteration, the algorithm splits the data into
a random training part and a test part. The classi-
fier is trained on the training part and then used to
classify all possible candidates in the test part. The
assignment of answer candidates in the test data is
then changed such that the most difficult incorrect
answer candidate per question is picked as incorrect
answer. After several iterations through the whole
dataset, the number of changed answer candidates
usually stagnates and the algorithm converges.

For MCScript2.0, we use the logistic classifier
mentioned in Section 2, which only uses surface
features and is thus well suited for the filtering
algorithm. Implementation details and pseudocode
are given in the Supplemental Material.

4 Corpus Analysis

4.1 General Statistics

In total, MCScript2.0 comprises 19,821 questions
on 3,487 texts, i.e. 5.7 questions on average per
text. The average length of texts, questions and
answers is 164.4 tokens, 8.2 tokens and 3.4 tokens,
respectively.

In the data collection process, we crowdsourced
1,800 new texts, resulting in a total of 3,919 texts
for 200 scenarios. On average, there are 1.98 target
sentences per text. In the question collection, we
gathered 42,132 questions that were then used for
the answer collection. For 8,242 questions, there
was no clear majority on the question label. Ta-
ble 1 shows the label distribution on the remaining
33,890 questions. 24,193 of these could be an-
swered, i.e. 71%.

To increase data quality, we conducted a manual
validation of the data. Four student assistants re-

https://github.com/ghewgill/text2num
https://github.com/ghewgill/text2num

108

100%

6%
5%

8%11%
28%

42%

what when where who how Rest

Figure 3: Distribution of question types

what
when

where
who

how
Rest

0 % 25 % 50 % 75 % 100 %

11 %
8 %

9 %
11 %
11 %
9 %

39 %
32 %

40 %
40 %

28 %
49 %

50 %
61 %

50 %
50 %

61 %
42 %

script text text-script

Figure 4: Proportion of labels per question type.

placed erroneous answers and deleted nonsensical
questions, question duplicates and incoherent texts.

During validation, 152 texts were found to be
incoherent and discarded (along with all questions).
Additionally, 3,388 questions were deleted because
they were nonsensical or duplicates. 1,620 correct
and 2,977 incorrect answers were exchanged, resp.,
because they were inappropriate. If a question dele-
tion resulted in texts without any questions, or if
a text did not have any answerable questions, the
text was discarded, too.

After question validation, the final dataset com-
prises 9,935 questions that are labeled as script-
based, 7,908 as text-based, and 1,978 as text-or-
script.

4.2 Questions

Figure 3 gives the distribution over question types,
which we extracted by looking at the first word
in the question. The largest number of questions
are what questions, most of which ask about par-
ticipants of a script. When questions make up the
second largest group, asking for temporal event
structure. During the VP question experiment,
some workers ignored that we asked for tempo-
ral questions only, which resulted in a number of
how questions.

MCScript2.0 contains 50% questions labeled as
script-based, which is a notably larger amount as
compared to the approximately 27% of questions in
MCScript labeled as script-based. The number of

script-based questions varies between the question
types, as can be seen in Figure 4. While when and
how questions require script knowledge for finding
an answer in more than 60% of cases, less than half
of what questions do so. A simple explanation for
this could be that when or how questions typically
ask for events, while what questions ask for par-
ticipants. Events are usually referred only once in
a text, i.e. with the hiding of the respective event
mention, the needed information has to be inferred.
Participants in contrast tend to appear more often
throughout a story.

Example 5 below illustrates this. Question 1
was originally asked about a sentence in which the
plates are set for the dinner guests. The guests still
appear in another sentence, so the answer can be
inferred from the text. For question 2, in contrast,
script knowledge is required for finding an answer:
The event of bringing the items to the table is not
mentioned anymore, so the information that this
happens typically after counting plates and silver-
ware needs to be inferred.

(5) T: (...) I was told that there would be 13
or 14 guests. First I counted out 14 spoons,
then the same number of salad forks, dinner
forks, and knives. (...) I set each place with
one napkin, one dinner fork, one salad fork,
one spoon, and one knife. (...)
Q1: Who are the plate and cup for?
dinner guests X the neighbor 7

Q2: When did they bring the items over to

109

the table?
after counting them X
after placing them on the table 7

5 Experiments

We test three benchmark models on MCScript2.0
that were also evaluated on MCScript, so a direct
comparison is possible. For the experiments, we
split the data into a training set (14,191 questions
on 2,500 texts), a development set (2,020 questions
on 355 texts) and a test set (3,610 questions on 632
texts). All texts of 5 randomly chosen scenarios
were assigned completely to the test set, so a part
of the test scenarios are unseen during training.

5.1 Models
Logistic Regression Classifier
As first model, we reimplemented the logistic re-
gression classifier proposed by Merkhofer et al.
(2018), which was also used in the adversarial fil-
tering algorithm. The classifier employs 3 types of
features: (1) Length features, encoding the length
of the text, answer and questions on the word and
character level, (2) overlap features, encoding the
amount of literal overlap between text, question,
and answers, and (3) binary lexical patterns encod-
ing the presence or absence of words or combina-
tions of words in answer, text and question.

Attentive Reader
As second model, we implement an attentive reader
(Hermann et al., 2015). We adopt the formulation
by Ostermann et al. (2018a) (originally by Chen
et al. (2016)). All tokens in text, question and
answers are represented with word embeddings. Bi-
directional gated recurrent units (GRUs, Cho et al.
(2014)) process the text, question and answers and
transform them into sequences of contextualized
hidden states. The text is represented as a weighted
average of the hidden states with a bilinear attention
formulation, and another bilinear weight matrix is
used to compute a scalar as score for each answer.
For a formalization, we refer to Ostermann et al.
(2018a) and Chen et al. (2016).

Three-way Attentive Network (TriAN)
As third model, we use a three-way attentive net-
work (Wang et al., 2018), the best-scoring model of
the shared task on MCScript6. Various types of in-

6Code available at https://github.com/
intfloat/commonsense-rc

formation are employed to represent tokens: Word
embeddings, part of speech tags, named entity em-
beddings, and word count/overlap features, similar
to the logistic classifier. Three bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) modules are
used to encode text, question and answers. The re-
sulting hidden representations are reweighted with
three attention matrices and then summed into vec-
tors using three self-attention layers.

Additionally, token representations are enhanced
with ConceptNet (Speer et al., 2017) relations
as a form of induced commonsense knowledge.
ConceptNet is a large database of commonsense
facts, represented as triples of two entities with a
predicate. Relevant ConceptNet relations between
words in the answer and the text are queried from
the database and represented with relation embed-
dings, which are learned end-to-end during training
and appended to the text token representations.

In contrast to Wang et al. (2018), we use the non-
ensemble version of TriAN without pretraining on
RACE (Lai et al., 2017), for better comparability to
the other models.

5.2 Human Upper Bound
To assess human performance, 5 student assistants
performed the reading comprehension task on 60
texts each. To assess agreement, 20 texts were an-
notated by all students. The annotators reached
averaged pairwise agreement of 96.3% and an av-
erage accuracy of 97.4%, which shows that this is
a simple task for humans.

5.3 Results
Overall Performance. Table 2 gives details about
the performance of the 3 benchmark models on the
test set, and on script-based (accscr) and text-based
(acctxt) questions in the test set. As can be seen, the
logistic model scores worst, presumably because
it has been used for the adversarial filtering algo-
rithm and the data are thus most challenging for this
model. TriAN performs best, clearly outperform-
ing the attentive reader. TriAN is apparently supe-
rior in its way of text processing, since it employs
a richer text representation and exploits attention
mechanisms on more levels, which is reflected by
a higher accuracy on text-based questions. In con-
trast, script-based questions seem to be challenging
for TriAN. This is interesting, because it shows that
ConceptNet alone cannot provide sufficient infor-
mation for answering the kind of questions that can
be found in MCScript2.0.

https://github.com/intfloat/commonsense-rc
https://github.com/intfloat/commonsense-rc

110

0.5

0.6

0.7

0.8

0.9

what when where who how rest

0.73
0.80

0.730.71
0.65

0.75

0.65
0.73

0.66
0.62

0.58

0.70

0.60
0.680.66

0.570.55

0.64

Logistic Attentive Reader TriAN

Figure 5: Performance of the models on question types.

acc accscr acctxt
Logistic Model 0.61 0.56 0.67
Attentive Reader 0.65 0.63 0.68
TriAN 0.72 0.67 0.78

Humans 0.97

Table 2: Accuracy on test set, and on script/text-based
questions (accscr, acctxt) on MCScript2.0. The maxi-
mum per column is printed in bold.

Comparison to MCScript. Since the same
models were used for MCScript, a comparison of
their performance on both datasets is possible. Re-
sults on MCScript are given in Table 3.7 As can be
seen, the performance of all three models is worse
on MCScript2.0, showing that the dataset is gen-
erally more challenging. In contrast to MCScript,
script-based questions in MCScript2.0 are clearly
harder to answer than text-based questions: All
models perform worse on script-based questions
as compared to text-based questions. In compar-
ison to MCScript, the performance of TriAN is
12% lower. This indicates that the new mode of
question collection and the answer selection via
adversarial filtering resolve some of the difficulties
with MCScript.

To assess whether the performance difference
to MCScript is due to the 90 new scenarios being
more challenging, we additionally evaluated the
models on these scenarios only. We found no per-
formance difference on the new vs. old scenarios.

Influence of Adversarial Filtering. To find out
how large the influence of the new question collec-
tion method and the answer selection via adversar-
ial filtering is, we conducted an additional experi-
ment: We applied the answer selection method of
Ostermann et al. (2018a) to our data set to create

7For the attentive reader, numbers were taken from (Oster-
mann et al., 2018b). The other models were retrained (and in
the case of the logistic model re-implemented), since no exact
numbers on script/text-based questions were published.

acc accscr acctxt
Logistic Model 0.79 0.76 0.81
Attentive Reader 0.72 0.75 0.71
TriAN 0.80 0.79 0.81

Humans 0.98

Table 3: Accuracy on the test set and on script/text-
based questions (accscr, acctxt) on MCScript. The
maximum per column is printed in bold.

an alternative version of the data that is not based
on adversarial filtering. Correct answers were se-
lected to have the lowest possible overlap with the
reading text. Incorrect answers were selected using
the majority voting technique described in Section
3.4.

We found that the adversarial filtering accounts
for around two thirds of the total accuracy differ-
ence of TriAN as compared to MCScript, i.e. one
third of the difference can be attributed to the new
question collection. This means that both mod-
ifications together add to the larger difficulty of
MCScript2.0.

Question Types. Figure 5 shows the perfor-
mance of the models on single question types, as
identified in Section 4. It is clear that when ques-
tions are most challenging for all models. The
logistic classifier performs almost at chance level.
As far as TriAN is concerned, we found that many
cases of errors ask for the typical temporal order of
events, as Example 6 illustrates:

(6) Q: When did they put the nozzle in their
tank?
before filling up with gas. X
after filling up with gas. 7

The event of put the nozzle in the tank is not
mentioned in the shown version of the text, so it
is not possible to read off the text when the event
actually took place.

111

How questions are the least difficult questions.
This can be explained with the fact that many how
questions ask for numbers that are mentioned in
the text (e.g. How long did they stay in the sauna?
or How many slices did they place onto the paper
plate?). The answer to such questions can often
be found with a simple text lookup. Another part
of how questions asks for the typical duration of
an activity. These questions often have similar an-
swers irrespective of the scenario, since most of the
narrations in MCScript2.0 span a rather short time
period. Such answers can easily be memorized by
the models.

Especially for TriAN, what and who questions
seem to be easy. This could be explained with
the fact that ConceptNet contains lots of informa-
tion about entities and their relations to each other,
apparently also covering some information about
script participants, which seems to be useful for
these question types.

6 Related Work

Recent years have seen a number of datasets that
evaluate commonsense inference. Like our corpus,
most of these data sets choose a machine com-
prehension setting. The data sets can be roughly
classified along their text domain:

News Texts. Two recently published machine
comprehension data sets that require commonsense
inference are based on news texts. First, NewsQA
(Trischler et al., 2017) is a dataset of newswire texts
from CNN with questions and answers written by
crowdsourcing workers. During data collection,
full texts were not shown to workers as a basis for
question formulation, but only the text’s title and
a short summary, to avoid literal repetitions and
support the generation of non-trivial questions re-
quiring background knowledge. Second, ReCoRD
(Zhang et al., 2018) contains cloze-style questions
on newswire texts that were not crowdsourced, but
automatically extracted by pruning a named entity
in a larger passage from the text.

Web Texts. Other corpora use web documents.
An example is TriviaQA (Joshi et al., 2017), a cor-
pus that contains automatically collected question-
answer pairs from 14 trivia and quiz-league web-
sites, together with web-crawled evidence docu-
ments from Wikipedia and Bing. While a major-
ity of questions require world knowledge for find-
ing the correct answer, it is mostly factual knowl-
edge. CommonsenseQA (Talmor et al., 2018) con-

tains a total of over 9000 multiple-choice questions
that were crowdsourced based on knowledge base
triples extracted from ConceptNet. Texts were only
added post-hoc, by querying a web search engine
based on the formulated question, and by adding
the retrieved evidence texts to the questions and
answers.

Fictional Texts. NarrativeQA (Kočiský et al.,
2018) is a reading comprehension dataset that
largely differs from other corpora by means of text
length. Instead of providing short reading texts,
models have to process complete books or movie
scripts and answer very complex questions.

Because of their domains, the aforementioned
data sets evaluate a very broad notion of com-
monsense, including e.g. physical knowledge (for
trivia texts) and knowledge about political facts (for
newswire texts). However, none of them explicitly
tackle script knowledge.

7 Conclusion

We presented MCScript2.0, a new machine com-
prehension dataset with a focus on challenging in-
ference questions that require script knowledge or
commonsense knowledge for finding the correct
answer. Our new question collection procedure re-
sults in about half of the questions in MCScript2.0
requiring such inference, which is a much larger
amount compared to a previous dataset.

We evaluate several benchmark models on MC-
Script2.0 and show that even a model that makes
use of ConceptNet as a source for commonsense
knowledge struggles to answer many question in
our corpus. MCScript2.0 forms the basis of a
shared task organized at the COIN workshop.8

Acknowledgments

We thank our student assistants Leonie Harter,
David Meier, Christine Schäfer and Georg Seiler
for the help with data validation, and Kathryn Chap-
man, Srestha Ghosh, Trang Hoang, Ben Posner and
Miriam Schulz for help with assessing the human
upper bound. We also thank the numerous workers
on MTurk for their good work and Carina Silberer
and the reviewers for their helpful comments on
the paper. This research was funded by the German
Research Foundation (DFG) as part of SFB 1102
Information Density and Linguistic Encoding.

8https://coinnlp.github.io/

https://coinnlp.github.io/

112

References
Kevin Burton, Akshay Java, Ian Soboroff, et al. 2009.

The ICWSM 2009 Spinn3r Dataset. In Third Annual
Conference on Weblogs and Social Media (ICWSM
2009).

Nathanael Chambers and Dan Jurafsky. 2008. Unsu-
pervised Learning of Narrative Event Chains. In
Proceedings of the 46th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 789–797. Association for
Computational Linguistics.

Nathanael Chambers and Dan Jurafsky. 2009. Unsuper-
vised Learning of Narrative Schemas and their Par-
ticipants. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 602–610. Associa-
tion for Computational Linguistics.

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A Thorough Examination of the
CNN/Daily Mail Reading Comprehension Task. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 2358–2367.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Informa-
tion Processing Systems, pages 1693–1701.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Bram Jans, Steven Bethard, Ivan Vulić, and
Marie Francine Moens. 2012. Skip N-grams
and Ranking Functions for Predicting Script Events.
In Proceedings of the 13th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, EACL ’12, pages 336–344. Association
for Computational Linguistics.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A Large Scale Dis-
tantly Supervised Challenge Dataset for Reading
Comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1601–1611. Association for Compu-
tational Linguistics.

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom,
Chris Dyer, Karl Moritz Hermann, Gáabor Melis,
and Edward Grefenstette. 2018. The NarrativeQA
Reading Comprehension Challenge. Transactions

of the Association of Computational Linguistics,
6:317–328.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing Comprehension Dataset From Examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
785–794.

Vladimir I. Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet Physics Doklady, volume 10, pages 707–710.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP Natural Lan-
guage Processing Toolkit. In ACL (System Demon-
strations), pages 55–60.

Elizabeth M. Merkhofer, John Henderson, David
Bloom, Laura Strickhart, and Guido Zarrella. 2018.
MITRE at SemEval-2018 Task 11: Commonsense
Reasoning without Commonsense Knowledge. In
Proceedings of the 12th International Workshop on
Semantic Evaluations (SemEval-2018), pages 1078–
1082.

Ashutosh Modi, Tatjana Anikina, Simon Ostermann,
and Manfred Pinkal. 2016. InScript: Narrative texts
annotated with script information. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC 2016), pages 3485–
3493. European Language Resources Association
(ELRA).

Ashutosh Modi and Ivan Titov. 2014. Inducing Neu-
ral Models of Script Knowledge. In Proceedings
of the Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 49–57.

Simon Ostermann, Ashutosh Modi, Michael Roth, Ste-
fan Thater, and Manfred Pinkal. 2018a. MCScript:
A Novel Dataset for Assessing Machine Comprehen-
sion Using Script Knowledge. In Proceedings of
the 11th International Conference on Language Re-
sources and Evaluation (LREC 2018), pages 3567–
3574.

Simon Ostermann, Michael Roth, Ashutosh Modi, Ste-
fan Thater, and Manfred Pinkal. 2018b. SemEval-
2018 Task 11: Machine Comprehension using Com-
monsense Knowledge. In Proceedings of The 12th
International Workshop on Semantic Evaluation,
pages 747–757.

Simon Ostermann, Michael Roth, Stefan Thater, and
Manfred Pinkal. 2017. Aligning Script Events with
Narrative Texts. Proceedings of the 6th Joint Con-
ference on Lexical and Computational Semantics
(*SEM 2017), pages 128–134.

Karl Pichotta and Raymond J. Mooney. 2014. Statis-
tical script learning with multi-argument events. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics (EACL 2014), pages 220–229.

113

Karl Pichotta and Raymond J. Mooney. 2016. Learning
Statistical Scripts with LSTM Recurrent Neural Net-
works. Proceedings of the 30th AAAI Conference on
Artificial Intelligence (AAAI-16), pages 2800–2806.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning Script Knowledge with Web
Experiments. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 979–988. Association for Computa-
tional Linguistics.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015. Script induction as
language modeling. Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1681–1686.

Roger C. Schank and Robert P. Abelson. 1977. Scripts,
Plans, Goals, and Understanding. Lawrence Erl-
baum Associates.

Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open Mind
Common Sense: Knowledge Acquisition from the
General Public. In On the move to Meaningful In-
ternet Systems 2002: CoopIS, DOA, and ODBASE,
pages 1223–1237. Springer.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI-
17), pages 4444–4451.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. CommonsenseQA: A Ques-
tion Answering Challenge Targeting Commonsense
Knowledge. arXiv preprint arXiv:1811.00937.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. NewsQA: A Machine Compre-
hension Dataset. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP, pages
191–200.

Liang Wang, Meng Sun, Wei Zhao, Kewei Shen,
and Jingming Liu. 2018. Yuanfudao at SemEval-
2018 Task 11: Three-way Attention and Relational
Knowledge for Commonsense Machine Comprehen-
sion. In Proceedings of the 12th International
Workshop on Semantic Evaluations (SemEval-2018),
pages 758–762.

Lilian Wanzare, Alessandra Zarcone, Stefan Thater,
and Manfred Pinkal. 2016. DeScript: A Crowd-
sourced Database for the Acquisition of High-
quality Script Knowledge. In Proceedings of the
Tenth International Conference on Language Re-
sources and Evaluation (LREC 2016), pages 3494–
3501. European Language Resources Association
(ELRA).

Lilian Wanzare, Alessandra Zarcone, Stefan Thater,
and Manfred Pinkal. 2017. Inducing Script Struc-
ture from Crowdsourced Event Descriptions via
Semi-Supervised Clustering. In Proceedings of the
2nd Workshop on Linking Models of Lexical, Sen-
tential and Discourse-level Semantics, pages 1–11.
Association for Computational Linguistics.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin
Choi. 2018. SWAG: A Large-Scale Adversarial
Dataset for Grounded Commonsense Inference. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 93–
104.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018.
ReCoRD: Bridging the Gap between Human and
Machine Commonsense Reading Comprehension.
arXiv preprint arXiv:1810.12885.

114

A Supplemental Material

A.1 Additional Data Sample

(7) T: I am at work . I have a guest sit at the
bar . The ordered themselves a beer . I
check that he is of age , and that his license
is valid . I then go to the beer cooler , and
grab a nice cold mug , and fill it up with
beer . I place a napkin down and set the
beer on top in front of the bar guest . I
present him the check and tell him no rush
, whenever he is ready . He then places his
cash with the receipt . I go to cash him out
, offer to be right back with his change ,
and he responds with , ” Keep the change ”
. I like nights like this .
Q: Why did they receive a nice tip?
the customer was happy with the service X
the customer was in a rush 7

Q: When was the check printed?
after the order X
before the order 7

Q: What did they create at the computer
and print?
the check X
change 7

(8) T: I wanted to throw a Bachelorette Party
for my best friend . She lives in Dallas ,
but she wants to have her party in New
Orleans for a girls weekend . The first
thing we did was talk about the theme of
the party . We decided on the theme of
“ Something Blue ” . We would have all
colors of blue and activities that have titles
with the word blue for the whole weekend .
She gave me a list of 20 girls . I created
an invitation that had blue and included a
picture of her . I also included an itinerary
of our weekend activities with all of our
fun “ blue ” titles , to set the fun mood
. I sealed them before hand writing the
addresses and adding a stamp . Next , they
were off to the post office , so everyone
could be invited to our fun weekend .
Q: What was printed out?
itinerary X
invitations to a weddingy 7

Q: When was each invitation placed into
their blue envelope?
Before handwriting addresses X

After adding stamps 7

Q: Where did she place the invitations?
Post office X
Dallas 7

(9) T: The restaurant was terrible again and I
probably should not have given it another
chance . The management at the store
level is obviously not paying attention to
me so it is time to right to headquarters . I
opened the word processing program on
my computer and opened a new document
. I went all the way to the right side and
entered my street address on one line and
the city , state and zip code below that .
Next I entered the date and then moved all
the way to the left and entered the street
address of the restaurant headquarters
and the city , state and zip code of the
headquarters . I started the letter with Dear
Sir and on the next lines , proceeded to
explain the problems I had been having
with this particular location , it ’s service
and food . I explained that I had tried
to resolve it at store level but had been
unsuccessful . On the final line , I went all
the way to right and entered ‘ Sincerely ’
and hit return a couple times , then added
my name below that . I folded it and put it
an addressed and stamped envelope , and
mailed it to the company headquarters .
Q: What did they print out?
The letter X
The receipt from the restaurant 7

Q: When did they sign above their printed
name?
After the letter was printed X
After putting the letter in the envelope. 7

Q: What they did they sign?
The letter X
The receipt at the restaurant 7

A.2 Crowdsourcing Details

All data were collected using Amazon Mechani-
cal Turk9. We paid $0.50 for each item in the text
and answer collection experiment. For the ques-
tion collection experiment, we paid $0.50 per item,
if the text contained 4 or more target sentences,

9https://www.mturk.com

https://www.mturk.com

115

and $0.30 per item if fewer target sentences were
highlighted.

A.3 Implementation Details

For implementation details and preprocessing
of the logistic model and TriAN, we follow
(Merkhofer et al., 2018) and (Wang et al., 2018),
respectively. NLTK10 was used as preprocessing
tool for the Attentive Reader.

The learning rate was tuned to 0.002 and 0.1
for TriAN and the attentive reader, resp. and the
hidden size for both models to 64. As in the original
formulation, dropout was set to 0.5 for the attentive
reader and to 0.4 for TriAN. Batch size was set
to 32 and both models were trained for 50 epochs.
The model with the best accuracy on the dev data
was used for testing.

A.4 Adversarial Filtering

Data: data set D, a randomly initialized
assignment S, and a classifier C

Result: Ŝ
repeat

split the data into test batches of size b,
such that each batch contains all
questions for b texts;

for Dtest in batches do
Dtrain ←− D\Dtest;
Dtrain ←− compile(Dtrain);
train C on Dtrain;
for all instances
< Ti, Qi, a

+
i , < a−i,0...a

−
i,j > in Dtest

do
use C to classify all incorrect
answer candidates a−i,0...a

−
i,j ;

set si,j to the index of the answer
candidate with the highest
probability of being correct;

end
end

until number of changed assignments
stagnates or increases;

Algorithm 1: Adversarial Filtering for MC-
Script2.0

Formally, let a dataset be defined as a list of tu-
ples 〈ti, qi, a+i , 〈a

−
i,0...a

−
i,j〉〉, where ti is a reading

text, qi is a question on the text, a+i is the correct an-
swer (as selected via majority vote, s. last Section)

10https://www.nltk.org

and 〈a−i,0...a
−
i,j〉 is a list of 3 to 5 incorrect answer

candidates11. The aim of the algorithm is to find
an assignment Ŝ = {s0,0...si,j}, where each si,j is
the index of the most difficult answer candidate in
〈a−i,0...a

−
i,j〉.

A dataset that is compiled with the assignment
S is a list of instances < ti, qi, a

+
i , a

−
i >, such that

there is only one incorrect answer candidate per
question, according to the indices given by S.

Once the algorithm converges, Ŝ is used to com-
pile the final version of the dataset, D̂, which con-
tains incorrect answer candidates that are most
likely to be correct.

For the batch size we tried values in
{50, 100, 250, 500}, but we found that for all val-
ues, the performance of the classifier would drop
close to chance level after one iteration only. We
set b = 250, since the performance was closest to
chance after convergence with that setting. Also,
we defined that the algorithm converges if the num-
ber of changed assignments since the last iteration
is ≤ 50.

11Note that since there are several questions per text, the
value of ti may appear in several instances.

https://www.nltk.org

116

A.5 Screenshot of the VP-based Question
Collection Experiment.

117

A.6 Screenshot of the Instructions for the
NP-based Question Collection
Experiment.

