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Abstract

Chatbots (i.e., bots) are becoming widely used
in multiple domains, along with supporting bot
programming platforms. These platforms are
equipped with novel testing tools aimed at im-
proving the quality of individual chatbots. Do-
ing so requires an understanding of what sort
of bots are being built (captured by their under-
lying conversation graphs) and how well they
perform (derived through analysis of conver-
sation logs). In this paper, we propose a new
model, BOT2VEC, that embeds bots to a com-
pact representation based on their structure
and usage logs. Then, we utilize BOT2VEC
representations to improve the quality of two
bot analysis tasks. Using conversation data
and graphs of over than 90 bots, we show that
BOT2VEC representations improve detection
performance by more than 16% for both tasks.

1 Introduction

As conversational systems (i.e., chatbots) become
more pervasive, careful analysis of their capabil-
ities becomes important. Conversational systems
are being used for a variety of support, service,
and sales applications that were formerly handled
by human agents. Thus, organizations deploying
such systems must be able to understand bots be-
havior to improve their performance. In many
cases, such an analysis can be viewed as a classi-
fication task whose goal is to check whether a bot
or a particular instance of a conversation satisfies
some property (e.g., is the conversation success-
ful?). Models for these downstream classification
tasks should benefit from conditioning on repre-
sentations that capture global bot behavior.

For a conversation itself, there exists a natural
way to represent it as the concatenation of the hu-
man and bot utterances. As for a bot, the question
of its representation is more complicated: bots are

∗ Work was done while working at IBM.

complex objects that execute logic in order to drive
conversations with users. How should they best be
represented?

Many commercial companies provide bot pro-
gramming platforms. These platforms provide
tools and services to develop bots, monitor and
improve their quality. Due to the increasing pop-
ularity of bots, thousands or tens of thousands of
bots could be deployed by different companies on
each platform1. Although bots might have differ-
ent purposes and different underlying structures,
the ability to understand bot behavior at a high
level could inspire new tools and services bene-
fitting all bots on the platform. In this work, we
explore a commercial platform, and study differ-
ent bot representations.

Inspired by the success of recently proposed
learned embeddings for objects such as graphs
(Narayanan et al., 2017), nodes (Grover and
Leskovec, 2016), documents (Le and Mikolov,
2014) and words (Mikolov et al., 2013a), we pro-
pose a new model, BOT2VEC, that learns bot
embeddings, and propose both content and graph
based representations. While previous graph em-
bedding representations consider static local struc-
tures in the graph (Narayanan et al., 2017; Grover
and Leskovec, 2016), our graph representation is
based on dynamic conversation paths. As bots are
usually represented on bot platforms as some form
of directed graph, with conversations represented
as traversals on the graph, this approach seems
reasonable. It captures the way the bot is actually
used, in addition to how it is structured.

In this paper, our goal is to consider various bot
embeddings and two different but realistic classi-
fication tasks, and test whether some bot represen-
tations are more appropriate for these tasks. The
first task, at the level of entire bots, aims to detect

1https://www.techemergence.com/chatbot-comparison-
facebook-microsoft-amazon-google/
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Figure 1: Example of a customer support bot graph.

whether the bot is in production (i.e., in use with
real human users) or not. The second task, at the
conversation level within each bot, aims to detect
problematic conversations with a deployed bot in
support of focusing improvement efforts.

The main contributions of this paper are three-
fold: (1) this is the first research that leverages in-
formation from multiple bots in order to improve
bot quality, (2) this is the first research to propose
an embedding approach for bots based on their
structure and how this structure is exploited dur-
ing conversations, and (3) we empirically evaluate
these representations for two classification tasks
using data from more than 90 conversational bots.

We find that our proposed representations lead
to more than 16% improvement in classification
for our two tasks, with our structure-based repre-
sentation performing better than our content-based
representation. This suggests that the representa-
tions explored in this paper are valuable across a
range of possible tasks.

2 Bot Overview

Although different programming models can be
used to create bots, in practice, most commercial
conversational system platforms represent the con-
versation control flow for bots as graphs. In this
paper, we use a bot paradigm based on one of the
publicly available commercial platforms, but it is
quite general and can be adapted to fit to other bot
programming platforms. Our example in Figure 1
shows a part of a customer support bot graph, and
we use it to explain how such a graph is used in

the context of a conversation.
At every step (i.e., every turn) of a conversation

with a bot, the human user expresses an utterance
and the bot analyzes it, determines how to respond
and updates its internal state. This determination
is executed by traversing the graph, starting from
a special node called the root node, and moving
along the nodes of the graph according to a given
set of rules as described below. Note that this de-
scription aims to present and explain key abstrac-
tions rather than the implementation details of an
actual bot platform.

2.1 Graph Components

Every node in the graph has two internal parts: a
user intent, and an optional reply of the bot. Given
a user utterance, an intent classifier is used to de-
termine whether the user utterance matches the in-
tent associated with the node. For example, the
Technical problem node has been defined to cap-
ture cases where users encounter a technical prob-
lem with a product, and this is what is being ex-
pressed in the utterance at hand (e.g., “I’m hav-
ing some issues with my headset”). In this case,
the classifier should be able to classify this utter-
ance as relevant to this intent. In practice, the in-
tent classifier is trained from examples of utter-
ances and their corresponding intents, written by
bot programmers.

Every node has two optional outgoing edges: a
positive edge and a negative edge. If a user ut-
terance has been classified positively, the optional
node answer is presented to the user, and the exe-
cution moves to the node which is the target of the
positive edge. When the execution moves along
a positive edge, it is possible to obtain additional
input from the user, and continue the evaluation
using this input. If a user utterance has been clas-
sified negatively, the execution moves to the node
which is the target of the negative edge. As shown
in Figure 1, we represent nodes connected by neg-
ative edges along the vertical axis, and nodes con-
nected by positive edges along the horizontal axis.

When there is no positive edge and the classi-
fication is positive, the execution stops, and the
system waits for the next user utterance. When
there is no negative edge and the classification is
negative, execution jumps back to the root node to
resume evaluation from the start.

In addition to the nodes that we just described,
there are special sink nodes (in our example, the
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Agent: Hi, I’m Eva a virtual assistant, how may I help you?
Customer: I’m having some issues with my headset
Agent: Which model are you using?
Customer: A wireless one.
Agent: Please make sure that they are charged.
Customer: Yes they are, and they work well with other de-
vices...
Agent: Got you. In this case go and try our echo test.
Customer: Well, I’ll stop by one of your stores and see a tech-
nician.
Agent: I’m not trained on that yet, but I’m still learning. You
may want to rephrase your question and try again.
Customer: What is your closest location?
Agent: Check here to see our locations in your city.

Figure 2: Example of a possible conversation.

Anything Else node), which are not the source of
any edges, and which typically trigger a special
default message like “I’m still in a learning phase,
is there anything else I can help you with?’’. As
bots support only a limited set of intents, this
mechanism is used to let the user know that some
intent is beyond the knowledge of the bot, and to
initiate a recovery process.

2.2 Graph Execution
A conversation starts by traversing the graph from
the root node. The root node is special in that it
does not expect a user utterance, and it only has
a positive edge. Its optional response, which can
be a greeting message for example, is only output
once at the beginning of the conversation.

Consequently, a user utterance defines a path in
the graph, and each conversation between a human
and the bot can be represented as a sequence of
paths in the graph. Figure 2 shows an example of
such a conversation.

The nodes that are evaluated for the first user
utterance in Figure 2 (“I’m having some issues
with my headset”) are marked in bold in Figure 1.
Thus, the path that is created by the analysis of
this utterance starts with the root node Welcome,
then moves to the Make a payment node, check-
ing whether this utterance expresses the user in-
tention to make a payment. Since it is not, con-
trol moves to the Account operation node, and
then, in turn, to the Store information node, along
the negative edges, until it reaches the Techni-
cal problem node. Here, the internal classifier de-
termines that the utterance indeed expresses that
the user encountered a technical problem. As a
result, the control moves along the positive edge
to the Headset problem node. Once the node’s re-
ply is presented to the user (“Which model are you

using?”), the system then waits for the next user
utterance. The next user utterance (“A wireless
one.”) leads to the Wireless model node, hence the
resulting path for this utterance is a continuation of
the previous path.

Note that nodes connected vertically by neg-
ative edges represent alternative understand-
ings of an utterance. That is, in our ex-
ample, an utterance can be identified as Ac-
count operation, Store information or Techni-
cal problem, etc. Nodes connected by horizon-
tal positive edges represent specializations of the
analysis. That is, after the utterance is classified
as Technical problem, moving along the positive
edge will check whether the utterance expresses
a Headset problem, or (moving again vertically
along negative edges) a HD problem or, alterna-
tively, a Battery problem.

In addition, special jump nodes are nodes
that allow the conversation to jump to a des-
ignated node. In our example the node below
Charge headset, that refers to the Echo test node,
is a jump. Such jump nodes are not essential, but
simplify the graph by preventing duplication of
subgraphs.

2.3 Notations

We define the depth of the bot graph as the max-
imum number of nodes from left to right (ignor-
ing the root node), i.e. nodes connected by pos-
itive edges. The depth of a node v is defined as
the number of positive edges used to traverse the
graph from the root node to v. In our example
from Figure 1 the depth of the graph is 5, while
the depth of Headset problem is 2. We define the
level l as the set of all the nodes whose depth is l.
We define the width of the graph at level l as the
maximum number of nodes connected by negative
edges at this level. In our example, the width of
level 1 is 6, while the width of level 2 is 3.

To further simplify notations, we consider a grid
layout that defines coordinates for the nodes from
left to right and from top to bottom. For example,
node Technical problem is mapped to (4), which
means that it is the 4th node from top to bottom
at level 1. The node Headset problem is mapped
to (4,1), meaning that it is the 1st node at level
2 of the 4th node at level 1. Similarly, the node
HD problem is mapped to coordinate (4,2) and
Wireless model is (4,1,2). Note that nodes located
deeper in the graph are mapped to a longer list of
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coordinates. The maximal possible length of a co-
ordinate for a node is the depth of the graph.

2.4 Bot Behavior

The graph of a bot determines its behavior, and
thus, the structure of the graph captures interest-
ing properties of the bot. For example, there are
bots designed to handle simple Q&A conversa-
tions, as opposed to bots that handle filling in the
details of complex transactions. For Q&A bots,
the graph is likely to be of depth 1, with many
nodes at this level, representing various alternative
questions and answers. For bots handling complex
conversations, the graphs are likely to be deeper in
order to handle more complicated cases. In gen-
eral, bots handling narrow use-cases and which
are very specific in their dialog capabilities, are
likely to have fewer nodes and more jumps to sink
nodes. Thus, in order to capture the bot behavior
we should consider the different characteristics of
its graph, and this is what we would like to capture
in our representation.

3 Bot2Vec Framework

3.1 Representation Learning

In this work, we employ a neural network model
to learn the BOT2VEC representation. The train-
ing input to this model is either a content-based
representation or a structure-based representation
of conversations between a human and a bot. Both
are described in the following sections. The result
of the training is a vector representation for each
bot in the dataset.

To learn this BOT2VEC representation, a fully
connected network with N hidden layers is used.
During training, the input to this network is the
representation of a conversation (either content-
based or structure-based), and the ground truth is a
one-hot vector of the bot that handled this conver-
sation. In other words, given a conversation c, the
network predicts which bot handled c using soft-
max, that is a distribution over the bots. Thus, the
output layer vector of the model has the size of the
number of bots in the dataset. Once the model is
trained, the representation of a bot b is the weights
vector Vb·, where V is the output embedding ma-
trix (the weights matrix connecting the last hidden
layer to the output layer).

The motivation for choosing this representa-
tion is that the training procedure (using cross-
entropy loss) should drive similar bots to simi-

lar representations, given that they handle simi-
lar conversations. In the context of learning word
representations using the Word2Vec skip-gram
model (Mikolov et al., 2013b), the output embed-
dings were found to be of good quality (Press and
Wolf, 2017). Hereafter, we denote the content-
based model as BOT2VEC-C, and the structure-
based model as BOT2VEC-S.

We now describe how a conversation is rep-
resented using its textual content and using its
bot graph structure which is used as input for the
model.

3.2 Content-based Representation

Conversations between users and bots occur in
natural language, and as shown in Figure 2, are
composed of user utterances and bot responses.
The first step for creating our textual representa-
tion of a single conversation is to build a vocab-
ulary, which is the union of all terms across all
conversations of all the bots in the dataset. We
first mask tokens that might reveal the bot’s iden-
tity, such as bot names, URLs, HTML tags etc. To
neglect additional bot specific words (which are
probably infrequent), we take the k most popular
terms to be the vocabulary.

Now, for a given conversation, we create two
vectors with term frequency (TF) entries accord-
ing to the template just defined, one for the user
utterances and one for the bot responses. The con-
versation is then represented as their concatena-
tion.

3.3 Structure-based Representation

Our goal in this representation is to characterize
bot behavior by analyzing its conversations with
respect to the structure of the bot graph. This
learned representation should capture the charac-
teristics of how bots are being utilized. We would
like to capture, for example, which nodes are be-
ing visited during a conversation with a user, at
which nodes the conversation turns end, etc.

Recall that each conversation can be repre-
sented as a sequence of paths on the bot graph (a
path for each turn). We now describe how to rep-
resent a path as a vector (bin vector below), and
how to aggregate paths of a single conversation.

Bin vector To be able to compare bots with dif-
ferent bot graph structures, we define a common
fixed size bin vector to represent paths of different
bots.
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Figure 3: A mapping of a bot graph to the bin vector.

Algorithm 1 Mapping a node to section and bin
nl: node depth
nw: node width

input D: graph depth
w = w1, w2, . . . , wD: graph width at each level
S: number of sections
b = b1, b2, . . . , bS : number of bins per section

output ns: section index
nb: bin index

1: ns = b (nl−1)
d
× S + 1c

2: nb = b (nw−1)
wl

× bns + 1c
3: return ns, nb

We create a bin vector such that each node in the
bot graph is mapped to a single bin based on its co-
ordinates in the graph. Each bin vector is divided
into S sections, and each section s is divided into
bs bins (Figure 3). Since the idea is to represent
a conversation path in a standardized and com-
pact way across different bots, each level in the
bot graph is mapped to a section in the bin vector,
and each node in the bot graph is mapped to a bin
in the appropriate section (see Algorithm 1). Sev-
eral levels might be mapped to the same section,
and several nodes can be mapped to the same bin
(sections do not necessarily have the same number
of bins). The number of sections and bins in the
bin vector are set based on the depths and widths
of all the bot graphs (e.g., the average depth of
the graphs and the average width of each level in
the graphs). For example, the bin vector in Fig-
ure 3 represents the mapping of all nodes for the
bot graph in Figure 1. This bin vector has 3 sec-
tions. There are 3 bins in section 1, 2 bins in sec-
tion 2, and 1 bin in section 3.

Utterance modeling We now explain how each
utterance is represented using the bin vector. As
mentioned above, each user utterance in a conver-
sation is represented by a path in the bot graph,
whose nodes can be mapped to sections and bins
in the bin vector. In order to capture how every
utterance is being analyzed by the bot, we distin-
guish between different types of nodes in the path:

1. A success (s) node is the last node of the path,
if it is not a sink node.

section 1 section 2 section 3
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Figure 4: Bin vector representation of turns in a con-
versation.

2. A failure (f) node is the last node of the path,
if it is a sink node.

3. All the other nodes that belong to the path are
regular (r) nodes.

4. Nodes that do not belong to the path are un-
involved (u) nodes.

When representing a path, we consider the type
of the node it is mapped to, in the corresponding
bins in the bin vector: each bin maintains 4 coun-
ters, one counter for each type of node mentioned
above (success, failure, regular and uninvolved).
That is, the mapping of the first user utterance
“I’m having some issues with my headset” to the
bin vector is as follows:

• The first node in the bot graph that is visited
is Make a payment (1). This node is mapped
to the first bin in section 1 of the bin vector.
Thus the regular counter is set to 1 for this
bin.

• The second node traversed in the bot graph
is Account operation (2), which is mapped
to the same first bin of section 1 of the bin
vector. Hence, the regular counter of this bin
is set to 2 in the bin vector.

• Similarly, nodes Store information (3) and
Technical problem (4) are visited, and that
sets the regular counter of bin 2 in section
1 to 2.

• Finally, the Headset problem (4, 1) node is
visited, and that sets the success counter of
bin 1 in section 1 to 1, as this is the last node
that is being visited for this utterance. Now
we can update the uninvolved counters of the
bins according to the nodes that were not vis-
ited during the traversal.
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When this path is mapped to the bin vector, we
obtain the vector as shown in “Turn 1” of Figure 4.

Conversation modeling As the input to the
model is a conversation, we now describe how it
is represented. We aggregate the bin vectors of
the user utterances paths by summing each counter
based on the node types (s, f , r or u) across all
the bins in the matching sections. This aggrega-
tion captures different patterns of the conversation,
such as how many times nodes which are mapped
to a bin are visited, how many turns ended suc-
cessfully in the mapped nodes vs. how many turns
failed in these nodes, etc. Figure 4 depicts the de-
tailed vectors for the first and the fifth customer
utterance from Figure 2, as well as the aggregated
vector obtained for the whole conversation.

4 Classification Tasks

BOT2VEC representations could be used for a va-
riety of bot analytics tasks. In this research, we
have examined two such tasks.

Detecting production bots Several companies
provide bot development platforms that are used to
create and manage conversational bots. Based on
analyses of the logs of one commercial platform,
we have found that a large percentage of bots are
not being used with real users. From the platform
provider perspective, understanding bots interac-
tion with actual users could inspire the develop-
ment of new tools and services that could assist all
of bots that use the platform. Thus, it is impor-
tant to first determine which bots are used in pro-
duction, rather than in debugging or testing. This
is made difficult by the fact that bot testing often
involves somewhat realistic simulations of conver-
sations. Thus, in this binary classification task, a
bot should be classified as either a production bot
or not, given all of its conversations.

Detecting egregious conversations Once in
production, bot log analysis forms the basis for
continuous improvement. Finding the areas most
in need of improvement is complicated by the fact
that bots may have thousands of conversations per
day, making it hard to find conversations failing
from causes such as faulty classification of user
intent, bugs in dialog descriptions, and inadequate
use of conversational context. Recently, a new
analysis (Sandbank et al., 2018), aims at detect-
ing egregious conversations, those in which the bot
behaves so badly that a human agent, if available,

Figure 5: Bots summary: #conversations, #nodes and
depth.

would be needed to salvage them. Finding these
egregious conversations can help identify where
improvement efforts should be focused. In this
task, a conversation c should be classified as egre-
gious or not, with the BOT2VEC representation
potentially improving performance.

5 Experiments

5.1 Data
We collected two months of data from 92 bots, in-
cluding their graphs and conversations logs. The
bot domains included health, finance, banking,
travel, HR, IT support, and more. Figure 5 sum-
marizes the information about number of conver-
sations, number of nodes and graph depth for the
bots. In total, we collected 1.3 million conversa-
tions, with a minimum of 110 conversations and a
maximum of 161, 000 conversations per bot. For
62% of the bots, the number of conversations var-
ied between 1000 to 10, 000. Bot graph depth
ranged from 2 to 52 levels with an average depth
of 7; the total number of nodes ranged from 11 to
1088 with an average of 160 nodes per bot.

5.2 Experimental Setting
Common bin vector As explained, to capture
comparable behavior across bots, we create one
common bin vector using the average depth and
average width for each level of the bots graphs.
Specifically, first, based on the average depth, we
define the number of sections to be 7. Then we set
the number of bins for each section (based on the
average width per level per bot) to 108, 10, 6, 17,
8, 4, and 1, respectively.

Bot2Vec implementation details
Content-based: The content-based model input is
comprised of two vectors of size k = 5000 each ,
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Model F1-score % improvement
BOT-STAT 0.519 -
BOT2VEC-C 0.545 5.0
BOT2VEC-S 0.616 18.6

Table 1: Production bots detection - classification re-
sults on the test set.

one vector representing the user utterances and the
second vector representing the bot responses. The
two vectors are concatenated and passed through
a fully connected layer with 5000 units. We also
calculate the squared difference of the two vectors
and an element-wise multiplication of the vectors
to capture the interaction between the user and the
bot. The three vectors are then concatenated and
passed through another two fully connected layers
with 1000 and 100 units.
Structure-based: The input is a single vector with
the size of 616 (the total number of bins (154)
times the 4 counters per bin). This input vector
is passed through two fully connected layers with
100 and 20 units.

For both models, the last hidden layer is con-
nected to the output layer (with a size equal to the
total number of bots). All hidden layers consists of
ReLU activation units, and are regularized using
dropout rate of 0.5. The models were optimized
using an Adam optimizer with a 0.001 learning
rate.

5.3 Task 1 - Production Bots Detection

Ground truth To annotate bots, we randomly
sampled 100 conversations from our dataset. The
sampled conversations were tagged by two dif-
ferent expert judges. Given a full conversation,
each judge tagged the conversation as production
or test/debugging. If more than 50% of the con-
versations were tagged as production, then the bot
was tagged as production. In addition, if the bot
was annotated as not-production, the experts had
to provide a list of reasons for their choice (e.g.,
repeating users ids, repeating bot response, etc.).
We generated true binary labels by considering a
bot to be a production bot if both judges agreed.
Judges had a Cohen’s Kappa coefficient of 0.95
which indicates a high level of agreement. This
process generated the production bot class size of
40 (44% of the 92 bots).

Baseline model Inspired by (McIntire et al.,
2010; Zhang et al., 2018) we implemented a base-
line model denoted BOT-STAT as follows: for

Model F1-score % improvement
EGR 0.537 -
bot-STAT 0.597 11.0
BOT2VEC-C 0.617 14.8
BOT2VEC-S 0.626 16.4

Table 2: Egregious conversations - classification results
on the test set.

each bot we calculated features, such as the num-
ber of unique customer sentences, number of con-
versations, number of unique agent responses, and
statistical measures (mean, median, percentile) of
the following metrics: number of turns of a con-
versation, number of tokens in each turn in a con-
versation, and the time of a turn in a conversation.
In total we implemented 17 features.

In our implementation we used an SVM clas-
sifier (as we only have 92 samples), measured the
F1-score of the production bot class, and evaluated
the models using 10-fold cross-validation.

Results Table 1 depicts the classification results
for the three models we explored. The BOT2VEC-
S model outperformed the other models with a
relative improvement of 18.6% over the baseline.
The performance of the BOT2VEC-C is slightly
better than the baseline which indicates that the in-
formation that was captured by the content of the
conversations was helpful to detect the usage of
the bot. The structure-based representation, how-
ever, seems to capture bot variability more effec-
tively, i.e. the coverage of visited nodes, different
conversations patterns, etc.

5.4 Task 2 - Egregious Conversations
Detection

Ground truth To collect ground truth data, we
randomly sampled 12 bots (from the production
bots), and for each bot 100 conversations were an-
notated following the methodology in (Sandbank
et al., 2018), namely, given the full conversation,
each judge tagged whether the conversation was
egregious or not. Judges had a Cohen’s Kappa co-
efficient of 0.93 which indicates a high level of
agreement. The size of the egregious class varied
between the bots, ranging from 8% to 48% of the
conversations. All the conversations were aggre-
gated to one dataset.

Baseline model We implemented the state-of-
the-art EGR model, presented in (Sandbank et al.,
2018). In addition, our models are an extension of
the EGR model, such that for each conversation,
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its bot representation vector was concatenated to
the EGR model’s original feature vector.

We measured the F1-score of the egregious
class, and evaluated the models using 10-fold
cross-validation.

Results Table 2 summarizes the classification
results for all models. Specifically, the BOT2VEC-
S outperforms all other models with a relative
improvement of 16.4%. This suggests that the
structure-based representation of the bot encapsu-
lates information which helps the model to distin-
guish between egregious and non-egregious con-
versations. Moreover, although the EGR model
receives the text of the conversation as input, the
content-based representation of the bot also helped
to improve the performance of the task.

5.5 Structure-based Analysis
In practice, bots belong to various application do-
mains like banking, IT and HR. Motivated by
the semantic similarities between word embed-
dings (Mikolov et al., 2013b), we further analyzed
the structure representation BOT2VEC-S w.r.t bots
that belong to the same domain. For the set of
production bots, IT, HR, and the banking domains
were prominent with 10, 7, and 6 bots respectively,
while the other bots belonged to a long tail of do-
mains like travel, medical, etc. For the prominent
domains (that had more than 5 bots), we calculated
the average cosine distance between vector repre-
sentations for pairs of bots that belong to the do-
main vs. pairs of bots from different domains. We
find that the average distance between bots within
their domain is 0.614, while the distance between
bots from different domains is 0.694. Thus, the
representations of bots that belong to the same do-
main appear to have, as one would expect, a higher
level of similarity.

6 Related Work

Despite the popularity of chatbots, research on
bot representations and usage analysis is still un-
der explored. Works on chatbot representations
are mostly concentrated on neural response gen-
eration (Xu et al., 2017; Li et al., 2016; Herzig
et al., 2017) and slot filling (Ma and Hovy, 2016;
Kurata et al., 2016). In these works, conversa-
tion history is used to generate the next bot re-
sponse. Other works use conversation represen-
tations for improving specific tasks useful in di-
alog, like intent detection (Kato et al., 2017), dia-

log act detection (Kumar et al., 2018), and improv-
ing fluency and coherency (Gangadharaiah et al.,
2018). Yuwono et al. (2018) learn the quality of
chatbot responses by combining word representa-
tions of human and chatbot responses using neural
approaches. The main difference between these
works and ours is that we analyze multiple bots
within a service to generate representations use-
ful to each whereas others analyze a single bot at
a time. In addition, we show that our representa-
tions are beneficial across different tasks. Finally,
none of these works consider the structure of the
bot as part of the representation.

Learning embeddings for different objects is
one of the most explored tasks2. As mentioned
above, graphs and nodes representations were pro-
posed in (Narayanan et al., 2017; Grover and
Leskovec, 2016). Both works considered static lo-
cal structures in graphs, whereas our graph repre-
sentation is based on dynamic conversation paths.
The work in (Mikolov et al., 2013b) suggested a
Word2Vec skip-gram model such that a word is
predicted given its context. In our work, we take a
similar approach fitted to the more complex struc-
ture of bots, and predict a bot id given a represen-
tation of a conversation.

Recently, Guo et al. (2018); Pereira and Dı́az
(2018) presented a chatbot usage analysis over
several bots. Guo et al. (2018) compared the per-
formance of various chatbots that participated in
the Alexa prize challenge and implemented the
same scenario. To do so, the authors used dif-
ferent measures such as conversational depth and
breadth, users engagement, coherency, and more.
Pereira and Dı́az (2018) suggested a list of quality
attributes, and analyzed 100 popular chatbots in
Facebook Messenger. Our work focuses on learn-
ing bot representations targeted towards classifica-
tion tasks on the level of bots and their conversa-
tions.

7 Conclusions

In this paper, we suggest two BOT2VEC models
that capture a bot representation based either on
the structure of the bot or the content of its con-
versations. We showed that utilizing these repre-
sentations improves two platform analysis tasks,
both for bot level and conversation level tasks. Fu-
ture work includes extension of the model to en-
capsulate both the content and the structure based

2https://github.com/MaxwellRebo/awesome-2vec
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representations combined together using sequen-
tial neural networks (such as RNN).
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