Composition of Sentence Embeddings:
Lessons from Statistical Relational Learning

Damien Sileo®!, Tim Van De Cruys?, Camille Pradel!, and Philippe Muller?

'Synapse Développement, Toulouse, France
IRIT, CNRS, France
3IRIT, University of Toulouse, France
damien.sileo@synapse—fr.com

Abstract

Various NLP problems — such as the predic-
tion of sentence similarity, entailment, and dis-
course relations — are all instances of the same
general task: the modeling of semantic rela-
tions between a pair of textual elements. A
popular model for such problems is to embed
sentences into fixed size vectors, and use com-
position functions (e.g. concatenation or sum)
of those vectors as features for the prediction.
At the same time, composition of embeddings
has been a main focus within the field of Statis-
tical Relational Learning (SRL) whose goal is
to predict relations between entities (typically
from knowledge base triples). In this article,
we show that previous work on relation pre-
diction between texts implicitly uses composi-
tions from baseline SRL models. We show that
such compositions are not expressive enough
for several tasks (e.g. natural language infer-
ence). We build on recent SRL models to ad-
dress textual relational problems, showing that
they are more expressive, and can alleviate is-
sues from simpler compositions. The resulting
models significantly improve the state of the
art in both transferable sentence representation
learning and relation prediction.

1 Introduction

Predicting relations between textual units is a
widespread task, essential for discourse analy-
sis, dialog systems, information retrieval, or para-
phrase detection. Since relation prediction often
requires a form of understanding, it can also be
used as a proxy to learn transferable sentence rep-
resentations. Several tasks that are useful to build
sentence representations are derived directly from
text structure, without human annotation: sen-
tence order prediction (Logeswaran et al., 2016;
Jernite et al., 2017), the prediction of previous
and subsequent sentences (Kiros et al., 2015; Jer-
nite et al., 2017), or the prediction of explicit dis-
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course markers between sentence pairs (Nie et al.,
2017; Jernite et al., 2017). Human labeled re-
lations between sentences can also be used for
that purpose, e.g. inferential relations (Conneau
et al., 2017). While most work on sentence simi-
larity estimation, entailment detection, answer se-
lection, or discourse relation prediction seemingly
uses task-specific models, they all involve predict-
ing whether a relation R holds between two sen-
tences s1 and so. This genericity has been noticed
in the literature before (Baudis et al., 2016) and it
has been leveraged for the evaluation of sentence
embeddings within the SentEval framework (Con-
neau et al., 2017).

A straightforward way to predict the probability
of (s1, R, s2) being true is to represent s; and sy
with d-dimensional embeddings h; and hs, and to
compute sentence pair features f(hi, he), where
f is a composition function (e.g. concatenation,
product, ...). A softmax classifier gy can learn to
predict R with those features. gy o f can be seen
as a reasoning based on the content of ~; and hy
(Socher et al., 2013).

Our contributions are as follows:

— we review composition functions used in tex-
tual relational learning and show that they
lack expressiveness (section 2);

— we draw analogies with existing SRL mod-
els (section 3) and design new compositions
inspired from SRL (section 4);

— we perform extensive experiments to test
composition functions and show that some of
them can improve the learning of representa-
tions and their downstream uses (section 6).

2 Composition functions for relation
prediction

We review here popular composition functions
used for relation prediction based on sentence em-
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beddings. Ideally, they should simultaneously ful-
fill the following minimal requirements:

— make use of interactions between representa-
tions of sentences to relate;

— allow for the learning of asymmetric relations
(e.g. entailment, order);

— be usable with high dimensionalities (param-
eters € and f should fit in GPU memory).

Additionally, if the main goal is transferable
sentence representation learning, compositions
should also incentivize gradually changing sen-
tences to lie on a linear manifold, since trans-
fer usually uses linear models. Another goal can
be learning of transferable relation representa-
tion. Concretely, a sentence encoder and f can
be trained on a base task, and f(hi,he) can be
used as features for transfer in another task. In
that case, the geometry of the sentence embed-
ding space is less relevant, as long as the f(hq, ho)
space works well for transfer learning. Our evalu-
ation will cover both cases.

A straightforward instantiation of f is concate-
nation (Hooda & Kosseim, 2017):

f[,](hlah’Q) = [hlth] (1)

However, interactions between s; and s9 cannot
be modeled with f]; followed by a softmax regres-
sion. Indeed, f[,}(hl, h9)@ can be rewritten as a
sum of independent contributions from A; and hg,
namely 0jg.qh1 + 0[g.2qh2. Using a multi-layer
perceptron before the softmax would solve this
issue, but it also harms sentence representation
learning (Conneau et al., 2017; Logeswaran et al.,
2018), possibly because the perceptron allows for
accurate predictions even if the sentence embed-
dings lie in a convoluted space. To promote inter-
actions between h; and ho, element-wise product
has been used in Baudis et al. (2016):

fo(hi,ha) = h1 © hy 2)

Absolute difference is another solution for sen-
tence similarity (Mueller & Thyagarajan, 2016),
and its element-wise variation may equally be
used to compute informative features:

f—(h1,h2) = |h1 — ho] (3)

The latter two were combined into a popular in-
stantiation, sometimes refered as heuristic match-
ing (Tai et al., 2015; Kiros et al., 2015; Mou et al.,
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2016):

fo—(h1,h2) = [h1 © ha,|ha — h1]]  (4)

Although effective for certain similarity tasks,
fo— is symmetrical, and should be a poor choice
for tasks like entailment prediction or prediction
of discourse relations. For instance, if R, de-
notes entailment and (s1, s2)= (“It just rained”,
“The ground is wet”), (s1, Re, s2) should hold but
not (s2, Re, $1). The fo_ composition function is
nonetheless used to train/evaluate models on en-
tailment (Conneau et al., 2017) or discourse rela-
tion prediction (Nie et al., 2017).

Sometimes  [h1,ha] is concatenated to
fo—(h1,h2) (Ampomah et al., 2016; Conneau
et al., 2017). While the resulting composition
is asymmetrical, the asymmetrical component
involves no interaction as noted previously. We
note that this composition is very commonly used.
On the SNLI benchmark,! 12 out of the 25 listed
sentence embedding based models use it, and 7
use a weaker form (e.g. omitting fo).

The outer product ® has been used instead
for asymmetric multiplicative interaction (Jernite
etal., 2017):

f®(h1, hg) = h1®hy where (h1®h2)i7]’ = hlith

4)
This formulation is expressive but it forces gg to
have d? parameters per relation, which is pro-
hibitive when there are many relations and d is
high.

The problems outlined above are well known in
SRL. Thus, existing compositions (except fg) can
only model relations superficially for tasks cur-
rently used to train state of the art sentence en-
coders, like NLI or discourse connectives predic-
tion.

3 Statistical Relational Learning models

In this section we introduce the context of statisti-
cal relational learning (SRL) and relevant models.
Recently, SRL has focused on efficient and expres-
sive relation prediction based on embeddings. A
core goal of SRL (Getoor & Taskar, 2007) is to
induce whether a relation R holds between two ar-
bitrary entities e1, es. As an example, we would
like to assign a score to (e, R, es) = (Paris, LO-
CATED_IN, France) that reflects a high probability.
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Model Scoring function Parameters
Unstructured  ||e1 — e2||p -
TransE ller + wr —eallp,  wr € RY
2
RESCAL el Wrea W, € R?
DistMult < e1,Wr,e2 > wy € R4
ComplEx Re < e1,w,, & > w, € C?
Table 1: Selected relational learning models. Un-

structured is from (Bordes et al., 2013a), TransE from
(Bordes et al., 2013b), RESCAL from (Nickel et al.,
2011), DistMult from (Yang et al., 2015) and (Trouil-
lon et al., 2016). Following the latter, < a,b,c > de-
notes » ., apbycy. Re(x) is the real part of z, and p is
commonly set to 1.

In embedding-based SRL models, entities e; have
vector representations in R? and a scoring function
reflects truth values of relations. The scoring func-
tion should allow for relation-dependent reason-
ing over the latent space of entities. Scoring func-
tions can have relation-specific parameters, which
can be interpreted as relation embeddings. Table 1
presents an overview of a number of state of the art
relational models. We can distinguish two families
of models: subtractive and multiplicative.

The TransE scoring function is motivated by
the idea that translations in latent space can
model analogical reasoning and hierarchical re-
lationships. Dense word embeddings trained on
tasks related to the distributional hypothesis natu-
rally allow for analogical reasoning with transla-
tions without explicit supervision (Mikolov et al.,
2013). TransE generalizes the older Unstructured
model. We call them subtractive models.

The RESCAL, Distmult, and ComplEx scoring
functions can be seen as dot product matching be-
tween e; and a relation-specific linear transforma-
tion of ey (Liu et al., 2017). This transformation
helps checking whether e; matches with some as-
pects of e5. RESCAL allows a full linear mapping
W,.e2 but has a high complexity, while Distmult is
restricted to a component-wise weighting w, © es.
ComplEx has fewer parameters than RESCAL but
still allows for the modeling of asymmetrical re-
lations. As shown in Liu et al. (2017), ComplEx
boils down to a restriction of RESCAL where W,
is a block diagonal matrix. These blocks are 2-
dimensional, antisymmetric and have equal diag-
onal terms. Using such a form, even and odd in-
dexes of e’s dimensions play the roles of real and
imaginary numbers respectively. The ComplEx
model (Trouillon et al., 2016) and its variations
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Figure 1: Implicit SRL model in text relation prediction

(Lacroix et al., 2018) yield state of the art perfor-
mance on knowledge base completion on numer-
ous evaluations.

4 Embeddings composition as SRL
models

We claim that several existing models (Conneau
et al.,, 2017; Nie et al., 2017; BaudiS et al.,
2016) boil down to SRL models where the sen-
tence embeddings (hi, ha) act as entity embed-
dings (e1, e2). This framework is depicted in fig-
ure 1. In this article we focus on sentence em-
beddings, although our framework can straightfor-
wardly be applied to other levels of language gran-
ularity (such as words, clauses, or documents).

Some models (Chen et al., 2017b; Seo et al.,
2017; Gong et al., 2018; Radford et al., 2018; De-
vlin et al., 2018) do not rely on explicit sentence
encodings to perform relation prediction. They
combine information of input sentences at ear-
lier stages, using conditional encoding or cross-
attention. There is however no straightforward
way to derive transferable sentence representa-
tions in this setting, and so these models are out
of the scope of this paper. They sometimes make
use of composition functions, so our work could
still be relevant to them in some respect.

In this section we will make a link between
sentence composition functions and SRL scor-
ing functions, and propose new scoring functions
drawing inspiration from SRL.

4.1 Linking composition functions and SRL
models

The composition function f, from equation 2
followed by a softmax regression yields a score
whose analytical form is identical to the Distmult
model score described in section 3. Let Oy de-
note the softmax weights for relation R. The logit
score for the truth of (s1, R, s2) is f(h1, he)0r =
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Figure 2: Possible scoring function values according to different composition functions. s; and R are fixed and
color brightness reflects likelihood of (s1, R, s2) for each position of embedding so. (b) and (d) are respectively

more expressive than (a) and (c).

(h1®hg)0g which is equal to the Distmult scoring
function < hq,0p,ho > if hq, ho act as entities
embeddings and 0, as the relation weight wg, .

Similarly, the composition f_ from equation 3
followed by a softmax regression can be seen as
an element-wise weighted score of Unstructured
(both are equal if softmax weights are all unitary).

Thus, fo— from 4 (with softmax regression)
can be seen as a weighted ensemble of Unstruc-
tured and Distmult. These two models are respec-
tively outperformed by TransE and ComplEx on
knowledge base link prediction by a large margin
(Trouillon et al., 2016; Bordes et al., 2013a). We
therefore propose to change the Unstructured and
Distmult in f_ such that they match their respec-
tive state of the art variations in the following sec-
tions. We will also show the implications of these
refinements.

4.2 Casting TransE as a composition

Simply replacing |ho — hi| with

fi(h1, ho) = |ho — hy + t|, where t € R?

(6)

would make the model analogous to TransE. ¢ is
learned and is shared by all relations. A relation-
specific translation ¢t could be used but it would
make f relation-specific. Instead, here, each di-
mension of f;(hq, hy) can be weighted according
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to a given relation. Non-zero ¢ makes f; asym-
metrical and also yields features that allow for the
checking of an analogy between s; and s3. Sen-
tence embeddings often rely on pre-trained word
embeddings which have demonstrated strong ca-
pabilities for analogical reasoning. Some analo-
gies, such as part-whole, are computable with oft-
the-shelf word embeddings (Chen et al., 2017a)
and should be very informative for natural lan-
guage inference tasks. As an illustration, let us
consider an artificial semantic space (depicted in
figures 2a and 2b) where we posit that there is a
“to the past” translation ¢ so that h; + ¢ is the em-
bedding of a sentence s; changed to the past tense.
Unstructured is not able to leverage this semantic
space to correctly score (sq, Rio_the past, s2) while
TransE is well tailored to provide highest scores
for sentences near hq + ¢ where £ is an estimation
of ¢ that could be learned from examples.

4.3 Casting ComplEx as a composition

Let us partition h dimensions into two equally
sized sets R and Z, e.g. even and odd dimension
indices of h. We propose a new function f¢ as
a way to fit the ComplEx scoring function into a
composition function.

fo(hi,he) = [ © Y + hi © B,

(7
KR hy — bt o bR



fc(h1, he) multiplied by softmax weights 6,
is equivalent to the ComplEx scoring function
Re < hy,0,,hy >. The first half of 6, weights
corresponds to the real part of ComplEx rela-
tion weights while the last half corresponds to the
imaginary part.

fc is to the ComplEx scoring function what fq
is to the DistMult scoring function. Intuitively,
ComplEx is a minimal way to model interactions
between distinct latent dimensions while Distmult
only allows for identical dimensions to interact.

Let us consider a new artificial semantic space
(shown in figures 2c and 2d) where the first di-
mension is high when a sentence means that it just
rained, and the second dimension is high when the
ground is wet. Over this semantic space, Distmult
is only able to detect entailment for paraphrases
whereas ComplEXx is also able to naturally model
that (“it just rained”, Reptaiiment, < the ground is
wet”) should be high while its converse should not.

We also propose two more general versions of

fc:

fea(hy, he) = [ © B}, hE © 1,

()
W hy — bt o Wl

f(CB(hlahZ) = [h?@h?,h%@h%, 9)
h © 3, hi @ Y]

fco can be seen as Distmult concatenated with
the asymmetrical part of ComplEx and f-s can be
seen as RESCAL with unconstrained block diago-
nal relation matrices.

5 On the evaluation of relational models

The SentEval framework (Conneau et al., 2017)
provides a general evaluation for transferable sen-
tence representations, with open source evalua-
tion code. One only needs to specify a sen-
tence encoder function, and the framework per-
forms classification tasks or relation prediction
tasks using cross-validated logistic regression on
embeddings or composed sentence embeddings.
Tasks include sentiment analysis, entailment, tex-
tual similarity, textual relatedness, and paraphrase
detection. These tasks are a rich way to train or
evaluate sentence representations since in a triple
(s1, R, s2), we can see (R, s2) as a label for s;
(Baudi$ et al., 2016). Unfortunately, the rela-
tional tasks hard-code the composition function
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from equation 4. From our previous analysis, we
believe this composition function favors the use of
contextual/lexical similarity rather than high-level
reasoning and can penalize representations based
on more semantic aspects. This bias could harm
research since semantic representation is an im-
portant next step for sentence embedding. Train-
ing/evaluation datasets are also arguably flawed
with respect to relational aspects since several re-
cent studies (Dasgupta et al., 2018; Poliak et al.,
2018; Gururangan et al., 2018; Glockner et al.,
2018) show that InferSent, despite being state of
the art on SentEval evaluation tasks, has poor per-
formance when dealing with asymmetrical tasks
and non-additive composition of words. In addi-
tion to providing new ways of training sentence
encoders, we will also extend the SentEval evalu-
ation framework with a more expressive composi-
tion function when dealing with relational transfer
tasks, which improves results even when the sen-
tence encoder was not trained with it.

6 Experiments

Our goal is to show that transferable sentence rep-
resentation learning and relation prediction tasks
can be improved when our expressive composi-
tions are used instead of the composition from
equation 4. We train our relational model adap-
tations on two relation prediction base tasks (7),
one supervised (7 = NLI) and one unsupervised
(T = Disc) described below, and evaluate sen-
tence/relation representations on base and trans-
fer tasks using the SentEval framework in order
to quantify the generalization capabilities of our
models. Since we use minor modifications of In-
ferSent and SentEval, our experiments are easily
reproducible.

6.1 Training tasks

Natural language inference (7 = NLI)’s goal is
to predict whether the relation between two sen-
tences (premise and hypothesis) is Entailment,
Contradiction or Neutral. We use the combination
of SNLI dataset (Bowman et al., 2015) and MNLI
dataset (Williams et al., 2018). We call AIINLI
the resulting dataset of 1M/ examples. Conneau
et al. (2017) claim that NLI data allows univer-
sal sentence representation learning. They used
the fo — composition function with concatenated
sentence representations in order to train their In-
fersent model.



name N task C  representation(s) used

MR 11k sentiment (movies) 2

SUBJ 10k  subjectivity/objectivity 2 hy

MPQA 11k opinion polarity 2 h

TREC 6k question-type 6 h

SICK™ 10k NLI 3 fms(hi, he)

MRPC,* 4k paraphrase detection 2 (fm,s(h1,h2) + (fm,s(h2, h1))/2
PDTBY* 17k  discursive relation 5 fm,s(h1,h2)

STS14 4.5k  similarity - cos(hi, h2)

Table 2: Transfer evaluation tasks. N = number of training examples; C = number of classes if applicable. h1, ho
are sentence representations, f,, s a composition function from section 4.

We also train on the prediction of discourse con-
nectives between sentences/clauses (7 = Disc).
Discourse connectives make discourse relations
between sentences explicit. In the sentence [/ live
in Paris but I'm often elsewhere, the word but
highlights that there is a contrast between the two
clauses it connects. We use Malmi et al.’s (2018)
dataset of selected 400k instances with 20 dis-
course connectives (e.g. however, for example)
with the provided train/dev/test split. This dataset
has no other supervision than the list of 20 con-
nectives. Nie et al. (2017) used f _ concatenated
with the sum of sentence representations to train
their model, DisSent, on a similar task and showed
that their encoder was general enough to perform
well on SentEval tasks. They use a dataset that is,
at the time of writing, not publicly available.

6.2 Evaluation tasks

Table 2 provides an overview of different transfer
tasks that will be used for evaluation. We added
another relation prediction task, the PDTB coarse-
grained implicit discourse relation task, to Sent-
Eval. This task involves predicting a discursive
link between two sentences among {Comparison,
Contingency, Entity based coherence, Expansion,
Temporal}. We followed the setup of Pitler et al.
(2009), without sampling negative examples in
training. MRPC, PDTB and SICK will be tested
with two composition functions: besides SentE-
val composition fe —, we will use fes _ for trans-
fer learning evaluation, since it has the most gen-
eral multiplicative interaction and it does not pe-
nalize models that do not learn a translation. For
all tasks except STS14, a cross-validated logistic
regression is used on the sentence or relation rep-
resentation. The evaluation of the STS14 task re-
lies on Pearson or Spearman correlation between
cosine similarity and the target. We force the com-
position function to be symmetrical on the MRPC
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task since paraphrase detection should be invariant
to permutation of input sentences.

6.3 Setup

We want to compare the different instances of f.
We follow the setup of Infersent (Conneau et al.,
2017): we learn to encode sentences into h with
a bi-directional LSTM using element-wise max
pooling over time. The dimension size of A is
4096. Word embeddings are fixed GloVe with 300
dimensions, trained on Common Crawl 840B.2
Optimization is done with SGD and decreasing
learning rate until convergence.

The only difference with regard to Infersent is
the composition. Sentences are composed with
six different compositions for training according
to the following template:

fm,s1,2(h1, ho) = [fm(ha, he), fs(hi, ha), b1, h
(10)
fs (subtractive interaction) is in {f_, fi}, fm
(multiplicative interaction) is in {fq, fce, fos}-
We do not consider fc since it yielded inferior re-
sults in our early experiments using NLI and Sent-
Eval development sets.
fm.s1,2(h1, he) is fed directly to a softmax re-
gression. Note that Infersent uses a multi-layer
perceptron before the softmax, but uses only lin-
ear activations, so fo _ 12(h1, ho) is analytically
equivalent to Infersent when 7 = NLI .

6.4 Results

Having run several experiments with different ini-
tializations, the standard deviations between them
do not seem to be negligible. We decided to take
these into account when reporting scores, con-
trary to previous work (Kiros et al., 2015; Con-
neau et al., 2017): we average the scores of 6 dis-
tinct runs for each task and use standard deviations

*https://nlp.stanford.edu/projects/glove/



Models trained on natural language inference (7 = NLI)

ms MR SUBJ] MPQA TREC MRPC® PDTB® SICK® STS14 T AVG
®,— 812 927 904 896 76.1 46.7 86.6 695 842 79.1
o,— 814 928 905  89.6 754 46.6 86.7  69.5 843 791
B,— 812 926 905 896 76 46.5 86.6 695 842 79.1
®,t 811 927 905 897 76.5 46.4 86.5 700 848 792
ot 813 926  90.6 892 76.2 472 865 700 846 792
Bt 812 927 904 885 75.8 473 868  69.8 842 79.1

Table 3: SentEval and base task evaluation results for the models trained on natural language inference (7 = NLI);
AIlINLI is used for training. All scores are accuracy percentages, except STS14, which is Pearson correlation
percentage. AVG denotes the average of the SentEval scores.

Models trained on discourse connective prediction (7 = Disc)

ms MR SUBJ] MPQA TREC MRPC® PDTB® SICK® STS14 T AVG
®,— 804 927 902 895 745 473 832 579 357 77
oa,— 804 929 902 902 75 479 833 578 359 772
B,— 802 928 902 884 74.9 475 829 577 359 768
®,t 802 928 902  90.4 74.6 485 834 586 361 773
ot 802 929 903 903 75.1 47.8 832 583 361 773
Bt 802 928 903 897 74.4 479 837 582 357 712

Table 4: SentEval and base task evaluation results for the models trained on discourse connective prediction (7 =
Disc). All scores are accuracy percentages, except STS14, which is Pearson correlation percentage. AVG denotes

the average of the SentEval scores.

under normality assumption to compute signifi-
cance. Table 3 shows model scores for 7 = NLI,
while Table 4 shows scores for 7 = Disc. For
comparison, Table 5 shows a number of important
models from previous work. Finally, in Table 6,
we present results for sentence relation tasks that
use an alternative composition function ( f((:g’_) in-
stead of the standard composition function used in
SentEval.

For sentence representation learning, the base-
line, fo,— composition already performs rather
well, being on par with the InferSent scores of the
original paper, as would be expected. However,
macro-averaging all accuracies, it is the second
worst performing model. fca ;12 is the best per-
forming model, and all three best models use the
translation (s = t). On relational transfer tasks,
training with fce ;12 and using complex C# for
transfer (Table 6) always outperforms the baseline
(fo,—,1,2 with ©— composition in Tables 3 and 4).
Averaging accuracies of those transfer tasks, this
result is significant for both training tasks at level
p < 0.05 (using Bonferroni correction accounting
for the 5 comparisons). On base tasks and the aver-
age of non-relational transfer tasks (MR, MPQA,
SUBJ, TREC), our proposed compositions are on
average slightly better than fo _ ;2. Representa-
tions learned with our proposed compositions can
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still be compared with simple cosine similarity: all
three methods using the translational composition
(s = t) very significantly outperform the baseline
(significant at level p < 0.01 with Bonferroni cor-
rection) on STS14 for 7 = NLI. Thus, we believe
fce t,1,2 has more robust results and could be a bet-
ter default choice than fo _ 12 as composition for
representation learning.

Additionally, using C? (Table 6) instead of ®
(Tables 3 and 4) for transfer learning in relational
transfer tasks (PDTB, MRPC, SICK) yields a sig-
nificant improvement on average, even when m =
® was used for training (p < 0.001). Therefore,
we believe fs _ is an interesting composition for
inference or evaluation of models regardless of
how they were trained.

7 Related work

There are numerous interactions between SRL and
NLP. We believe that our framework merges two
specific lines of work: relation prediction and
modeling textual relational tasks.

Some previous NLP work focused on compo-
sition functions for relation prediction between

*Note that our compositions are also beneficial with re-
gard to convergence speed: on average, each of our proposed
compositions needed less epochs to converge than the base-
line f,— 1,2, for both training tasks.



Comparison models

model MR SUBJ] MPQA TREC MRPC® PDTB® SICK® STSI4 AVG
Infersent 81.1  92.4 90.2 88.2 76.2 46.7- 86.3 70 789
SkipT 765  93.6 87.1 92.2 73 - 82.3 29 -
BoW 772 912 87.9 83 72.2 439 78.4 546  73.6

Table 5: Comparison models from previous work. InferSent represents the original results from Conneau et al.
(2017), SkipT is SkipThought from Kiros et al. (2015), and BoW is our re-evaluation of GloVe Bag of Words from
Conneau et al. (2017). AVG denotes the average of the SentEval scores..

T = Disc T = NLI
ms MRPC®’ PDTB? SICK® AVG MRPC®? PDTB? SICK? AVG
o, — 74.8 48.2 83.6 689 76.2 472 86.9  70.1
a, — 74.9 49.3 83.8  69.3 75.9 47.1 86.9 70
B, — 75 48.8 834  69.1 75.8 47 87  69.9
o,t 74.9 48.7 83.6 69.1 76.2 47.8 86.8 703
a,t 75.2 48.6 83.5  69.1 76.2 47.6 873 1704
B,t 74.6 48.9 839 69.1 76.2 47.8 87 703

Table 6: Results for sentence relation tasks using an alternative composition function (fcs _) during evaluation.

AVG denotes the average of the three tasks.

text fragments, even though they ignored SRL and
only dealt with word units. Word2vec (Mikolov
et al., 2013) has sparked a great interest for this
task with word analogies in the latent space.
Levy & Goldberg (2014) explored different scor-
ing functions between words, notably for analo-
gies. Hypernymy relations were also studied, by
Chang et al. (2018) and Fu et al. (2014). Levy et al.
(2015) proposed tailored scoring functions. Even
the skipgram model (Mikolov et al., 2013) can
be formulated as finding relations between con-
text and target words. We did not empirically ex-
plore textual relational learning at the word level,
but we believe that it would fit in our framework,
and could be tested in future studies. Numerous
approaches (Chen et al., 2017b; Seok et al., 2016;
Gong et al., 2018; Joshi et al., 2019) were pro-
posed to predict inference relations between sen-
tences, but don’t explicitely use sentence embed-
dings. Instead, they encode sentences jointly, pos-
sibly with the help of previously cited word com-
positions, therefore it would also be interesting
to try applying our techniques within their frame-
work.

Some modeling aspects of textual relational
learning have been formally investigated by
Baudis et al. (2016). They noticed the genericity
of relational problems and explored multi-task and
transfer learning on relational tasks. Their work
is complementary to ours since their framework
unifies tasks while ours unifies composition func-
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tions. Subsequent approaches use relational tasks
for training and evaluation on specific datasets
(Conneau et al., 2017; Nie et al., 2017).

8 Conclusion

We have demonstrated that a number of existing
models used for textual relational learning rely on
composition functions that are already used in Sta-
tistical Relational Learning. By taking into ac-
count previous insights from SRL, we proposed
new composition functions and evaluated them.
These composition functions are all simple to im-
plement and we hope that it will become standard
to try them on relational problems. Larger scale
data might leverage these more expressive compo-
sitions, as well as more compositional, asymmet-
ric, and arguably more realistic datasets (Dasgupta
et al., 2018; Gururangan et al., 2018). Finally, our
compositions can also be helpful to improve in-
terpretability of embeddings, since they can help
measure relation prediction asymmetry. Analo-
gies through translations helped interpreting word
embeddings, and perhaps anlyzing our learned ¢
translation could help interpreting sentence em-
beddings.
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