Beyond Context: A New Perspective for Word Embeddings

Yichu Zhou
School of Computing
University of Utah
flyaway@cs.utah.edu

Abstract

Most word embeddings today are trained by
optimizing a language modeling goal of scor-
ing words in their context, modeled as a multi-
class classification problem. Despite the suc-
cesses of this assumption, it is incomplete: in
addition to its context, orthographical or mor-
phological aspects of words can offer clues
about their meaning. In this paper, we de-
fine a new modeling framework for training
word embeddings that captures this intuition.
Our framework is based on the well-studied
problem of multi-label classification and, con-
sequently, exposes several design choices for
featurizing words and contexts, loss functions
for training and score normalization. Indeed,
standard models such as CBOW and FAST-
TEXT are specific choices along each of these
axes. We show via experiments that by com-
bining feature engineering with embedding
learning, our method can outperform CBOW
using only 10% of the training data in both the
standard word embedding evaluations and also
text classification experiments.

1 Introduction

The distributional hypothesis (Firth, 1935; Harris,
1954) has been a cornerstone in NLP. For exam-
ple, Firth (1935) writes:

...the complete meaning of a word
is always contextual, and no study of
meaning apart from a complete context
can be taken seriously.

Operationally, in modern NLP, word embeddings
capture this idea and are typically trained using
neural language models or word collocations (e.g.
Bengio et al., 2003; Collobert and Weston, 2008;
Mikolov et al., 2013b; Pennington et al., 2014; Pe-
ters et al., 2018; Devlin et al., 2018).

Is word meaning exclusively defined by its con-
text? In this paper, we argue that while the word
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usage plays a crucial role in defining its meaning
(perhaps, centrally so), it is not the only mecha-
nism that endows meaning to words. Indeed, Firth
writes in the paragraph before the above quote:

...a certain component of the mean-
ing of a word is described when you say
what sort of a word it is, that is when
you identify it morphologically.. .

The composition of a word, (i.e., its orthography
and morphology) may offer cues about its mean-
ing even if the word is not commonly used, thus
allowing us to understand unseen words. For ex-
ample, we can elide over misspellings of words
(e.g., Bbeijing) because we observe the similari-
ties in the orthography between words.

By ignoring word-level information, many ex-
isting off-the-shelf word embedding approaches
suffer from two shortcomings. First, they need
a great amount of training data to get high qual-
ity word embeddings. Second, even with large
amounts of training data, some words (e.g., neol-
ogisms, misspellings, technical terms) will not be
seen frequently enough to provide statistical sup-
port for good embeddings.

In this paper, we are motivated by the observa-
tion that both the context of a word and its own in-
ternal information contribute to word meaning. To
model this in an easy-to-extend manner, we need a
new perspective about training word embeddings
that not only admits arbitrary word and context
features, but also supports conceptual tools to sys-
tematically reason about the various model design
aspects in terms of familiar modeling techniques.

A common method for training word embed-
dings is to construct a word prediction problem,
and obtain the word embeddings as a side ef-
fect. One instantiation of the word prediction task,
namely CBOW (Mikolov et al., 2013a), frames it
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as the multi-class classification problem of pre-
dicting a word given a context. We argue that the
task is more appropriately framed as multi-label
classification — multiple words can fit in the same
context. Moreover, since the label set (all words)
is massive, word prediction is an instance of eX-
treme Multi-label Learning (XML) (Balasubrama-
nian and Lebanon, 2012; Bhatia et al., 2015; Bi
and Kwok, 2013, inter alia).

Framing word prediction as an XML problem
allows us to define a unifying framework for word
embeddings. Consequently, we can systemati-
cally analyze the problem of training word em-
beddings using lessons from the XML literature.
In particular, we can featurize both inputs and out-
puts — in our case, contexts and words. Apart
from featurization, loss functions and normaliza-
tion of probability are also design choices avail-
able. We show that our approach subsumes sev-
eral standard word embedding learning methods:
specific design choices give us familiar models
such as CBOW (Mikolov et al., 2013a) and FAST-
TEXT (Bojanowski et al., 2017)".

Our experiments study the interplay between
the amount of data needed to train embeddings,
and the features for words and contexts. We show
that, when trained on the same amount of data,
using word and context features outperforms the
original CBOW and FASTTEXT on both the stan-
dard analogy evaluation and a variant where words
have introduce typographical errors. Featurizing
words and contexts reduces data dependency for
training and can achieve similar results as CBOW
and FASTTEXT trained on a 10x larger corpus. Fi-
nally, we also show that the trained embeddings
offer better representations for an text classifica-
tion evaluation.

In summary, the contributions of this work are:
(1) We propose a new family of models for word
embeddings that allow both word orthography and
context to inform its embeddings via user de-
signed features. (ii) We show that our model fam-
ily generalizes several well-known methods such
as CBOW and FASTTEXT. (iii) Our experiments
show that exploiting word and context features
gives better embeddings using significantly lower
amounts of training data. (iv) Our experiments
also show that while global normalization is the
more appropriate formulation, in practice, the av-

'In order to have a fair comparison, we always use the
CBOW variant of FASTTEXT in this paper.
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erage number of words in a context is too small for
global normalization to prove advantageous.

2 Preliminaries & Notation

In this section, we will briefly look at the tasks of
word prediction and extreme multi-label classifi-
cation with the goal of defining notation.

Word prediction The task of word prediction
is commonly used to train word embeddings (e.g.
Bengio et al., 2003; Mikolov et al., 2013b). A typ-
ical example of this class of models (that includes
CBOW and several others) frames the problem as
using the context around a word to predict it. The
context is defined via a fixed-size window around
the word to be predicted.

Suppose y denotes a target word and x repre-
sents its context. Then CBOW embeddings are
trained by minimizing the log loss:

arg HllIl Z

(z,y)€D

—log P(y|z;0) ¢))

Here, D is the set of all training documents and
0 are the parameters which defined the probabil-
ity distribution and are learned. The trained word
embeddings are part of the learned parameters.

Extreme Multi-label Learning Suppose we
have a classification task with a set of labels £. A
multi-label classification problem (e.g. Zhang and
Zhou, 2014) is one where inputs can be associated
with more than one label. Given an input x, the
goal is to predict a subset ) of the label set. One
general strategy to model a multi-label problem is
to define a scoring function f(x,);6) which uses
parameters 6 to score sets ) C L as being cor-
rect for the input . We can train such a model by
minimizing a loss function ¢ over a training set D:

argmln Z O(f

(z,Y)eD

f(x,¥;0)) 2

When the label set £ is large, both training and
prediction can become problematic because enu-
merating all subsets of L is infeasible. We
call such problems eXtreme multi-label learning
(XML) problems (e.g. Bhatia et al., 2015).

3 Rethinking Word Embeddings

In this section, we will look at assumptions that
underlie the use of word prediction to train word
embeddings.



Words & Features Many embedding methods
are built on the assumption that the context de-
fines the meaning of a word, thus accounting for
the pervasiveness of the word prediction task to
train word embeddings. However, we argue this
assumption is incomplete.

The meaning of a word is defined not only by its
context, but also the word itself. For example, con-
sider the word googlize. Such made-up words may
have only limited or no context. Yet, we may be
able to infer their meaning (devoid of context) by
appealing to our understanding of their parts. In
our example, the word is composed of google and
-ize, both of which have their own meanings and
the composition (google + -ize) gives cues as to
what googlize may mean. A reader may use their
understanding of the word google and the fact that
-ize is a common suffix to create verbs to hypoth-
esize the meaning of the word.

The above example illustrates the following
principle: A word is not the smallest meaning unit,
but the most common one. We argue that we should
utilize the internal information of words when we
train word embeddings.

Some recent work (e.g. Pinter et al., 2017; Kim
et al., 2018; Bojanowski et al., 2017; Schick and
Schiitze, 2018) applies our assumptions implic-
itly by using character-level information to em-
bed words. While character-based features help
capture the internal structure of the word, several
other aspects may be helpful, e.g. linguistically
motivated prefixes and suffixes, the shape of the
word and other possible features. §4.4 describes
the various choices we explore.

Word Prediction as XML The second inherent
assumption in word prediction is that we can frame
the problem of predicting a word that fits a context
as a multi-class classification problem. However,
in nearly all contexts, more than one word could
fit. For example, consider the sentence The run-
ning is chasing after a rabbit. It can be
completed with many words filling the blank, such
as fox, dog, hound.

Seen this way, word prediction models are bet-
ter framed as the multi-label classification prob-
lem of using the context to predict all words that
could occur in the context. In the example above,
we would use the sentence with the blank to jointly
predict all the words such as fox, dog, hound that
can occupy the blank. Using the notation from
§2, the input « to the problem is a context and all
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words that could occur in the context form the la-
bel set ) for that input. The label set is a subset
of all labels L, i.e., the entire vocabulary. Follow-
ing this intuition, in the rest of the paper, we will
use labels and words interchangeably. Note that
since the vocabulary is large, we have an extreme
multi-label learning problem at hand.

4 A unifying framework

In this section, we will formalize the intuition il-
lustrated in §3. We will see that this effort re-
veals several design choices involving normaliza-
tion, loss functions, label costs, and featurization.

4.1 Modeling Words in Context

Our goal is to frame word prediction as a multi-
label classification problem to (i) predict a subset
of words for a context, and, (ii) generate embed-
dings for each word.

Suppose we have a word ¥ in a context x. Let
the functions ¢ and 1 denote any feature functions
that operate on the word and context respectively.
We model the score of the word y given the context
x by projecting their feature representations into a
common d dimensional space with two matrices
V and W. The matrices are the parameters to be
learned during training. Using these projections,
the scoring function of a pair (x, y) is defined as:

S(a,y) = Woly)]" [Vi(a)]

Using the score for a pair (z,y), we can now as-
sign scores to a set of words for a context. In any
context, some words are more frequent than oth-
ers. Suppose we denote the frequency of a label
y in a context = as n,(y). We can then define the
score of a set of words ) as the weighted sum of
each word in the set:

Score(x,)) = Z nz(y)S(x,y)

yey

3)

“)

The matrices V' and W will be used to compute
word embeddings; we will discuss this further in
the comparison to CBOW in §5.2.

4.2 Normalization and Loss Functions

As a prelude to defining loss functions for train-
ing, we need to decide how to normalize the scor-
ing functions defined above: we have the choice of
local or global normalization. With local normal-
ization, we contrast each label in the set of true
labels against all other labels individually; with



global normalization, we contrast the true label set
against other possible subsets of labels.

As an illustration, suppose the label set ) for
a context z contains two labels y; and yo. With
local normalization, we seek parameters that si-
multaneously make S(z,y;) higher than S(z, y2)
and S(x,ys2) higher than S(z,y1). Moreover, lo-
cal normalization does not prevent a third label y3
from having a positive score as long as it is less
than the scores of the valid labels. As a result, the
set of highest scoring labels could be invalid even
though all the local constraints are satisfied. To
fix this, we can design a globally normalized loss
function that demands the score of valid subset
to be higher than all other subsets of L.

Irrespective of whether the scores are locally
or globally normalized, for the XML problem of
word prediction, we can use several loss functions
for training. To compare to CBOW and FAST-
TEXT, we will focus on log loss here. We refer the
interested reader to the supplementary material for
details about the global and local hinge loss for the
problem.

For a locally normalized log loss, the probabil-
ity of a pair (z,y) can be defined as:

eS(@.y)
Z eS(Ivy,)

y'el

Pylz) = (5)

The local log loss is defined as the negative log of
this probability for a word y that occurs in a con-
text . Note that each valid word contrasts against
all other words in the vocabulary L.

For a globally normalized log loss, the proba-
bility of a label ) for an input z is:

eScore(;t,y)

Z eScore(x,f)
yeL

P|x) = (6)

The global log loss is the negative log of this prob-
ability for a set ) of words that are valid in a con-
text . Note that the valid set ) contrasts against
all other possible subsets of the vocabulary.

4.3 Training

A final consideration for training concerns the fact
that frequent words can dominate the loss function
unless special care is taken. Sub-sampling of fre-
quent words is commonly used to deal with this
problem, where a word y will be retained with
probability g(y), which is inversely proportional
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to its frequency. In this work, we adopt the strat-
egy of cost-sensitive classification which lets di-
rectly augment the loss functions. Different labels
(i.e., words) are assigned different costs based on
their frequency using a cost function ¢, (y).

Suppose we have a word ¥ in a context x, whose
frequency is n,(y). We will use the word sub-
sampling probability g(y) above to define the cost
for the pair (x, y) as the expected frequency of the
pair in the training set. That is,

)

We use the subsampling frequency from word2vec

to define g(y) as follows:?
a
Lf-—=| &
) n(@/))

g(y) = min (1, ( n(y)

—+
o
Here, n(y) is the context-independent frequency
of label y in the whole corpus and « is a hyper-
parameter.
Using these costs, the final form of local log loss
can be shown to be:

cz(y) = nz(y)g(y)

lu(z,Y) = =Y caly) log Py|a)
yey
eS(@y)
= —Zcz 10g75(1y)
yey v e£
==Y Sy + Y caly)log Y 5V
yey yeY y'eL

C)]

For global loss, we can achieve a similar effect

by rewriting the weighting term in Eq. 4 with the
cost. The global log loss is:

Loi(x,Y) = —log P(Y|x)
exp (e (y)S(x,
o yl;[y p (cz(y)S(z,y)) (10)

> TT exp (e (9)S (@, o))
YCLy ey

Direcly computing the denominator is expen-
sive. However, we know that:

ST exp (e(v)S(,0))

ycLy'ey

= exp(0) + exp (cz(y1)S(w,y1)) + exp (cz(y2)S(z,y2)) + - ..

+ exp (cz(y1)S (@, y1)) exp (ca (y2)S(z,42)) - - -

+exp (cz(y1)S (I yl)) -exp (ce(y12))S(z, yiz)))
=11 (exp( z,9)) + 1)
yeL

(1)

The implementation and the description in the paper are
different. We are following the implementation and not the
paper. The implementation can be found here:https://code.
google.com/archive/p/word2vec/


https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

Then, the global log loss can be rewritten as:
fgl(xv y) = - Z Cx(y)S(CE, y)+

yeY

Z log (exp (cm(y’)S(ac, y')) + 1)
y'el
(12)
Note that both local and global models are dom-
inated by the O(|£]) summation, which suggests
they have same computational cost.

4.4 Featurizing Words and Contexts

In the scoring function of a pair (z,y), i.e., Eq. 3,
we use two feature functions ¢ and 1 to extract
features from the label and context respectively.
This design choice dictates the information we
wish to provide to the model about words and
contexts. CBOW and word2vecf uses indicators
for the target words, while FASTTEXT uses both
the words and their constituent character ngrams.
For context, CBOW and FASTTEXT aggregate the
same features as the target word, but over the con-
text words. Word2vecf (Levy and Goldberg, 2014)
uses dependency information to featurize the con-
text. We generalize these by allowing user or do-
main dependent features. The output of feature
functions ¢ and v is a sparse vector and each di-
mension is a binary value, which indicates the ex-
istence of corresponding feature.

Though the ¢ and v functions, we can easily in-
corporate extra information into word embeddings
from other resources. For example, we can use
hand-crafted gazetteers to indicate whether two
words can belong to the same type. If both Beijing
and Paris are in a list of locations, we can identify
similarity between the words without any context.
Such resources may provide information that we
can not learn from the context.

S Analysis of Modeling Choices

In this section, we discuss the advantages of the
framework described in §4 and its connections to
CBOW embeddings.

5.1 Word Embeddings

In the framework described in §4, we are not learn-
ing the word embeddings, but feature embeddings.
Each column of W and V represents the embed-
ding of a certain feature. Given features for a
word, we can compute its the embeddings of a
word w by computing either W¢(w) or Vip(w).
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This perspective of feature embeddings presents
three advantages.

First, we provide a mechanism for incorporating
human knowledge into word embeddings. Feature
engineering can be combined with our model nat-
urally. Moreover, using informative features can
help produce high quality embeddings even with
smaller document collections (e.g., all documents
related to a specific project in a company).

Second, because a feature can be shared by dif-
ferent words, each training update for a feature
will update all the word embeddings containing
this feature. This can lead to better generalization.

Third, it presents an elegant solution for the out-
of-vacabulary (OOV) problem. Once we define
the feature template, we can extract features of any
word, then we can compute the embedding for it.
Some recent work (Pinter et al., 2017; Kim et al.,
2018; Zhao et al., 2018; Artetxe et al., 2018) ad-
dress the OOV problem using pre-trained embed-
dings and mimicking them by training a second
model using substrings of a given word. Instead,
here we can use arbitrary features and do not need
pre-trained embeddings.

5.2 CBOW: A Specific Instance

In this subsection, we will show that CBOW is an
instance of our framework. We can rewrite the
overall loss on a given dataset D using the local
log loss function from Eq. 9 as:

Ell D, (9 Z Z_Cz IOgP y|l‘)
(z,Y)eD ycy
(z,Y)eD yey
(13)

As before, n.(y) is the frequency of label y for
the context z, g(y) is the probability of keeping
this label y and 6 denotes the matrices V and W'

Now, suppose we have a different dataset D’
that is constructed from D as follows: for every
(x,Y) € D, forevery y € Y, add n,(y) copies of
(x,y) to the new dataset D'. Now, D’ is a multi-
class classification dataset, where each z is asso-
ciated with only one label y in a single example.
More importantly, D’ is exactly the input-output
pairing used to train CBOW. With this new dataset
representation, we can write the total loss over the
dataset D’ as:

lepow (D', 0) =

>

(z,y)eD’

—log P(ylxz)  (14)



In both Ell(D,H) and €CBow(D/,9), P(y|x) is
given by Equation 5. If the label features ¢(y)
consists only of indicators for the label (i.e., the
target word) and the context features () is the
average of the indicators for the words in the con-
text, then these two loss functions are identical. In
other words, CBOW is an instance of our model
that minimizes local log loss, and uses these spe-
cific features. A similar argument applies for
FASTTEXT and word2vecf as well.

There are two important differences: First,
CBOW used sub-sampling to reduce the impact
of frequent words, while we use costs ¢;(y) for
this purpose. Second, in CBOW, the matrix V' is
used as word embeddings. As mentioned above, in
fact, both V' and W generate word embeddings for
a word w as W¢(w) and Vi)(w). Based on pre-
liminary experiments, we observed that concate-
nating W¢(w) and V)(w) produces the best em-
beddings. In this work, we use this concatenation
strategy to embed words.

5.3 Local vs. Global Normalization

Given the two normalization methods (§4.2),
which one should we pick? In theory, local nor-
malization for word prediction can be problematic
as described in §4.2. However, in practice, CBOW,
FASTTEXT and word2vecf all use multiclass clas-
sification (i.e., local normalization) and work well.
This apparent gap between the theory and prac-
tice can be explained by the observation that while
many words may indeed fit in a given context, the
key criterion is the label density — that is, the ratio
of the number of valid labels (|)|) to the number
of all possible labels (|£]). For the XML prob-
lem of word prediction, the label density is small
enough that the problem can be approximated as

a multiclass problem. In other words, because | L]

N]
1]

that it is close to %I Unless we have dense labels
in specialized document collections, we do not ex-
pect globally normalized models to outperform lo-
cally normalized ones.

is large, the average value of is small enough

6 Experiments

In this section, we empirically verify that our
approach: (i) achieves similar performance as
CBOW using the same training set and features,
(i1) can outperform CBOW and FASTTEXT with
only 10% of the training data if extra features are
used, (iii) creates embeddings that generalize bet-
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ter by evaluating analogies on datasets with mis-
spellings, and, (iv) offers a better feature represen-
tation for an extrinsic evaluation of text classifi-
cation. The overall goal of our experiments is to
understand the dependence between dataset size,
features, and the quality of embeddings produced.

We conduct our experiments on the training
set of the 1 billion language model benchmark
corpus (Chelba et al., 2014), consisting of 7T00M
words (with 550K unique words). For all exper-
iments, the embedding size of W and V is 300
and the context window size is set to five words to
the left and right of a word. The hyper-parameter
a from Eq. 8 is 0.001 (following CBOW’s im-
plementation). To compare to CBOW and FAST-
TEXT, we use log loss on all our experiments.
We optimized the loss using Adam (Kingma and
Ba, 2015) and used dropout with keep probabil-
ity 0.6. Based on preliminary trials, we projected
the matrix T onto a unit ball. For efficient learn-
ing, we also used the negative sampling approach
from word2vec. More experiment setup details are
available in supplementary material.

Table 1 summarizes all the feature templates we
used. In the table, the feature Gazetteers is a set of
lists containing names of entities from Wikipedia,
grouped by category. Each list represents an en-
tity type such as cities, organizations, days of the
week, etc. If the current word matches one of the
words in the list, the corresponding feature is ac-
tivated. The Quirk feature is a collection of pre-
fixes and suffixes types from Quirk et al. (1987).
For example, un- is a negative prefix and -ness is
a noun suffix. For the context feature function ¢,
we summed the above features over all the context
words.

We implement our model using Pytorch?. We
train our model on a Nvidia DGX machine using
one Tesla (16G video memory) GPU. We train 70
epochs for both local log loss and global log loss.
For all experiments, prediction accuracy is used as
the evaluation metric.

6.1 Analogy Evaluation

In this subsection, we evaluate our models on these
traditional analogy evaluation tests (Mikolov et al.,
2013a), in particular the Google and the MSR
analogy tests.* These evaluations focus on an

3https://pytorch.org/

*Although the Google and Microsoft analogy datasets
have been shown to be problematic (Linzen, 2016), they are
the most commonly used evaluation datasets.
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Features Description

Word word itself. e.g. <Beijing>
Prefix and suffix up to length 3.
Prefixand suffix o . 04148, 0#24Be, 0#3#Bei
bstrin word substrings from length 3 to 6
substring e.g. n-grams @Bei, n-grams @ejj
Known prefix and suffix types from
Quirk Quirk et al. (1987),
e.g. quirk@Conversion
word shape of the word.
Word shape e.g. shape @ Xxxx
Indicators for gazetteer matches
Gazetteers .
e.g. gaz@Locations
MISC isalpha? isPrintable? isdigit?
e.g. special@alpha special @printable
Default The default feature for every word,

functions as a bias feature.

Table 1: Extra feature templates for learning word em-
beddings. This table uses the word Beijing as an ex-
ample. We use gazetteers from the EDISON pack-
age (Sammons et al., 2016).

Model Features Google MSR
CBOW word 0.398  0.463
Fasttext subwords 0.424  0.584
local model word 0.416 0.426
global model word 0.431 0.410
local model all 0.494 0.724
global model all 0.480 0.692

Table 2: Comparison between different models trained
on 10% corpus using a closed vocabulary. The last two
rows use features from Table 1.

analogy question of the form A:B::C:?, and the
goal is to use word embeddings to find the word
that best fills the question slot. Because these re-
sults are highly related to the vocabulary used to
search for the answers, we divide this evaluation
into two different vocabularies: closed and open.
Closed vocabulary means it comes directly from
the training set; while open vocabulary means it is
composed of words coming from the training set
and evaluation set. Open vocabulary can ensure
there are no OOV words during the evaluation.
Our model and FASTTEXT can generate embed-
dings for OOV words, while CBOW can not. We
evaluate CBOW only on the closed vocabulary.
First, we compare our model with CBOW and
FASTTEXT trained only on 10% of the corpus
with a closed vocabulary (Table 2). Using only
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Model Features Google MSR
Fasttext-10%  subwords 0.310  0.507
Fasttext-100% subwords 0.490 0.686
local model all 0415 0.763
global model all 0.395 0.719

Table 3: Comparison between our models and FAST-
TEXT using open vocabulary. FASTTEXT is trained on
10% and 100% corpus; our models are all trained on
10% corpus with extra features defined in Table 1.

words as features, our model achieves better per-
formance than CBOW on the Google analogy set,
and close performance on the MSR set. This dif-
ference might be caused by the different optimiza-
tion algorithms. The global model is close in per-
formance to the local model — this is is expected
because the global model is approximated by lo-
cal model when the density of label is small, and
the global model is optimizing for a more strin-
gent goal. With all features, our models (both lo-
cal and global) outperform both CBOW and FAST-
TEXT by a large margin.

Second, we compare our model (trained on 10%
of the data) with FASTTEXT using an open vocab-
ulary (Table 3). The first row FASTTEXT is trained
on 10% of the data. Our model significantly out-
performs it. To understand the impact of the extra
features, we compare it with FASTTEXT trained on
the entire corpus (second row). On the MSR set,
our 10% model with extra feature still outperforms
FASTTEXT. We believe the underperformance of
our 10% model against the 100% FASTTEXT em-
beddings on the Google data may be due to the
fact that the data contains more complex relations
between words, and our feature templates may not
be expressive enough.

6.2 Analogies with Typographical Errors

One important advantage of our model is it can dy-
namically produce embeddings for unseen words
using the feature embeddings. To verify its use-
fulness, we need a set of words that do not have
any context in a training corpus, but are still mean-
ingful. Misspelt words are a natural set of such
words. Such words usually do not occur in the
training set and their meanings are defined by their
orthographical similarity to the correct word. Us-
ing only word features, CBOW can not deal with
OOV words; we only compare against FASTTEXT
for this task.



Google MSR
degree 1 degree 2 degree3 degreel degree2 degree3
Fasttext-10% 0.212 0.159 0.035 0.374 0.259 0.073
Fasttext-100%  0.348 0.217 0.036 0.503 0.323 0.080
local model 0.373 0.263 0.066 0.685 0.531 0.185
global model 0.341 0.227 0.054 0.634 0.449 0.134

Table 4: Misspelling evaluation results. Different degrees mean how many words in the quadruple has been
changed into a misspelling word. FASTTEXT is trained on 10% and 100% corpus while our model trained on
10% corpus with extra features. CBOW can not generate embeddings for OOV words, which means we can not

compare with CBOW on this task.

We create new misspelling datasets by ran-
domly replacing, deleting or inserting one char-
acter of each word in MSR and Google analogy
datasets. Then we apply the standard analogy test
on these misspelling datasets. Table 4 shows the
misspelling analogy test results. Different degrees
indicate how many words in the analogy quadru-
ple have been changed into a misspelling word.
The results show that our model can outperform
FASTTEXT in every degree, indicating extra fea-
tures can capture these similarities between mis-
spelling words and their corrections.

6.3 Extrinsic Task: Dataless Classification

In this subsection, we report the results of an ex-
trinsic evaluation of our trained embeddings. In
most extrinsic tasks, embeddings are usually used
as a representation of examples which are the in-
puts of a classifier. As a consequence, the per-
formance on these extrinsic tasks is determined
by two factors: the quality of representation and
the quality of that classifier. Assigning credit to
these two factors for any changes in classifier per-
formance can be difficult.

What we need is a task where performance de-
pends only on the quality of the feature represen-
tation. Dataless text classification (Chang et al.,
2008) has this characteristic, where the goal is to
predict a label for a document without any labeled
data. Following Chang et al. (2008), we use the 20
Newsgroup dataset (Lang, 1995) to construct ten
binary classification problems. Each label in this
dataset is mapped to a short list of words that de-
scribe the label, as specified by the original work.

We frame this task as a nearest neighbor task.
Each word in the documents and label expansions
will be assigned an embedding. We use the aver-
age of all the words in the documents and expan-
sions as their embeddings and measure Euclidean
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Models Features  Accuracy
CBOW-10% word 0.524
CBOW-100% word 0.569
Fastext-10%  subwords 0.509
Fastext-100% subwords 0.537
local model all 0.593
global model all 0.567

Table 5: Dataless task evaluation results. FASTTEXT
and CBOW are trained on 100% corpus while our
model trained on only 10% corpus.

distance between the labels and a document. For
each document, closest label will be chosen as the
predicted label.

Table 5 shows the average accuracy of these
ten binary classification problem. By using ex-
tra features, our model can substantially outper-
form FASTTEXT and CBOW, even when they were
trained on 100% of the corpus.

7 Discussion and Related Work

Word and Label Embeddings Word embed-
dings are ubiquitous across NLP and word pre-
diction is a common approach to train them. Our
modeling unifies this task with multi-label clas-
sification. There are other approaches for train-
ing word embeddings, such as skipgram (Mikolov
etal., 2013b), and Glove (Pennington et al., 2014).
A similar formalization of such approaches is a di-
rection for future research.

The idea of embedding labels in a classification
task has been previously explored (e.g. Amit et al.,
2007; Weston et al., 2011; Srikumar and Manning,
2014). In this paper, we make a formal connection
between these lines of work and the word embed-
ding literature.



Feature Engineering The feature functions ¢
and 1) in the scoring function (Eq. 3) provide a sys-
tematic way to combine feature engineering and
embedding learning. Consequently, the rich his-
tory of feature engineering in NLP becomes appli-
cable for constructing word embeddings.

In this work, we use context independent fea-
tures such as prefix, suffix and word shape. Such
character-level features have been used for other
NLP tasks (e.g. Sapkota et al., 2015) However,
contextual features can also be incorporated into
this framework (e.g. Akbik et al., 2018). Further-
more, such contextual features could be informed
by traditional feature functions such as POS tags
of neighboring words.

eXtreme Multi-label Learning (XML)
Embedding-based methods are widely used
in extreme multi-label classification (e.g. Bhatia
et al., 2015; Balasubramanian and Lebanon,
2012; Bi and Kwok, 2013). However, all these
embedding-based methods are not used in word
prediction context. In this paper, we point out that
essentially, they are the same problem. This paper
is the first attempt to combine these two areas;
fruitful exchange of ideas between the them may
lead both to better predictors and embeddings.

8 Conclusion

In this paper, we argue that assumption that con-
text defines meaning, which is used by most word
embedding models is incomplete. Besides the
context, the internal information of a word also
characterizes its meaning. Using this assumption,
we reframe the word prediction task as a multi-
label classification problem. This new perspective
reveals a family of embedding learning models,
which allows different featurizations, loss func-
tions and normalizations. We show that CBOW
is one particular instance of our framework, with
specific choices for these options. Our experi-
ments demonstrate the value of word and context
features for constructing word embeddings.
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A Local and Global Hinge Loss

We model the score of a word y given the context
x by projecting them into a common space with
two matrices V' and W. The scoring function of
pair (z,y) is defined as:

S(a,y) = [Wo)]" [Vi(z)] (15


http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1017/S0272263100006549
https://doi.org/10.1017/S0272263100006549

where ¢ and v are two feature functions. This
scoring function is the same as we saw for log loss
in the body of the paper.

A.1 Local Hinge Loss

In this subsection, we will define local hinge loss
for word embedding learning under multi-label
formulation. Local hinge loss means we want to
contrast the target word against all other words in
the vocabulary. In our modeling framework, the
local hinge loss can be defined as:

@, 3) =3 { (v) max [S(.9") + Ay, y) — S(.y)]

yey
(16)

Here, A(y,y’) represents the Hamming distance
between the ground truth y and any other label /.
That is, it takes the value 1 when y # 7/ and 0
otherwise.

A.2 Global Hinge Loss

For the local hinge loss above, we treat each label
associated with the input x as being independent.
In contrast, for the global hinge loss, we compare
scores for subsets of labels. Given a set of ground
truth labels for an example, our goal is to maxi-
mize the gap between this set and all other subsets
of labels.

Let us formalize this intuition. As before, let x
denote a context. Let ) denote its corresponding
gold label set. Every set of labels that does not
agree with this subset ) will be penalized. We
define the global hinge loss to be:

lgn(x,Y) = max ZSmy+A)iy Z (z,y)

YEL | yey vey

a7
Here, A denotes the cost-sensitive Hamming dis-
tance between the true set of labels ) and any
other set of labels ). It can be written as:

D llyeVelly € Vie(y)

yeL

AV, D) =

where 1[-] is the indicator function and & rep-
resents the XOR operation. Essentially, the loss
adds up the costs ¢, (y) for all labels that are mis-
predicted, either by mistakenly including a label
that is not in the gold set, or by missing one that
is in it. The costs ¢;(y) are the same as defined in
the main body of the paper.

Combining the equations above and re-
organizing the summations, we can get the final
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form of the global hinge loss:

Con(2,Y) Zmax cx(y) — S(z,y),0) +
yey
Zmax cz(y) + S(x,y),0)
Yy
(18)

The global hinge loss can be interpreted as a sum
of two terms: the first term penalizes labels that
should have been predicted, but have scores less
than their costs, and the second term penalizes la-
bels that should not have been predicted, but have
scores that are more than the negative costs.

As in the log loss in the body of the paper, with
hinge loss as well, both global and local normal-
ization require O(|£|) computation.

B Hyper-parameters for experiments

Table 6 shows the hyper-parameters for our exper-
iments.

Hyper-parameters Setting
10% corpus 155, 525
vocabulary size
100% corpus 552, 402
vocabulary size
Window size 5
am. 0.001
subsamping
erbeddmg 300
imension
minimum word 5
frequency
negative 6
sampling size
dropout probability 0.6

Table 6: Hyper-parameters in the all experiments.



