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Abstract

Usage similarity estimation addresses the se-
mantic proximity of word instances in differ-
ent contexts. We apply contextualized (ELMo
and BERT) word and sentence embeddings
to this task, and propose supervised models
that leverage these representations for predic-
tion. Our models are further assisted by lexical
substitute annotations automatically assigned
to word instances by context2vec, a neural
model that relies on a bidirectional LSTM. We
perform an extensive comparison of existing
word and sentence representations on bench-
mark datasets addressing both graded and bi-
nary similarity. The best performing models
outperform previous methods in both settings.

1 Introduction

Traditional word embeddings, like Word2Vec and
GloVe, merge different meanings of a word in a
single vector representation (Mikolov et al., 2013;
Pennington et al., 2014). These pre-trained em-
beddings are fixed, and stay the same indepen-
dently of the context of use. Current contextual-
ized sense representations, like ELMo and BERT,
go to the other extreme and model meaning as
word usage (Peters et al., 2018; Devlin et al.,
2018). They provide a dynamic representation of
word meaning adapted to every new context of
use.

In this work, we perform an extensive compar-
ison of existing static and dynamic embedding-
based meaning representation methods on the us-
age similarity (Usim) task, which involves esti-
mating the semantic proximity of word instances
in different contexts (Erk et al., 2009). Usim
differs from a classical Semantic Textual Simi-
larity task (Agirre et al., 2016) by the focus on
a particular word in the sentence. We evalu-
ate on this task word and context representations
obtained using pre-trained uncontextualized word
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Figure 1: We use contextualized word representations
built from the whole sentence or smaller windows
around the target word for usage similarity estimation,
combined with automatic substitute annotations.

embeddings (GloVe) (Pennington et al., 2014),
with and without dimensionality reduction (SIF)
(Arora et al., 2017); context representations ob-
tained from a bidirectional LSTM (context2vec)
(Melamud et al., 2016); contextualized word em-
beddings derived from a LSTM bidirectional lan-
guage model (ELMo) (Peters et al., 2018) and gen-
erated by a Transformer (BERT) (Devlin et al.,
2018); doc2vec (Le and Mikolov, 2014) and
Universal Sentence Encoder representations (Cer
et al., 2018). All these embedding-based meth-
ods provide direct assessments of usage similar-
ity. The best representations are used as features
in supervised models for Usim prediction, trained
on similarity judgments.

We combine direct Usim assessments, made by
the embedding-based methods, with a substitute-
based Usim approach. Building up on previous
work that used manually selected in-context sub-
stitutes as a proxy for Usim (Erk et al., 2013; Mc-
Carthy et al., 2016), we propose to automatize the
annotation collection step in order to scale up the
method and make it operational on unrestricted
text. We exploit annotations assigned to words
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in context by the context2vec lexical substitution
model, which relies on word and context repre-
sentations learned by a bidirectional LSTM from
a large corpus (Melamud et al., 2016).

The main contributions of this paper can be
summarized as follows:

• we provide a direct comparison of a wide
range of word and sentence representation
methods on the Usage Similarity (Usim) task
and show that current contextualized repre-
sentations can successfully predict Usim;

• we propose to automatize, and scale up, pre-
vious substitute-based Usim prediction meth-
ods;

• we propose supervised models for Usim pre-
diction which integrate embedding and lexi-
cal substitution features;

• we propose a methodology for collecting new
training data for supervised Usim prediction
from datasets annotated for related tasks.

We test our models on benchmark datasets con-
taining gold graded and binary word Usim judg-
ments (Erk et al., 2013; Pilehvar and Camacho-
Collados, 2019). From the compared embedding-
based approaches, the BERT model gives best re-
sults on both types of data, providing a straight-
forward way for word usage similarity calculation.
Our supervised model performs on par with BERT
on the graded and binary Usim tasks, when using
embedding-based representations and clean lexi-
cal substitutes.

2 Related Work

Usage similarity is a means for representing word
meaning which involves assessing in-context se-
mantic similarity, rather than mapping to word
senses from external inventories (Erk et al., 2009,
2013). This methodology followed from the grad-
ual shift from word sense disambiguation models
that would select the best sense in context from a
dictionary, to models that reason about meaning
by solely relying on distributional similarity (Erk
and Padó, 2008; Mitchell and Lapata, 2008), or al-
low multiple sense interpretations (Jurgens, 2014).
In Erk et al. (2009), the idea is to model meaning
in context in a way that captures different degrees
of similarity to a word sense, or between word in-
stances.

Due to its high reliance on context, Usim can
be viewed as a semantic textual similarity (STS)
(Agirre et al., 2016) task with a focus on a spe-
cific word instance. This connection motivated us
to apply methods initially proposed for sentence
similarity to Usim prediction. More precisely,
we build sentence representations using different
types of word and sentence embeddings, ranging
from the classical word-averaging approach with
traditional word embeddings (Pennington et al.,
2014), to more recent contextualized word rep-
resentations (Peters et al., 2018; Devlin et al.,
2018). We explore the contribution of each sep-
arate method for Usim prediction, and use the best
performing ones as features in supervised models.
These are trained on sentence pairs labelled with
Usim judgments (Erk et al., 2009) to predict the
similarity of new word instances.

Previous attempts to automatic Usim prediction
involved obtaining vectors encoding a distribution
of topics for every target word in context (Lui
et al., 2012). In this work, Usim was approx-
imated by the cosine similarity of the resulting
topic vectors. We show how contextualized rep-
resentations, and the supervised model that uses
them as features, outperform topic-based methods
on the graded Usim task.

We combine the embedding-based direct Usim
assessment methods with substitute-based repre-
sentations obtained using an unsupervised lexi-
cal substitution model. McCarthy et al. (2016)
showed it is possible to model usage similarity
using manual substitute annotations for words in
context. In this setting, the set of substitutes pro-
posed for a word instance describe its specific
meaning, while similarity of substitute annota-
tions for different instances points to their seman-
tic proximity.1 We follow up on this work and
propose a way to use substitutes for Usim predic-
tion on unrestricted text, bypassing the need for
manual annotations. Our method relies on sub-
stitute annotations proposed by the context2vec
model (Melamud et al., 2016), which uses word
and context representations learned by a bidirec-
tional LSTM from a large corpus (UkWac) Baroni
et al. (2009).

1McCarthy et al. use the substitute annotations as features
for predicting Usim, clustering instances and estimating the
partitionability of words into senses. This offers a way to
distinguish between lemmas with distinct senses and others
with fuzzy semantics, which would be more challenging in
annotation tasks and automatic processing.



11

Sentences Substitutes

The local papers took photographs of
the footprint.

GOLD: newspaper, journal
AUTO-LSCNC: press, newspaper, news, report, picture
AUTO-PPDB: newspaper, newsprint

Now Ari Fleischer, in a pitiful letter to
the paper, tries to cast Milbank as the
one getting his facts wrong.

GOLD: newspaper, publication
AUTO-LSCNC: press, newspaper, news, article, journal, thesis,
periodical, manuscript, document
AUTO-PPDB: newspaper

This is also at the very essence or heart
of being a coach.

GOLD: trainer, tutor, teacher
AUTO-LSCNC: teacher, counsellor, trainer, tutor, instructor
AUTO-PPDB: trainer, teacher, mentor, coaching

We hopped back onto the coach – now
for the boulangerie!

GOLD: coach, bus, carriage
AUTO-LSCNC: bus, car, carriage, transport
AUTO-PPDB: bus, train, wagon, lorry, car, truck, carriage, vehicle

Table 1: Example pairs of highly similar and dissimilar usages from the Usim dataset (Erk et al., 2013) for the
nouns paper (Usim score = 4.34) and coach.n (Usim score = 1.5), with the substitutes assigned by the annotators
(GOLD). For comparison, we give the substitutes selected for these instances by the automatic substitution method
(context2vec) used in our experiments from two different pools of substitutes (AUTO-LSCNC and PPDB). More
details on the automatic substitution configurations are given in Section 4.2.

3 Data

3.1 The LexSub and Usim Datasets
We use the training and test datasets of the
SemEval-2007 Lexical Substitution (LexSub) task
(McCarthy and Navigli, 2007), which contain in-
stances of target words in sentential context hand-
labelled with meaning-preserving substitutes. A
subset of the LexSub data (10 instances x 56 lem-
mas) has additionally been annotated with graded
pairwise Usim judgments (Erk et al., 2013). Each
sentence pair received a rating (on a scale of 1-
5) by multiple annotators, and the average judg-
ment for each pair was retained. McCarthy et al.
(2016) derive two additional scores from Usim
annotations that denote how easy it is to parti-
tion a lemma’s usages into sets describing distinct
senses: Uiaa, the inter-annotator agreement for a
given lemma, taken as the average pairwise Spear-
man’s ρ correlation between ranked judgments of
the annotators; and Umid, the proportion of mid-
range judgments over all instances for a lemma
and all annotators.

In our experiments, we use 2,466 sentence pairs
from the Usim data for training, development
and testing of different automatic Usim predic-
tion methods. Our models rely on substitutes
automatically assigned to words in context us-
ing context2vec (Melamud et al., 2016), and on
various word and sentence embedding representa-

tions. We also train a model using the gold substi-
tutes, to test how well our models perform when
substitute quality is high. Performance of the dif-
ferent models is evaluated by measuring how well
they approximate the Usim scores assigned by an-
notators. Table 1 shows examples of sentence
pairs from the Usim dataset (Erk et al., 2013) with
the GOLD substitutes and Usim scores assigned by
the annotators. The Usim score is high for simi-
lar instances, and decreases for instances that de-
scribe different meanings. The semantic proximity
of two instances is also reflected in the similarity
of their substitutes sets. For comparison, we also
give in the Table the substitutes selected for these
instances by the automatic context2vec substitu-
tion method used in our experiments (more details
in Section 4.2).

3.2 The Concepts in Context Corpus

Given the small size of the Usim dataset, we ex-
tract additional training data for our models from
the Concepts in Context (CoInCo) corpus (Kremer
et al., 2014), a subset of the MASC corpus (Ide
et al., 2008). CoInCo contains manually selected
substitutes for all content words in a sentence, but
provides no usage similarity scores that could be
used for training. We construct our supplementary
training data as follows: we gather all instances
of a target word in the corpus with at least four
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substitutes, and keep pairs with (1) no overlap in
substitutes, and (2) minimum 75% substitute over-
lap.2 We view the first set of pairs as examples
of completely different usages of a word (DIFF),
and the second set as examples of identical usages
(SAME). The two sets are unbalanced in terms of
number of instance pairs (19,060 vs. 2,556). We
balance them by keeping in DIFF the 2,556 pairs
with the highest number of substitutes.

We also annotate the data with substitutes using
context2vec (Melamud et al., 2016), as described
in Section 4.2. We apply an additional filtering
to the sentence pairs extracted from CoInCo, dis-
carding instances of words that are not in the con-
text2vec vocabulary and have no embeddings. We
are left with 2,513 pairs in each class (5,026 in to-
tal). We use 80% of these pairs (4,020) together
with the Usim data to train our supervised Usim
models described in Section 4.3.3

3.3 The Word-in-Context dataset
The third dataset we use in our experiments is the
recently released Word-in-Context (WiC) dataset
(Pilehvar and Camacho-Collados, 2019), version
0.1. WiC provides pairs of contextualized tar-
get word instances describing the same or differ-
ent meaning, framing in-context sense identifica-
tion as a binary classification task. For example,
a sentence pair for the noun stream is: [‘Stream
of consciousness’ – ‘Two streams of development
run through American history’]. A system is ex-
pected to be able to identify that stream does not
have the same meaning in the two sentences.

WiC sentences were extracted from example
usages in WordNet (Fellbaum, 1998), VerbNet
(Schuler, 2006), and Wiktionary. Instance pairs
were automatically labeled as positive (T) or
negative (F) (corresponding to the same/different
sense) using information in the lexicographic re-
sources, such as presence in the same or differ-
ent synsets. Each word is represented by at most
three instances in WiC, and repeated sentences are
excluded. It is important to note that meanings
represented in the WiC dataset are coarser-grained
than WordNet senses. This was ensured by ex-
cluding WordNet synsets describing highly sim-

2Full overlap is rare since annotators propose somewhat
different sets of substitutes, even for instances with the same
meaning. Full overlap is observed for only 437 of all consid-
ered CoInCo pairs (0.3%).

3We will make the dataset available at https://
github.com/ainagari. 20% of the extracted examples
were kept aside for development and testing purposes.

ilar meanings (sister senses, and senses belong-
ing to the same supersense). The human-level
performance upper-bound on this binary task, as
measured on two 100-sentence samples, is 80.5%.
Inter-annotator agreement is also high, at 79%.
The dataset comes with an official train/dev/test
split containing 7,618, 702 and 1,366 sentence
pairs, respectively.4

4 Methodology

We experiment with two ways of predicting us-
age similarity: an unsupervised approach which
relies on the cosine similarity of different kinds of
word and sentence representations, and provides
direct Usim assessments; and supervised models
that combine embedding similarity with features
based on substitute overlap. We present the di-
rect Usim prediction methods in Section 4.1. In
Section 4.2, we describe how substitute-based fea-
tures were extracted, and in Section 4.3, we intro-
duce the supervised Usim models.

4.1 Direct Usage Similarity Prediction

In the unsupervised Usim prediction setting, we
apply different types of pre-trained word and sen-
tence embeddings as follows: we compute an em-
bedding for every sentence in the Usim dataset,
and calculate the pairwise cosine similarity be-
tween the sentences available for a target word.
Then, for every embedding type, we measure the
correlation between sentence similarities and gold
usage similarity judgments in the Usim dataset,
using Spearman’s ρ correlation coefficient. We ex-
periment with the following embedding types.

GloVe embeddings are uncontextualized word
representations which merge all senses of a word
in one vector (Pennington et al., 2014). We use
300-dimensional GloVe embeddings pre-trained
on Common Crawl (840B tokens).5 The represen-
tation of a sentence is obtained by averaging the
GloVe embeddings of the words in the sentence.

SIF (Smooth Inverse Frequency) embeddings are
sentence representations built by applying dimen-
sionality reduction to a weighted average of un-
contextualized embeddings of words in a sentence

4The test portion of WiC had not been released at the time
of submission. We contacted the authors and ran the evalua-
tion on the official test set, to be able to compare to results re-
ported in their paper (Pilehvar and Camacho-Collados, 2019).

5https://nlp.stanford.edu/projects/
glove/

https://github.com/ainagari
https://github.com/ainagari
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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(Arora et al., 2017). We use SIF in combination
with GloVe vectors.

Context2vec embeddings (Melamud et al., 2016).
The context2vec model learns embeddings for
words and their sentential contexts simultane-
ously. The resulting representations reflect: a) the
similarity between potential fillers of a sentence
with a blank slot, and b) the similarity of contexts
that can be filled with the same word. We use a
context2vec model pre-trained on the UkWac cor-
pus (Baroni et al., 2009) 6 to compute embeddings
for sentences with a blank at the target word’s po-
sition.

ELMo (Embeddings from Language Models) rep-
resentations are contextualized word embeddings
derived from the internal states of an LSTM bidi-
rectional language model (biLM) (Peters et al.,
2018). In our experiments, we use a pre-trained
512-dimensional biLM.7 Typically, the best lin-
ear combination of the layer representations for
a word is learned for each end task in a super-
vised manner. Here, we use out-of-the-box em-
beddings (without tuning) and experiment with the
top layer, and with the average of the three hidden
layers. We represent a sentence in two ways: by
the contextualized ELMo embedding obtained for
the target word, and by the average of ELMo em-
beddings for all words in a sentence.

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018). BERT
representations are generated by a 12-layer bidi-
rectional Transformer encoder that jointly condi-
tions on both left and right context in all layers.8

BERT can be fine-tuned to specific end tasks, or its
contextualized word representations can be used
directly in applications, similar to ELMo. We try
different layer combinations and create sentence
representations, in the same way as for ELMo: us-
ing either the BERT embedding of the target word,
or the average of the BERT embeddings for all
words in a sentence.

Universal Sentence Encoder (USE) makes use
of a Deep Averaging Network (DAN) encoder
trained to create sentence representations by
means of multi-task learning (Cer et al., 2018).

6http://u.cs.biu.ac.il/˜nlp/resources/
downloads/context2vec/

7https://allennlp.org/elmo
8This is an important difference with the ELMo archi-

tecture which concatenates a left-to-right and right-to-left
model.

USE has been shown to improve performance on
different NLP tasks using transfer learning.9

doc2vec is an extension of word2vec to the
sentence, paragraph or document level (Le and
Mikolov, 2014). One of its forms, dbow (dis-
tributed bag of words), is based on the skip-gram
model, where it adds a new feature vector repre-
senting a document. We use a dbow model trained
on English Wikipedia released by Lau and Bald-
win (2016).10

We test the above models with representations
built from the whole sentence, and using a smaller
context window (cw) around the target word. Sen-
tences in the WiC dataset are quite short (7.9 ±
3.9 words), but the length of sentences in the Usim
and CoInCo datasets varies a lot (27.4 ± 13.2 and
18.8 ± 10.2, respectively). We want to check
whether information surrounding the target word
in the sentence is more relevant, and sufficient for
Usim estimation. We focus on the words in a con-
text window of ± 2, 3, 4 or 5 words at each side
of a target word. Then, we collect their word em-
beddings to be averaged (for GloVe, ELMo and
BERT), or derive an embedding from this specific
window instead of the whole sentence (for USE).

We approximate Usim by measuring the cosine
similarity of the resulting context representations.
We compare the performance of these direct as-
sessment methods on the Usim dataset and report
the results in Section 5.

4.2 Substitute-based Feature Extraction

Following up on McCarthy et al.’s (2016) sense
clusterability work, we also experiment with a
substitute-based approach for Usim prediction.
McCarthy et al. showed that manually selected
substitutes for word instances in context can be
used as a proxy for Usim. Here, we propose an
approach to obtain these annotations automatically
that can be applied to the whole vocabulary.

Automatic LexSub We generate rankings of can-
didate substitutes for words in context using the
context2vec method (Melamud et al., 2016). The
original method selects and ranks substitutes from
the whole vocabulary. To facilitate comparison
and evaluation, we use the following pools of
candidates: (a) all substitutes that were proposed

9https://tfhub.dev/google/
universal-sentence-encoder/2

10https://github.com/jhlau/doc2vec

http://u.cs.biu.ac.il/~nlp/resources/downloads/context2vec/
http://u.cs.biu.ac.il/~nlp/resources/downloads/context2vec/
https://allennlp.org/elmo
https://tfhub.dev/google/universal-sentence-encoder/2
https://tfhub.dev/google/universal-sentence-encoder/2
https://github.com/jhlau/doc2vec
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for a word in the LexSub and CoInCo annota-
tions (we call this substitute pool AUTO-LSCNC);
(b) the paraphrases of the word in the Paraphrase
Database (PPDB) XXL package (Ganitkevitch
et al., 2013; Pavlick et al., 2015) (AUTO-PPDB).11

In the WiC experiments, where no substitute an-
notations are available, we only use PPDB para-
phrases (AUTO-PPDB). We obtain a context2vec
embedding for a sentence by replacing the target
word with a blank. AUTO-LSCNC substitutes are
high-quality since they were extracted from the
manual LexSub and CoInCo annotations. They
are semantically similar to the target, and con-
text2vec just needs to rank them according to how
well they fit the new context. This is done by mea-
suring the cosine similarity between each substi-
tute’s context2vec word embedding and the con-
text embedding obtained for the sentence.

The AUTO-PPDB pool contains paraphrases
from PPDB XXL, which were automatically ex-
tracted from parallel corpora (Ganitkevitch et al.,
2013). Hence, this pool contains noisy para-
phrases that should be ranked lower. To this end,
we use in this setting the original context2vec
scoring formula which also accounts for the simi-
larity between the target word and the substitute:

c2v score =
cos(s, t) + 1

2
× cos(s, C) + 1

2
(1)

In formula (1), s and t are the word embeddings
of a substitute and the target word, and C is the
context2vec vector of the context. Following this
procedure, context2vec produces a ranking of can-
didate substitutes for each target word instance in
the Usim, CoInCo and WiC datasets, according to
their fit in context. Every candidate is assigned a
score, with substitutes that are a good fit in a spe-
cific context being higher-ranked than others. For
every new target word instance, context2vec ranks
all candidate substitutes available for the target in
each pool. Consequently, the automatic annota-
tions produced for different instances of the target
include the same set of substitutes, but in different
order. This does not allow for the use of measures
based on substitute overlap, which were shown to
be useful for Usim prediction in McCarthy et al.
(2016). In order to use this type of measures, we
propose ways to filter the automatically generated
rankings, and keep for each instance only substi-
tutes that are a good fit in context.

11http://paraphrase.org/

Substitute Filtering We test different filters to
discard low quality substitutes from the annota-
tions proposed by context2vec for each instance.

• PPDB 2.0 score: Given a ranking R of n
substitutes R = [s1, s2, ..., sn] proposed by
context2vec, we form pairs of substitutes in
adjacent positions {si↔ si+1}, and check
whether they exist as paraphrase pairs in
PPDB. We expect substitutes that are para-
phrases of each other to be similarly ranked.
If si and si+1 are not paraphrases in PPDB,
we keep all substitutes up to si and use this as
a cut-off point, discarding substitutes present
from position si+1 onwards in the ranking.

• GloVe word embeddings: We measure the
cosine similarity (cosSim) between GloVe
embeddings of adjacent substitutes {si ↔
si+1} in the ranking R obtained for a new
instance. We first compare the similarity of
the first pair of substitutes (cosSim(s1, s2))
to a lower bound similarity threshold T. If
cosSim(s1, s2) exceeds T, we assume that
s1 and s2 have the same meaning, and use
cosSim(s1, s2) as a reference similarity value,
S, for this instance. The middle point be-
tween the two values, M = (T + S)/2, is
then used as a threshold to determine whether
there is a shift in meaning in subsequent
pairs. If cosSim(si, si+1) < M , for i > 1,
then only the higher ranked substitute (si) is
retained and all subsequent substitutes in the
ranking are discarded. The intuition behind
this calculation is that if cosSim is much
lower than the reference S (even if it exceeds
T ), substitutes possibly have different senses.

• Context2vec score: This filter uses the score
assigned by context2vec to each substitute,
reflecting how good a fit it is in each con-
text. context2vec scores vary a lot across
instances, it is thus not straightforward to
choose a threshold. We instead refer to the
scores assigned to adjacent pairs of substi-
tutes in the ranking produced for each in-
stance, R = [s1, s2, ..., sn]. We view the pair
with the biggest difference in scores as the
cut-off point, considering it reflects a degra-
dation in substitute fit. We retain only substi-
tutes up to this point.

• Highest-ranked X substitutes. We also test
two simple baselines, which consist in keep-

http://paraphrase.org/
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ing the 5 and 10 highest-ranked substitutes
for each instance.

We test the efficiency of each filter on the por-
tion of the LexSub dataset (McCarthy and Nav-
igli, 2007) that was not annotated for Usim. We
compare the substitutes retained for each instance
after filtering to its gold LexSub susbtitutes using
the F1-score, and the proportion of false positives
out of all positives. Filtering results are reported
in Appendix A. The best filters were GloVe word
embeddings (T = 0.2) for AUTO-LSCNC, and the
PPDB filter for AUTO-PPDB.

Feature Extraction After annotating the Usim
sentences with context2vec and filtering, we ex-
tract, for each sentence pair (S1, S2), a set of fea-
tures related to the amount of substitute overlap.

• Common substitutes. The proportion of
shared substitutes between two sentences.

• GAP score. The average of the Generalized
Average Precision (GAP) score (Kishida,
2005) taken in both directions (GAP (S1, S2)
and GAP (S2, S1)). GAP is a measure that
compares two rankings considering not only
the order of the ranked elements but also their
weights. It ranges from 0 to 1, where 0 means
that rankings are completely different and 1
indicates perfect agreement. We use the fre-
quency in the manual Usim annotations (i.e.
the number of annotators who proposed each
substitute) as the weight for gold substitutes,
and the context2vec score for automatic sub-
stitutes. We use the GAP implementation
from Melamud et al. (2015).

• Substitute cosine similarity. We form sub-
stitute pairs (S1 ↔ S2) and calculate the av-
erage of their GloVe cosine similarities. This
feature shows the semantic similarity of sub-
stitutes, even when overlap is low.

4.3 Supervised Usim Prediction
We train linear regression models to predict Usim
scores for word instances in different contexts us-
ing as features the cosine similarity of the different
representations in Section 4.1, and the substitute-
based features in 4.2. For training, we use the
Usim dataset on its own (cf. Section 3.1), and
combined with the additional training examples
extracted from CoInCo (cf. Section 3.2).

To be able to evaluate the performance of our
models separately for each of the 56 target words

in the Usim dataset, we train a separate model for
each word in a leave-one-out setting. Each time,
we use 2,196 pairs for training, 225 for develop-
ment and 45 for testing.12 Each model is eval-
uated on the sentences corresponding to the left
out target word. We report results of these ex-
periments in Section 5. The performance of the
model with context2vec substitutes from the two
substitute pools is compared to that of the model
with gold substitute annotations. We replicate the
experiments by adding CoInCo data to the Usim
training data.

To test the contribution of each feature, we per-
form an ablation study on the 225 Usim sentence
pairs of the development set, which cover the full
spectrum of Usim scores (from 1 to 5). We report
results of the feature ablation in Appendix C.

We also build a model for the binary Usim
task on the WiC dataset (Pilehvar and Camacho-
Collados, 2019), using the official train/dev/test
split. We train a logistic regression classifier on
the training set, and use the development set to se-
lect the best among several feature combinations.
We report results of the best performing models on
the WiC test set in Section 5. For instances in WiC
where no PPDB substitutes are available (133 out
of 1,366 in the test set) we back off to a model that
only relies on the embedding features.

5 Evaluation

Direct Usim Prediction Correlation results be-
tween Usim judgments and the cosine similarity of
the embedding representations described in Sec-
tion 4.1 are found in Table 2. Detailed results for
all context window combinations are given in Ap-
pendix B. We observe that target word BERT em-
beddings give best performance in this task. Se-
lecting a context window around (or including) the
target word does not always help, on the contrary
it can harm the models. Context2vec sentence rep-
resentations are the next best performing represen-
tation, after BERT, but their correlation is much
lower. The simple GloVe-based SIF approach for
sentence representation, which consists in apply-
ing dimensionality reduction to a weighted aver-
age of GloVe vectors of the words in a sentence, is
much superior to the simple average of GloVe vec-
tors and even better than doc2vec sentence repre-
sentations, obtaining a correlation comparable to

12With the exception of 4 lemmas which had 36 pairs, and
one which had 44.
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Context Embeddings Correlation

Full
sentence

GloVe 0.142
SIF 0.274
c2v 0.290
USE 0.272
doc2vec 0.124
ELMo av 0.254
BERT av 4 0.289

Target
word

ELMo av 0.166
ELMo top 0.177
BERT top 0.514
BERT av 4 0.518

cw=2 ELMo top 0.289
cw=3
(incl.
target)

GloVe 0.180
ELMo av 0.280
BERT av 4 0.395

cw=5
(incl.
target)

USE 0.221
ELMo av 0.266
ELMo top 0.263
BERT top 0.309

Table 2: Spearman ρ correlation of different sentence
and word embeddings on the Usim dataset using differ-
ent context window sizes (cw). For BERT and ELMo,
top refers to the top layer, and av refers to the average
of layers (3 for ELMo, and the last 4 for BERT).

that of USE.

Graded Usim To evaluate the performance of our
supervised models, we measure the correlation of
the predictions with human similarity judgments
on the Usim dataset using Spearman’s ρ. Results
reported in Table 3 are the average of the corre-
lations obtained for each target word with gold
and automatic substitutes (from the two substitute
pools), and for each type of features, substitute-
based and embedding-based (cosine similarities
from BERT and context2vec). We also report
results with the additional CoInCo training data.
Unsurprisingly, the best results are obtained by
the methods that use the gold substitutes. This
is consistent with previous analyses by Erk et al.
(2009) who found overlap in manually-proposed
substitutes to correlate with Usim judgments. The
lower performance of features that rely on auto-
matically selected substitutes (AUTO-LSCNC and
AUTO-PPDB) demonstrates the impact of substi-
tute quality on the contribution of this type of
features. The addition of CoInCo data does not
seem to help the models, as results are slightly
lower than in the only Usim setting. This can be
due to the fact that CoInCo data contains only ex-
treme cases of similarity (SAME/DIFF) and no in-

termediate ratings. The slight improvement in the
combined settings over embedding-based models
is not significant in AUTO-LSCNC substitutes, but
it is for gold substitutes (p < 0.001). 13

For comparison to the topic-modelling ap-
proach of Lui et al. (2012), we evaluate on the
34 lemmas used in their experiments. They re-
port a correlation calculated over all instances.
With the exception of the substitute-only setting
with PPDB candidates, all of our Usim models get
higher correlation than their model (ρ = 0.202),
with ρ = 0.512 for the combination of AUTO-
LSCNC substitutes and embeddings. The average
of the per target word correlation in Lui et al.
(2012) (ρ = 0.388) is still lower than that of
our AUTO-LSCNC model in the combined setting
(ρ = 0.500).

Binary Usim We evaluate the predictions of our
binary classifiers by measuring accuracy on the
test portion of the WiC dataset. Results for the best
configurations for each training set are reported
in Table 4. Experiments on the development set
showed that target word BERT representations and
USE sentence embeddings are the best-suited for
WiC. Therefore, ‘embedding-based features’ here
refers to these two representations. Results on
the development set can be found in Appendix D.
All configurations obtain higher accuracy than the
previous best reported result on this dataset (59.4)
(Pilehvar and Camacho-Collados, 2019), obtained
using DeConf vectors, which are multi-prototype
embeddings based on WordNet knowledge (Pile-
hvar and Collier, 2016). Similar to the graded
Usim experiments, adding substitute-based fea-
tures to embedding features slightly improves the
accuracy of the model. Also, combining the Co-
InCo and WiC data for training does not have a
clear impact on results, even in this binary classi-
fication setting.

6 Discussion

Results reported for Usim are the average correla-
tion for each target word, but the strength of the
correlation varies greatly for different words for
all models and settings. For example, in the case
of direct Usim prediction with embeddings us-
ing BERT target, Spearman’s ρ ranges from 0.805
(for the verb fire) to -0.111 (for the verb suffer).
This variation in performance is not surprising,

13As determined by paired t-tests, after verifying the nor-
mality of the differences with the Shapiro-Wilk test
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Training set Features Gold
c2v c2v

AUTO-LSCNC AUTO-PPDB

Usim
Substitute-based 0.563 0.273 0.148
Embedding-based 0.494 0.494 0.494
Combined 0.626 0.501 0.493

Usim + CoInCo
Substitute-based - 0.262 0.129
Embedding-based - 0.495 0.495
Combined - 0.501 0.491

Table 3: Graded Usim results: Spearman’s ρ correlation results between supervised model predictions and graded
annotations on the Usim test set. The first column reports results obtained using gold substitute annotations for each
target word instance. The last two columns give results with automatic substitutes selected among all substitutes
proposed for the word in the LexSub and CoInCo datasets (AUTO-LSCNC), or paraphrases in the PPDB XXL
package (AUTO-PPDB). The Embedding-based configuration uses cosine similarities from BERT and context2vec.

Training set Features Accuracy

WiC

Embedding-based 63.62
Combined 64.86
DeConf embeddings (Pilehvar and Camacho-Collados, 2019) 59.4
Random baseline (Pilehvar and Camacho-Collados, 2019) 50.0

WiC + CoInCo
Embedding-based 63.69
Combined 64.42

Table 4: Binary Usim results: Accuracy of models on the WiC test set. The Embedding-based configuration
includes cosine similarities of BERT target and USE. The Combined setting uses, in addition, substitute overlap
features (AUTO-PPDB).

since annotators themselves found some lemmas
harder to annotate than others, as reflected in the
Usim inter-annotator agreement measure (Uiaa)
(McCarthy et al., 2016). We find that BERT tar-
get word embeddings results correlate with Uiaa
per target word (ρ = 0.59, p < 0.05), showing
that the performance of this model depends to a
certain extent on the ease of annotation for each
lemma. Uiaa also correlates with the standard
deviation of average Usim scores by target word
(ρ = 0.66, p < 0.001). Indeed, average Usim
values for the word suffer do not exhibit high vari-
ance as they only range from 3.6 to 4.9. Within
a smaller range of scores, a strong correlation is
harder to obtain. The negative correlation between
Uiaa and Umid (−0.46, p < 0.001) also suggests
that words with higher disagreement tend to ex-
hibit a higher proportion of mid-range judgments.
We believe that this analysis highlights the differ-
ence between usage similarity across target words
and encourages a by-lemma approach where the
specificities of each lemma are taken into account.

7 Conclusion

We applied a wide range of existing word and
context representations to graded and binary us-
age similarity prediction. We also proposed

novel supervised models which use as features
the best performing embedding representations,
and make high quality predictions especially in
the binary setting, outperforming previous ap-
proaches. The supervised models include features
based on in-context lexical substitutes. We show
that automatic substitutions constitute an alterna-
tive to manual annotation when combined with the
embedding-based features. Nevertheless, if there
is no specific reason for using substitutes for mea-
suring Usim, BERT offers a much more straight-
forward solution to the Usim prediction problem.

In future work, we plan to use automatic Usim
predictions for estimating word sense partition-
ability. We believe such knowledge can be useful
to determine the appropriate meaning representa-
tion for each lemma.
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A Filtering experiments

Tables 5 and 6 contain results obtained using the
different substitute filters described in Section 4.2.
We measure the quality of the substitutes retained
in the automatic ranking produced by context2vec
after filtering against gold substitute annotations
in LexSub data. Here, we only use the portion
of LexSub data that does not contain Usim judg-
ments.

We measure filtered substitute quality against
the gold standard using the F1-score, and the
proportion of false positives (FP) over all posi-
tives (TP+FP). Table 5 shows results for annota-
tions assigned by context2vec using the the Lex-
Sub/CoInCo pool of substitutes (AUTO-LSCNC).
Table 6 shows results for context2vec annotations
with the PPDB pool of substitutes (AUTO-PPDB).

Filter F1 FP/(TP + FP )

Highest 10 0.332 0.776
Highest 5 0.375 0.695
PPDB 0.333 0.643
GloVe (T = 0.1) 0.371 0.675
GloVe (T = 0.2) 0.373 0.661
GloVe (T = 0.3) 0.353 0.641
c2v score 0.326 0.671
No filter 0.248 0.848

Table 5: Results of different substitute filtering strate-
gies applied to annotations assigned by context2vec
when using the LexSub/CoInCo pool of substitutes
(AUTO-LSCNC).

Filter F1 FP/(TP + FP )

Highest 10 0.245 0.838
Highest 5 0.290 0.766
PPDB 0.268 0.731
GloVe (T = 0.1) 0.266 0.778
GloVe (T = 0.2) 0.268 0.769
GloVe (T = 0.3) 0.266 0.750
c2v score 0.250 0.675
No filter 0.142 0.920

Table 6: Results of different substitute filtering strate-
gies applied to annotations assigned by context2vec
when using the PPDB pool of substitutes (AUTO-
PPDB).

B Direct Usage Similarity Estimation

Correlations between gold Usim scores for all
words and cosine similarities of different embed-
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ding types can be found in Tables 7 and 8.

Embeddings Correlation

Full sentence
embedding

GloVe 0.142
SIF 0.274
c2v 0.290
USE 0.272
doc2vec 0.124
ELMo av 0.254
ELMo top 0.248
BERT av 4 0.289

Target word
embedding

ELMo av 0.166
ELMo top 0.177
BERT top 0.514
BERT av 4 0.518
BERT concat 4 0.516
BERT 2nd-to-last 0.486

Table 7: Correlations of sentence and word embed-
dings on the Usim dataset using different context win-
dow sizes (cw). For BERT and ELMo, top refers to the
top layer, and av refers to the average of layers (3 for
ELMo, and the last 4 for BERT). concat 4 refers to the
concatenation of the last 4 layers of BERT.

C Feature Ablation on Usim

Results of feature ablation experiments on the
Usim development sets are given in Table 9.

D Dev experiments on WiC

Table 10 shows the accuracy of different configu-
rations on the WiC development set.

Context Embeddings Correlation

cw=2

ELMo top 0.289
ELMo av 0.280
BERT av 4 0.344
GloVe 0.140

cw=3

ELMo top 0.282
ELMo av 0.279
BERT av 4 0.339
GloVe 0.163

cw=4

ELMo top 0.270
ELMo av 0.263
BERT av 4 0.311
GloVe 0.160

cw=5

ELMo top 0.266
ELMo av 0.263
BERT av 4 0.309
GloVe 0.162

cw=2 (incl. target)

ELMo av 0.284
ELMo top 0.278
BERT av 4 0.416
GloVe 0.159
USE 0.146

cw=3 (incl. target)

ELMo av 0.280
ELMo top 0.273
BERT av 4 0.395
GloVe 0.180
USE 0.184

cw=4 (incl. target)

ELMo av 0.267
ELMo top 0.265
BERT av 4 0.365
GloVe 0.176
USE 0.191

cw=5 (incl. target)

ELMo av 0.266
ELMo top 0.263
BERT av 4 0.359
GloVe 0.175
USE 0.221

Table 8: Correlations of different sentence and word
embeddings on the Usim dataset using different context
window sizes (cw).
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Ablation Gold AUTO-LSCNC AUTO-PPDB

None 0.729 0.538 0.524
Sub. similarity 0.701 0.537 0.524
Common sub. 0.722 0.538 0.524
GAP 0.730 0.537 0.523
c2v 0.730 0.539 0.523
Bert av 4 target 0.700 0.348 0.283

Table 9: Results of feature ablation experiments for systems trained and tested on the Usim dataset with gold
substitutes (Gold) as well as automatic substitutes from different pools, Lexsub/CoInCo (AUTO-LSCNC) and PPDB
(AUTO-PPDB). Rows indicate the feature that is removed each time. Numbers correspond to the average Spearman
ρ correlation on the development set across target words.

Training set Features Accuracy

WiC

BERT av 4 last target word 65.24
c2v 57.69
ELMo top cw=2 61.11
USE 63.68
SIF 60.97
Only substitutes 55.41
BERT av 4 target word & USE 67.95
Combined 66.81

WiC + CoInCo

BERT av 4 target word 64.96
c2v 58.12
ELMo top cw=2 61.11
USE 63.53
SIF 59.97
Only substitutes 56.13
BERT av 4 target word & USE 68.66
Combined 66.81

Table 10: Accuracy of different features and combinations on the WiC development set. On this dataset, the two
best types of embeddings, that were chosen for the Embedding-based and Combined configurations, were BERT
(target word, average of the last 4 layers) and USE. Both Only-substitutes and Combined use features of automatic
substitutes from the PPDB pool, and back off to the Embedding-based model when there were no paraphrases
available for the target word in the PPDB.


