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Abstract
A position paper arguing that purely graphical
representations for natural language semantics
lack a fundamental degree of expressiveness,
and cannot deal with even basic Boolean op-
erations like negation or disjunction, let alone
intensional phenomena. Moving from graphs
to named graphs leads to representations that
stand some chance of having sufficient expres-
sive power. Named FL0 graphs are of partic-
ular interest.

1 Introduction

Graphs are popular for both (semantic web)
knowledge representation (Screiber and Raimond,
2014; Dong et al., 2014; Rospocher et al., 2016)
and natural language semantics (Banarescu et al.,
2013; Perera et al., 2018; Wities et al., 2017). The
casual observer might assume there is substantial
overlap between the two activities, but there is less
than meets the eye. This paper attempts to make
three points:

1. Knowledge graphs, which are designed to
represent facts about the world rather than human
knowledge, are not well set up to represent nega-
tion, disjunction, and conditional or hypothetical
contexts. Arguably, the world contains no nega-
tive, disjunctive, or hypothetical facts; just posi-
tive facts that make them true. Natural language
semantics has to deal with more partial assertions,
where all that is known are the negations, dis-
junctions, or hypotheticals, and not the underlying
facts that make them true.

2. Named graphs (Carroll et al., 2005) are an
extension of RDF graphs (Screiber and Raimond,
2014), primarily introduced to record provenance
information. They are worthy of further study,
since they promise a way of bridging between the
relentlessly positive world of knowledge represen-
tation and the more partial, hypothetical world of
natural language. In RDF-OWL graphs (Hitzler
et al., 2012), the subject-predicate-object triples

forming the nodes and arcs of the graph corre-
spond to atomic propositions. Beyond conjunc-
tion, no direct relations between these proposi-
tions can be expressed. Named graphs allow sub-
graphs (i.e. collections of atomic propositions) to
be placed in relationships with other sub-graphs,
and thus allow for negative, disjunctive and hypo-
thetical relations between complex propositions.

3. Named graphs illustrate a certain way of
factoring out complexity, in this case between
predicate-argument structure and Boolean / modal
structure. As a semantic representation, the
predicate-argument structure is correct, but not
complete. Adding a named, Boolean layer re-
quires no adjustment to the syntax or semantics
of the predicate-argument structure; it just embeds
it in a broader environment. This often is not the
case; e.g. in moving from unquantified predicate
logic to first-order quantified logic, to first-oder
modal logic, to higher-order intensional logic.

After reviewing RDF graphs and named graphs,
we discuss how they could be applied to a (some-
what incestuous) family of layered, graphical, se-
mantic representations (Boston et al., forthcom-
ing; Shen et al., 2018; Bobrow et al., 2007) (see
our companion paper (Kalouli and Crouch, 2018)
for an introduction to these representations). This
offers the prospect of a formal semantics that takes
graphs to be first class semantic objects, which dif-
fers from approaches like AMR (Banarescu et al.,
2013), where the graphs are descriptions of under-
lying semantic objects.

2 Graphs and Named Graphs

A graph is a collection of binary relationships
between entities. Since any n-ary relationship
can be decomposed into n + 1 binary relation-
ships through the introduction of an extra entity
that serves as a “pivot” (this is the basis of neo-
Davidsonian event semantics (Parsons, 1990)), all
n-ary relationships can be represented in graphical
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form as a collection of entity-relation triples.

2.1 RDF

This graphical approach to n-ary relationships has
seen perhaps its fullest use in the Resource De-
scription Framework (RDF) (Screiber and Rai-
mond, 2014), where subject-relation-object triples
can be stored to treat complex ontologies as
graphs. But since the triples form a conjunctive
set, RDF has to go through some contortions to
emulate negation and disjunction.

Unadorned, RDF is lax about what kinds of en-
tity can occur in triples, and individuals, relations,
and classes can intermingle freely. One can state
facts about how classes relate to other classes (e.g.
one is a subclass of the other), how relations relate
to other relations, and how individual relate to re-
lations and classes. Successive restrictions, such
as RDFS (Brickley and Guha, 2014) and OWL
(Hitzler et al., 2012) tighten up on this freedom
of expression, for the resulting gain in inferential
tractability.

OWL provides a number of class construction
operations that mimic Booleans at a class level:
complement (negation), intersection (conjunction)
and union (disjunction). One could therefore as-
sert that Rosie is not a cat by saying that she is
an instance of the cat-complement class, and one
could assert that Rosie is a cat or a dog by asserting
that she is an instance of the class formed by tak-
ing the union of cats and dogs. Additionally, OWL
and RDFS allow negative properties as a way of
stating that a particular relation does not hold be-
tween two entities (i.e. a form of atomic negation).

The semantic web is geared toward capturing
positive facts about what is known. Two positive
facts can establish a negative, e.g. that cats and
dogs are disjoint classes and that Rosie is a dog
establishes that Rosie is not a cat. But the need to
assert a negative rarely arises: better to wait until
the corresponding incompatible positive is known,
or as a last resort make up a positive fact that is in-
compatible with negative (e.g. that Rosie is a non-
cat). Natural language, by contrast, is full of neg-
ative, disjunctive, and hypothetical assertions for
which the justifying positive facts are not known.
And these Boolean and modal assertions express
relationships between propositions (i.e. collec-
tions of triples), and not between classes.

Moreover, Gardenförs (2014) makes the case
for restricting semantics to natural concepts within

a conceptual space. A conceptual space consists
of a set of quality dimensions (c.f. dimensions in
word vectors). A point in the space is a particular
vector along these dimensions. A natural concept
is a region (collection of points in the space) that is
connected and convex. This essentially means that
the shortest path from one sub-region of a natural
concept to another does not pass outside of the re-
gion defined by the concept: natural concepts are
regions that are not gerrymandered. OWL unions
of classes can arbitrarily combine disconnected re-
gions, whereas complements can tear holes in the
middle of regions: they can produce gerrymander-
ing that would make the most partisan blush.

2.2 Named Graphs
Named graphs were introduced by Carroll et al.
(2005) as a small extension on top of RDF, primar-
ily with the goal of recording provenance meta-
data for different parts of a complex graph, such as
source, access restrictions, or ontology versions.
However, applications to stating propositional at-
titudes and capturing logical relationships between
graphs were also mentioned in passing. A named
graph simply associates an extra identifier with a
set of triples. For example, a propositional attitude
like Fred believes John does not like Mary could
be represented as follows1:

:g1 { :john :like :mary }
:g2 :not :g1
:fred :belive :g2

where :g1 is the name given to the graph express-
ing the proposition that John likes Mary, and :g2

to the graph expressing its negation. Disjunction
likewise can be expressed as a relationship be-
tween named graphs:

:g1 { :john :like :mary }
:g2 { :fred :like :mary }
:g0 :or :g1
:g0 :or :g2

where the graph :g0 expresses the disjunction of
:g1 and :g2.

The graph semantics for named graphs is a sim-
ple extension of the basic semantics (Carroll et al.,
2005). The meaning of a named graph is the mean-
ing of the graph, and sub-graph relations between
named graphs must reflect the underlying relations
between the graphs that are named. But signif-
icantly, named graphs are not automatically as-
serted — there is no presumption that the triples

1Using the TriG format (Bizer and Cyganiak, 2014), with
the prefix definition for : omitted for brevity.
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Figure 1: GKR for Fred believes John likes Mary

occurring in a named graph are true. This is some-
what inconvenient if your main goal is to assert
positive, true facts. But this looks ideal for deal-
ing with negation, disjunction and hypotheticals in
natural language. In particular, the named graph
above asserts neither that John likes Mary nor that
John doesn’t like Mary.

Reification in RDF was an earlier approach
to dealing with provenance meta-data (Screiber
and Raimond, 2014). This turns every triple
into four triples that describe it, so that :john

:like :mary becomes :t :type :statement;

:t :subj :john; :t :pred :like; :t :obj

:mary. The reified graph is graphical description
of the original graph. Naming preserves the
underlying graph in a way that reification does
not.

3 Layered Graphs and the Graphical
Knowledge Representation

A recent proposal for semantic representation has
made use of so-called “layered-graphs” (GKR,
(Kalouli and Crouch, 2018), see also (Boston
et al., forthcoming; Shen et al., 2018)), with the
claim that this gives a good way of handling
Boolean, hypothetical, and modal relations2. The
proposal is based on earlier work on an Abstract
Knowledge Representtions (AKR, (Bobrow et al.,
2007)), which imposes a separation between con-
ceptual / predicate-argument structure and contex-
tual structure. The GKR representation (simpli-
fied) for Fred believes John likes Mary is shown
in Figure 1. This comprises two sub-graphs: a
concept/predicate-argument graph on the left, and
a context graph on the right. The concept graph
can be read conjunctively as stating the following,
but where variables range over (sub)concepts and
not over individuals:

∃b,l,f,j,m.
2This section does not attempt to motivate GKR in terms

of coverage of phenomena or support of natural language in-
ference: see the cited papers for this.

believe(b) & like(l) & fred(f)
& sub(b,f) & comp(b,l)
& mary(m) & john(j)
& subj(l,j) & obj(l,m)

Thus b denotes a sub-concept of believe, that is
further constrained to have as a subject role some
sub-concept of fred, and as a complement some
sub-concept of like. The concept graph makes
no assertions about whether any of these concepts
have individuals instantiating them: it asserts nei-
ther that Fred has a belief, nor that John likes
Mary. It is a level at which semantic similarity can
be assessed, but not one at which — on its own
— logical entailments can be judged. The concept
graph is a correct characterization of the sentence,
but an incomplete one.

Entailment requires existential commitments
that are introduced by the context graph shown
on the right of Figure 1. There are two contexts.
The top level, “true”, context top states the com-
mitments of the sentence’s speaker. The arc con-
necting it to the believe node means that the
speaker is asserting that there is an instance of the
believe concept. The second context, bel is lex-
ically induced by the word “believes”. The arc
from bel to the like node means that in this
context there is asserted to be an instance of the
like context. However, bel is marked as being
averidical with respect to top. This means that
we cannot lift the existential commitments of bel
up into top. Hence Figure 1 does not entail that
John likes Mary (nor that he doesn’t).

Other words introduce different context rela-
tions. For example know creates a veridical lower
context, which means that the lower existential
commitments can be lifted up. Whereas nega-
tion creates an anti-veridical lower context, which
specifically says that the concept that is instan-
tiated in the lower context is uninstantiated in
the upper one. Following the work of (Nairn
et al., 2006), these instantiation raising rules allow
complex intensional inference to be drawn (see
(Boston et al., forthcoming) for a fuller descrip-
tion).

4 Named FL0 Graphs

The semantics for GKR has yet to be clearly laid
out. Our claim is that the layered graphs are bet-
ter seen in terms of named graphs. First, that
the context graph simply expresses relationships
between named concept graphs, so that contexts
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C,D ⇒ A | C uD | ∀R.C
where A ∈ Atomic concept

R ∈ Atomic role
C,D ∈ concept

Figure 2: Concept Construction in FL0

are nothing more than concept (sub-)graphs. Sec-
ond, that the concept graph corresponds to the
FL0 description logic (Baader and Nutt, 2003),
for which subsumption is decidable in polynomial
time. FL0 is a simple logic that is generally re-
garded as too inexpressive to deal with interesting
language-related phenomena. But in combination
with graph naming it becomes much more expres-
sive.

The FL0 description logic allows concepts to
be constructed as shown in Figure 2. Given a
stock of atomic concepts, complex concepts can
be formed by (i) intersection, e.g. (Adult u Male
u Person) ≡ Man; and ii) slot/role restriction, e.g.
Bite u ∀subj.Dog u ∀obj.Man (the class of bitings
by dogs of men). The concept graphs of GKR cor-
respond to the application of FL0 operations to
atomic lexical concepts. The concept of the like

node in Figure 1 is thus like u ∀subj.j u ∀obj.m3.
In order to keep the concept graphs of GKR

within FL0, it is important that context nodes are
not allowed to participate in role restrictions. This
rules out the kind of free intermingling of graph
nodes and other nodes that was presented in Sec-
tion 2.2. The GKR treatment of Fred believes John
likes Mary is shown in Figure 1. Expressed as a
named graph, this corresponds to:

top: {b v Believe
f v Fred
b v ∀subj.f
b v ∀comp.l }

bel: {l v Like
j v John
m v Mary
l v ∀subj.j
l v ∀obj.m }

:top averidical :bel

This named-graph formulation of GKR inherits a
standard graph semantics, as described by Carroll
et al. (2005). The graph semantics is complemen-
tary to the kind of truth-conditional semantics set
out for AKR (and by analogy, GKR) by Bobrow

3GKR extends its concept graph with a property graph
that captures the effect of morpho-syntactic features like car-
dinality. This corresponds to extending the logic to FLN 0

by introducing cardinality restrictions.

et al. (2005). More work, however, is needed to
explore the connections between the graph and
truth-conditional semantics.

5 Abstract Meaning Representation
(AMR)

AMR is best seen as a graphical notation for de-
scribing logical forms, which is the view taken by
Bos (2016) and Stabler (2017) in their augmen-
tations of AMR to increase its expressive power.
This can be seen by considering the AMR for Fred
believes John likes Mary:

(b / believe
:arg0 (f / Fred)
:arg1 (l / like

:arg0 (j / John)
:arg1 (m / Mary)))

Expressed as a set of triples, this becomes
b instance believe; l instance like;
f instance Fred; j instance John;
b :arg0 f; m instance Mary;
b :arg1 l; l :arg0 j;

l :arg1 m;

Since a graph is a conjunction of triples, and be-
cause A ∧ B |= A, all the triples on the left
can be validly eliminated to leave those on the
right, which correspond to the graph for John likes
Mary. The inference from Fred believes John likes
Mary to John likes Mary is clearly not semanti-
cally valid. Consequently the AMR triples cannot
be interpreted as stating semantic-web style facts;
rather they state sub-formulas of a logical form.

There is nothing wrong in having a more hab-
itable, graphical notation for logical formulas, es-
pecially if large amounts of annotation are to be
done. But this is different from a goal of having
graphs as first class semantic objects.

6 Concluding Observations

This paper attempts to make the case for named
graphs as an interesting tool for natural language
semantics. The first task in exploring this further
would be to provide a truth-conditional, graph-
based semantics for GKR. A positive outcome
would enable closer links between semantic and
knowledge graphs.

By naming graphs, it appears that an inexpres-
sive, conjunctive concept logic, FL0, can be em-
ployed to handle a wide variety of more complex
phenomena including Booleans and hypotheticals.
However, one should not assume that the inferen-
tial tractability of FL0 carries across to a system
that combines it with named graphs.
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We conjecture that the restriction of concept for-
mation to FL0 will satisfy (Gardenförs, 2014) re-
quirements on the connectedness and convexity of
concepts. Additionally, the restricted operations
may be better for the operations inherent in deal-
ing with vector spaces used in distributed seman-
tic representation; it is currently unclear what cor-
responds to negation in vector spaces, though see
(Bowman et al., 2015). The strategy of having a
correct but incomplete conceptual structure may
make it easier to reconcile logical and distribi-
tional accounts of semantics if distributional se-
mantics is relieved of the burden of having to ac-
count for Boolean structure.

Naming a graph essentially boxes it off, to be
evaluated or asserted within a different context.
GKR focuses on the analogue between these con-
texts and switching assignments to possible worlds
in standard Kripke semantics for modal logics.
With regard to distributional quantification it ob-
serves that assignments to variables in standard
first-order logic plays a similar role, and suggests
using this to account for quantifier scope via con-
texts. This does not exhaust the space of evalua-
tive contexts. Named graphs were primarily mo-
tivated by the desire to record (provenance) meta-
data about triples. They provide an ideal means
of associating meta-data with semantic relation-
ships, such as the confidence that a particular role
restriction is correct. This can be extended to
record inter-dependencies between collections of
ambiguous relationships, using the packing mech-
anism of (Maxwell and Kaplan, 1993): choices be-
tween alternate interpretations also set up different
evaluation contexts.

The embedding of boxes in Discourse Rep-
resentation Theory (Kamp and Reyle, 1993) is
strongly reminiscent of embedding sub-graphs.
We speculate that DRT could be given a graph-
based semantics, in which discourse representa-
tion structures (DRSs) are seen as first class graph-
ical and semantic objects. However, one differ-
ence between DRT and GKR is that GKR imposes
a strict separation between concepts and contexts.
This essentially means that contexts cannot be re-
ferred to in conceptual predicate-argument struc-
tures. In DRT, this would correspond to not per-
mitting DRSs to serve as arguments of predicates.

With regard to AMR, naming some of the
graphs and expressing context relations between
them seems a relatively conservative extension in

terms of notation. But doing so offers the prospect
of lifting AMRs out of being graphical descrip-
tions of some other semantic object (like a logical
form), and becoming much closer to RDF graphs
as first-class semantic objects.
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