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Abstract

We present an approach to event coreference
resolution by developing a general framework
for clustering that uses supervised representa-
tion learning. We propose a neural network
architecture with novel Clustering-Oriented
Regularization (CORE) terms in the objective
function. These terms encourage the model to
create embeddings of event mentions that are
amenable to clustering. We then use agglom-
erative clustering on these embeddings to build
event coreference chains. For both within-
and cross-document coreference on the ECB+
corpus, our model obtains better results than
models that require significantly more pre-
annotated information. This work provides in-
sight and motivating results for a new general
approach to solving coreference and clustering
problems with representation learning.

1 Introduction

Event coreference resolution is the task of deter-
mining which event mentions expressed in lan-
guage refer to the same real-world event in-
stances. The ability to resolve event coreference
has improved the quality of downstream tasks
such as automatic text summarization (Vander-
wende et al., 2004), questioning-answering (Be-
rant et al., 2014), headline generation (Sun et al.,
2015), and text-mining in the medical domain
(Ferracane et al., 2016).

Event mentions are comprised of an action
component (or, head) and surrounding arguments.
Consider the following passages, drawn from two
different documents; the heads of the event men-
tions are in boldface and the subscripts indicate
mention IDs:

(1) The president’s speechm1 shockedm2 the au-
dience. He announcedm3 several new con-
troversial policies.

(2) The policies proposedm4 by the president
will not surprisem5 those who followedm6

his campaignm7.

In this example, m1, m3, and m4 form a chain
of coreferent event mentions (underlined), because
they refer to the same real-world event in which
the president gave a speech. The other four are
singletons, meaning that they all refer to separate
events and do not corefer with any other mention.

This work investigates how to learn useful rep-
resentations of event mentions. Event mentions
are complex objects, and both the event mention
heads and the surrounding arguments are impor-
tant for the event coreference resolution task. In
our example above, the head words of mentions
m2, shocked, and m5, surprise, are lexically sim-
ilar, but the event mentions do not corefer. This
task therefore necessitates a model that can cap-
ture the distributional relationships between event
mentions and their surrounding contexts.

We hypothesize that prior knowledge about the
task itself can be usefully encoded into the rep-
resentation learning objective. For our task, this
prior means that the embeddings of corefential
event mentions should have similar embeddings to
each other (a “natural clustering”, using the termi-
nology of Bengio et al. (2013)). With this prior,
our model creates embeddings of event mentions
that are directly conducive for the clustering task
of building event coreference chains. This is con-
trary to the indirect methods of previous work that
rely on pairwise decision making followed by a
separate model that aggregates the sometimes in-
consistent decisions into clusters (Section 2).

We demonstrate these points by proposing a
method that learns to embed event mentions into
a space that is tuned specifically for clustering.
The representation learner is trained to predict
which event cluster the event mention belongs to,
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using an hourglass-shaped neural network. We
propose a mechanism to modulate this training
by introducing Clustering-Oriented Regulariza-
tion (CORE) terms into the objective function of
the learner; these terms impel the model to pro-
duce similar embeddings for coreferential event
mentions, and dissimilar embeddings otherwise.

Our model obtains strong results on within-
and cross-document event coreference resolution,
matching or outperforming the system of Cybul-
ska and Vossen (2015) on the ECB+ corpus on all
six evaluation measures. We achieve these gains
despite the fact that our model requires signifi-
cantly less pre-annotated or pre-detected informa-
tion in terms of the internal event structure. Our
model’s improvements upon the baselines show
that our supervised representation learning frame-
work creates new embeddings that capture the ab-
stract distributional relations between samples and
their clusters, suggesting that our framework can
be generalized to other clustering tasks1.

2 Related Work

The recent work on event coreference can be cat-
egorized according to the assumed level of event
representation. In the predicate-argument align-
ment paradigm (Roth and Frank, 2012; Wolfe
et al., 2013), links are simply drawn between pred-
icates in different documents. This work only con-
siders cross-document event coreference (Wolfe
et al., 2013, 2015), and no within-document coref-
erence. At the other extreme, the ACE and ERE
datasets annotate rich internal event structure, with
specific taxonomies that describe the annotated
events and their types (Linguistic Data Consor-
tium, 2005, 2016). In these datasets, only within-
document coreference is annotated.

The creators of the ECB (Bejan and Harabagiu,
2008) and ECB+ (Cybulska and Vossen, 2014),
annotate events according to a level of abstraction
between that of the predicate-argument approach
and the ACE approach, being most similar to the
TimeML paradigm (Pustejovsky et al., 2003). In
these datasets, both within-document and cross-
document coreference relations are annotated. We
use the ECB+ corpus in our experiments because
it solves the lack of lexical diversity found within
the ECB by adding 502 new annotated documents,
providing a total of 982 documents.

1All code used in this paper can be found here:
https://github.com/kiankd/events

Previous work on model design for event coref-
erence has focused on clustering over a linguis-
tically rich set of features. Most models require a
pairwise-prediction based supervised learning step
which predicts whether or not a pair of event men-
tions is coreferential (Bagga and Baldwin, 1999;
Chen et al., 2009; Cybulska and Vossen, 2015).
Other work focuses on the clustering step itself,
aggregating local pairwise decisions into clusters,
for example by graph partitioning (Chen and Ji,
2009). There has also been work using non-
parametric Bayesian clustering techniques (Bejan
and Harabagiu, 2014; Yang et al., 2015), as well
as other probabilistic models (Lu and Ng, 2017).
Some recent work uses intuitions combining rep-
resentation learning with clustering, but does not
augment the loss function for the purpose of
building clusterable representations (Krause et al.,
2016; Choubey and Huang, 2017).

3 Event Coreference Resolution Model

We formulate the task of event coreference resolu-
tion as creating clusters of event mentions which
refer to the same event. For the purposes of this
work, we define an event mention to be a set of to-
kens that correspond to the action of some event.
Consider the sentence below (borrowed from Cy-
bulska and Vossen (2014)):

(3) On Monday Lindsay Lohan checked into re-
hab in Malibu, California after a car crash.

Our model would take, as input, feature vectors
(see Section 4) extracted from the two event men-
tions (in bold) independently. In this paper, we use
the gold-standard event mentions provided by the
dataset, and leave mention detection to other work.

3.1 Model Overview

Our approach to resolving event coreference con-
sists of the following steps:

1. Train a supervised neural network model which
learns event mention embeddings by predicting
the event cluster in the training set to which the
mention belongs (Figure 1).

2. At test time, use the previously trained model’s
embedding layer to derive representations of
unseen event mentions. Then, perform agglom-
erative clustering with these embeddings to cre-
ate event coreference chains (Figure 2).
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Figure 1: Our supervised representation learning model
during the training step. Dashed arrows indicate contri-
butions to the loss function.

Figure 2: Our trained model at inference time, used for
validation tuning and final testing. Note that H3 and Y
are not used in this step.

3.2 Supervised Representation Learning

We propose a representation learning framework
based on training a multi-layer artificial neural net-
work, with one layer He chosen to be the embed-
ding layer. In the training set, there are a certain
number of event mentions, each of which belongs
to some gold standard cluster, makingC total non-
singleton clusters in the training set. The network
is trained as if it were encountering a C+1-class
classification problem, where the class of an event
mention corresponds to a single output node, and
all singleton mentions belong to class C+12.

When using this model to cluster a new set of
mentions, the final layer’s output will not be di-
rectly informative since the output node structure
corresponds to the clusters within the training set.
However, we hypothesize that the trained model
will have learned to capture the abstract distribu-
tional relationships between event mentions and
clusters in the intermediate layer He. We thus use
the activations in He as the embedding of an event
mention for the clustering step (see Figure 2). A
similar hourglass-like neural architecture design
has been successful in automatic speech recogni-

2If each singleton mention (i.e., a mention that does not
corefer with anything else) had its own class then the model
would be confronted with a classification problem with thou-
sands of classes, many of which would only have one sample;
this is much too ill-posed, so we merge all singletons together
during the training step.

tion (Grézl et al., 2007; Gehring et al., 2013), but
has not to our knowledge been used to pre-train
embeddings for clustering.

3.3 Categorical-Cross-Entropy (CCE)
Using CCE as the loss function trains the model
to correctly predict a training set mention’s corre-
sponding cluster. With model prediction yic as the
probability that sample i belongs to class c, and in-
dicator variable tic = 1 if sample i belongs to class
c (else tic = 0), we have the mean categorical-
cross entropy loss over a randomly sampled train-
ing input batch X:

(1)LCCE = − 1

|X|

|X|∑

i=1

C+1∑

c=1

tic log(yic)

3.4 Clustering-Oriented Regularization
(CORE)

With CCE, the model may overfit towards accurate
prediction performance for those particular clus-
ters found in the training set without learning an
embedding that captures the nature of events in
general. This therefore motivates introducing reg-
ularization terms based on the intuition that em-
beddings of mentions belonging to the same clus-
ter should be similar, and that embeddings of men-
tions belonging to different clusters should be dis-
similar. Accordingly, we define dissimilarity be-
tween two vector embeddings (~e1, ~e2) according

3



to the cosine-distance function d:

d(~e1, ~e2) =
1

2

(
1− ~e1 · ~e2
||~e1||||~e2||

)
(2)

Given input batch X, we create two sets S and
D, where S is the set of all pairs (a, b) of men-
tions in X that belong to the same cluster, andD is
the set of all pairs (c, d) in X that belong to differ-
ent clusters. Note that all vector embeddings ~ei =
He(i); i.e., they are obtained by feeding the event
mention i’s features through to embedding layer
He. We now define the following Attractive and
Repulsive CORE terms.

3.4.1 Attractive Regularization
The first desirable property for the embeddings
is that mentions that belong to the same cluster
should have low cosine distance between each oth-
ers’ embeddings, since the agglomerative cluster-
ing algorithm uses cosine distance to make coref-
erence decisions.

Formally, for all pairs of mentions a and b that
belong to the same cluster, we would like to min-
imize the distance between their embeddings ~ea
and ~eb. We call this “attractive” regularization
because we want to attract embeddings closer to
each other by minimizing their distance d(~ea, ~eb)
so that they will be as similar as possible.

(3)Lattract =
1

|S|
∑

(a,b)∈S
d(~ea, ~eb)

3.4.2 Repulsive Regularization
The second desirable property is that the embed-
dings corresponding to mentions that belong to
different clusters should have high cosine distance
between each other. Thus, for all pairs of mentions
c and d that belong to different clusters, the goal is
to maximize their distance d(~ec, ~ed). This is “re-
pulsive” because we train the model to push away
the embeddings from each other to be as distant as
possible.

(4)Lrepulse = 1− 1

|D|
∑

(c,d)∈D
d(~ec, ~ed)

3.5 Loss Function
Equation 5 below shows the final loss function3.
The attractive and repulsive terms are weighted by

3Note that, while we present Equations 3 and 4 as sum-
mations over pairs from the input batch, the computation is
actually reasonable when written in terms of matrix multipli-
cations. The most expensive operation multiplying the em-
bedded batch of input samples times its transpose.

hyperparameter constants λ1 and λ2 respectively:

(5)L = LCCE + λ1Lattract + λ2Lrepulse

By adding these regularization terms to the loss
function, we hypothesize that the new embeddings
of test set mentions (obtained by feeding-forward
their features into the trained model) will exem-
plify the desired properties represented by the loss
function, thus assisting the agglomerative cluster-
ing task in producing correct coreference-chains.

3.6 Agglomerative Clustering

Agglomerative clustering is a non-parametric
“bottom-up” approach to hierarchical clustering,
in which each sample starts as its own cluster,
and at each step, the two most similar clusters
are merged, where similarity between two clus-
ters is measured according to some similarity met-
ric. After each merge, clustering similarities are
recomputed according to a preset criterion (e.g.,
single- or complete-linkage). In our models, clus-
tering proceeds until a pre-determined similarity
threshold, τ , is reached. We tuned τ on the vali-
dation set, doing grid search for τ ∈ [0, 1] to max-
imize B3 accuracy4. Preliminary experimentation
led us to use cosine-similarity (see cosine distance
in Equation 2) to measure vector similarity, and
single-linkage for clustering decisions.

We experimented with two initialization
schemes for agglomerative clustering. In the first
scheme, each event mention is initialized as its
own cluster, as is standard. In the second, we
initialized clusters using the lemma-δ baseline
defined by Upadhyay et al. (2016). This baseline
merges all event mentions with the same head
lemma that are in documents with document-level
similarity that is higher than a threshold δ. Upad-
hyay et al. showed that it is a strong indicator of
event coreference, so we experimented with ini-
tializing our clustering algorithm in this way. We
call this model variant CORE+CCE+LEMMA,
and describe the parameter tuning procedures in
more detail in Section 5.

4 Feature Extraction

We extract features that do not require the pre-
processing step of event-template construction to
represent the context (unlike Cybulska and Vossen

4We optimize with B3 F1-score because the other mea-
sures are either too expensive to compute (CEAF-M, CEAF-
E, BLANC), or are less discriminative (MUC).
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1.action checked into, crash
2.time On Monday
3.location rehab in Malibu, California
4.participant Lindsay Lohan (human)

car (non-human)

Table 1: An event template of the sentence in Ex-
ample 3, borrowed from Cybulska and Vossen (2014;
2015). Our model only requires as input the action, not
the time, location, nor participant arguments.

(2015), see Table 1); instead, we represent the sur-
rounding context by using the tokens in the gen-
eral vicinity of the event’s action. We thus only
require the event’s action – which is what we de-
fine as an event mention – to be previously de-
tected, not all of its arguments. We motivate this
by arguing that it would be preferable to build high
quality coreference chains without event template
features since since extracting event templates can
be a difficult process, with the possibility of errors
cascading into the event coreference step.

4.1 Contextual

Inspired by the approach of Clark and Manning
(2016) in the entity coreference task, we extract,
for the token sets below, (i) the token’s word2vec
word embedding (Mikolov et al., 2013) (or aver-
age if there are multiple); and, (ii) the one-hot
count vector of the token’s lemma5 (or sum if there
are multiple), for each event mention, em:
• the first token of em;
• the last token of em;
• all tokens in the em;
• each of the two tokens preceding em;
• each of the two tokens following em;
• all of the five tokens preceding em;
• all of the five tokens following em;
• all of the tokens in em’s sentence.

4.2 Document

It is necessary to include features that character-
ize the mention’s document, hoping that the model
learns a latent understanding of relations between
documents. We extract features from the event
mention’s document by building lemma-based TF-
IDF vector representations of the document. We
use log normalization of the raw term frequency

5This is a 500-dimensional vector where the first 499 en-
tries correspond to the 499 most frequently occurring lemmas
in the training set, and the 500th entry indicates if the lemma
is not in that set of most frequently occurring lemmas.

of token lemma t in document d, ft,d, where
TFt = 1 + log(ft,d). For the IDF term we use
smoothed inverse document frequency, with N as
the number of documents and nt as the number
of documents that contain the lemma, we have
IDFt = log(1+ N

nt
). By performing a component-

wise multiplication of the IDF vector with each
row in term-frequency matrix TF, we create TF-
IDF vectors of each document in the training and
test sets (with length corresponding to the number
of unique lemmas in the training set). We com-
press these vectors to 100 dimensions with prin-
cipal component analysis fitted onto the train set
document vectors, which is used to transform the
validation and test set document vectors.

4.3 Comparative

We include comparative features to relate a men-
tion to the other mentions in its document and to
the mentions in the set of documents the model
would be requested to extract event coreference
chains from. This is motivated by the fact that
coreference decisions must be informed by the re-
lationship mentions have with each other. Firstly,
we encode the position of the mention in its doc-
ument with specific binary features indicating if
it is first or last; for example, if there were five
mentions and it were the third, this feature would
correspond to the vector [0, 35 , 0].

Next, we define two sets of mentions we would
like to compare with: the first contains all men-
tions in the same document as the current mention
em, and the second contains all mentions in the
data we are asked to cluster. For each of these sets,
we compute: the average word overlap and aver-
age lemma overlap (measured by harmonic simi-
larity) between em and each of the other mentions
in the set. We thus add two feature vector entries
for each of the sets: the average word overlap be-
tween em and the other mentions in the set, and
the average lemma overlap between em and the
other mentions in the set.

5 Experimental Design

We run our experiments on the ECB+ corpus, the
largest corpus that contains both within- and cross-
document event coreference annotations. We fol-
lowed the train/test split of Cybulska and Vossen
(2015), using topics 1-35 as the train set and 36-
45 as the test set. During training, we split off a
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validation set6 for hyperparameter tuning.
Following Cybulska and Vossen, we used the

portion of the corpus that has been manually re-
viewed and checked for correctness. Some pre-
vious work (Yang et al., 2015; Upadhyay et al.,
2016; Choubey and Huang, 2017) do not appear
to have followed this guideline from the corpus
creators, as they report different corpus statis-
tics compared to those reported by Cybulska and
Vossen. As a result, those papers may report re-
sults on a data set with known annotation errors.

5.1 Evaluation Measures

Since there is no consensus in the coreference res-
olution literature on the best evaluation measure,
we present results obtained according to six differ-
ent measures, as is common in previous work. We
use the scorer presented by Pradhan et al. (2014).
In this task, the term “coreference chain” is syn-
onymous with “cluster”.

MUC (Vilain et al., 1995). Link-level mea-
sure which counts the minimum number of link
changes required to obtain the correct clustering
from the predictions; it does not account for cor-
rectly predicted singletons.

B3 (Bagga and Baldwin, 1998). Mention-level
measure which computes precision and recall for
each individual mention, overcoming the singleton
problem of MUC, but can problematically count
the same coreference chain multiple times.

CEAF-M (Luo, 2005). Mention-level measure
which reflects the percentage of mentions that are
in the correct coreference chains. Note that preci-
sion and recall are the same in this measure since
we use pre-annotated mentions.

CEAF-E (Luo, 2005). Entity-level measure com-
puted by aligning predicted with the gold chains,
not allowing one chain to have more than one
alignment, overcoming the problem of B3.

BLANC (Luo et al., 2014). Computes two F-
scores in terms of the pairwise quality of corefer-
ence decisions and non-coreference decisions, and
averages these scores together for the final results.

CoNLL. The mean of MUC, B3, and CEAF-E.

5.2 Models

We compare our representation-learning model
variants to three baselines: a deterministic lemma-

6Topics 2, 5, 12, 18, 21, 23, 34, 35 (randomly chosen).

based baseline, a lemma-δ baseline, and an unsu-
pervised baseline which clusters the originally ex-
tracted features. We also compare with the results
of Cybulska and Vossen (2015).

5.2.1 Baselines
LEMMA. This algorithm clusters event mentions
which share the same head word lemma into the
same coreference chains across all documents.

LEMMA-δ. Proposed by Upadhyay et al. (2016),
this method provides a difficult baseline to beat.
A δ-similarity threshold is introduced, and we
merge two mentions with the same head-lemma if
and only if the cosine-similarity between the TF-
IDF vectors of their corresponding documents is
greater than δ. This δ parameter is tuned to maxi-
mize B3 performance on the validation set, which
we found occurs when δ = 0.67.

UNSUPERVISED. This is the result obtained
by agglomerative clustering over the original un-
weighted features. Again, we optimize the τ sim-
ilarity threshold over the validation set.

5.2.2 Sentence Templates (CV2015)
Cybulska and Vossen (2015) propose a model that
uses sentence-level event templates (see Table 1),
requiring more annotated information than our
models. See (Vossen and Cybulska, 2017) for fur-
ther elaboration of this model. To our knowledge,
this is the best previous model on ECB+ using the
same data and evaluation criteria as our work.

5.2.3 Representation Learning.
We test four different model variants:

• CCE: uses only categorical-cross-entropy in the
loss function (Equation 1);

• CORE: uses only clustering-oriented regular-
ization; i.e., the attract and repulse terms (Equa-
tions 3 and 4);

• CORE+CCE: includes categorical-cross-
entropy and the attract and repulse terms
(Equation 5);

• CORE+CCE+LEMMA: initializes the agglom-
erative clustering with clusters computed by
lemma-δ (with a differently tuned value of δ
than the baseline) and continues the clustering
process using the similarities between the em-
beddings created by CORE+CCE.
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Model λ1 λ2 B3 τ

Baselines
UNSUPERVISED - - 0.590 0.657
LEMMA - - 0.597 -
LEMMA-δ - - 0.612 -
Model Variants
CORE+CCE+L 2.0 0.0 0.678 0.843

CORE+CCE 2.0 2.0 0.663 0.776
2.0 1.0 0.666 0.773
2.0 0.1 0.665 0.843
2.0 0.0 0.669 0.843
0.0 2.0 0.662 0.710

CORE 2.0 2.0 0.631 0.701
1.0 1.0 0.625 0.689

CCE - - 0.644 0.853

Table 2: Model comparison based on validation
set B3 accuracy with optimized τ cluster-similarity
threshold. For CORE+CCE+LEMMA (indicated as
CORE+CCE+L) we tuned to δ = 0.89; for LEMMA-δ
we tuned to δ = 0.67.

5.3 Hyper-parameter Tuning
For the representation learning models, we per-
formed a non-exhaustive hyper-parameter search
optimized for validation set performance. We
keep the following parameters constant across the
model variants:

• 1000 neurons in H1 and H3; 250 neurons in He,
the embedding layer (see Figure 1);

• Softmax output layer with C + 1 units;

• ReLU activation functions for all neurons;

• Adam gradient descent (Kingma and Ba, 2014);

• 25% dropout between each layer;

• Learning rate of 0.00085 (times 10−1 for
CORE);

• Randomly sampled batches of 272 mentions,
where a batch is forced to contain pairs of coref-
erential and non-coreferential mentions.

Models are trained for 100 epochs. At each
epoch, we optimize τ (our agglomerative clus-
tering similarity threshold) using a two-pass ap-
proach: we first test 20 different settings of τ ,
then τ is further optimized around the best value
from the first pass. For CORE+CCE+LEMMA,
we tune the δ parameter of the lemma-δ clustering

approach to the validation set by testing 100 dif-
ferent values of δ; these different δ values initial-
ize the clusters, and we then continue clustering
by testing validation results obtained when using
the similarities between the embeddings created
by CORE+CCE for different values of τ .

Some of the results of hyperparameter tuning
on the validation set are shown in Table 2. Inter-
estingly, we observe that CORE+CCE performs
slightly better with λ2 = 0; i.e., without repulsive
regularization. This suggests that enforcing rep-
resentation similarity is more important than en-
forcing division, although we cannot conclusively
state that repulsive regularization would not be
useful for other tasks. Nonetheless, for test set
results we use the optimal hyperparameter config-
urations found during this validation-tuning step;
e.g., for CORE+CCE we set λ1 = 2 and λ2 = 0.

6 Results

Table 3 presents the performance of the models
for combined within- and cross-document event
coreference. Results for these models are obtained
with the hyper-parameter settings that achieved
optimal accuracy during validation-tuning.

Firstly, we observe that CORE+CCE offers
marked improvements upon the UNSUPERVISED

baseline, CORE model, and CCE model. From
these results we conclude: (i) supervised represen-
tation learning provides more informative embed-
dings than the original feature vectors; and, (ii)
that combining Clustering-Oriented Regulariza-
tion with categorical-cross-entropy is better than
just using one or the other, indicating that our in-
troduction of these novel terms into the loss func-
tion is a useful contribution.

We also note that CORE+CCE+LEMMA

(which obtains the best validation set results) beats
the strong LEMMA-δ baseline. Our model of-
fers marked improvements or roughly equivalent
scores in each evaluation measure except BLANC,
where the baseline offers a 3 point F-score im-
provement. This is due to the very high precision
of the baseline, whereas CORE+CCE+LEMMA

seems to trade precision for recall.
We finally observe that CORE+CCE+LEMMA

improves upon the results of Cybulska and Vossen
(2015). We obtain improvements of 14 points in
MUC, 3 points in entity-based CEAF, 5 points in
CoNLL, and 1 point in BLANC, with equivalent
results in B3 and mention-based CEAF. These re-
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MUC B3 CM CE BLANC CONLL
Model R P F R P F F R P F R P F F
Baselines
LEMMA 66 58 62 66 58 62 51 87 39 54 64 61 63 61
LEMMA-δ 55 68 61 61 80 69 59 73 60 66 62 80 67 66
UNSUPERVISED 39 63 48 55 81 66 51 72 49 58 57 58 58 57
Previous Work
CV2015 43 77 55 58 86 69 58 - - 66 60 69 63 64
Model Variants
CCE 66 63 65 69 60 64 50 59 63 61 69 56 59 63
CORE 58 58 58 66 58 62 44 53 53 53 66 54 56 57
CORE+CCE 62 70 66 67 69 68 56 73 64 68 68 59 62 67
CORE+CCE+LEMMA 67 71 69 71 67 69 58 71 67 69 72 60 64 69

Table 3: Combined within- and cross-document test set results on ECB+. Measures CM and CE stand for mention-
based CEAF and entity-based CEAF, respectively.

MUC B3 CM CE BLANC CONLL
Model R P F R P F F R P F R P F F
Baselines
LEMMA-δ 41 77 53 86 97 92 85 92 82 87 65 86 71 77
UNSUPERVISED 32 36 34 85 86 85 74 80 78 79 65 55 57 66
Model Variants
CCE 44 49 46 87 89 88 79 82 80 81 67 67 67 72
CORE 55 32 40 89 70 78 65 64 79 71 75 54 56 63
CORE+CCE 43 68 53 87 95 91 84 90 82 86 67 76 70 76
CORE+CCE+LEMMA 57 69 63 90 94 92 86 90 86 88 73 78 75 81

Table 4: Within-document test set results on ECB+. Note that LEMMA is equivalent to LEMMA-δ in the within-
document setting. Cybulska and Vossen (2015) did not report the performance of their model in this setting.

sults suggest that high quality coreference chains
can be built without necessitating event templates.

In Table 4, we see the performance of our
models on within-document coreference resolu-
tion in isolation. These results are obtained
by cutting all links drawn across documents
for the gold standard chains and the predicted
chains. We observe that, across all models,
scores on the mention- and entity-based measures
are substantially higher than the link-based mea-
sures (e.g., MUC and BLANC). The usefulness
of CORE+CCE+LEMMA (which initializes the
clustering with the lemma-δ predictions and then
continues to cluster with CORE+CCE) is exem-
plified by the improvements or matches in ev-
ery measure when compared to both LEMMA-δ
and CORE+CCE. The most vivid improvement
here is observed with the 10 point improvement in
MUC over both models as well as the 4 and 5 point
improvements in BLANC respectively, where the
higher recall entails that CORE+CCE+LEMMA

confidently predicts coreference links that would
otherwise have been false negatives.

7 Conclusions and Future Work

We have presented a novel approach to event
coreference resolution by combining supervised
representation learning with non-parametric clus-
tering. We train an hourglass-shaped neural net-
work to learn how to represent event mentions in
a useful way for an agglomerative clustering al-
gorithm. By adding the novel Clustering-Oriented
Regularization (CORE) terms into the loss func-
tion, the model learns to construct embeddings
that are easily clusterable; i.e., the prior that em-
beddings of samples belonging to the same cluster
should be similar, and those of samples belonging
to different clusters should be dissimilar.

Our results suggest that clustering embeddings
created with representation learning is much bet-
ter than clustering of the original feature vectors,
when using the same agglomerative clustering al-
gorithm. We show that including CORE in the loss
function improves performance more than when
only using categorical-cross-entropy to train the
representation learner model. Our top-performing
model obtains results that improve upon previous
work despite the fact that our model requires less
annotated information in order to perform the task.
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Future work involves applying our model to au-
tomatically annotated event mentions and other
event coreference datasets, and extending this
framework toward a full end-to-end system that
does not rely on manual feature engineering at the
input level. Additionally, our model may be use-
ful for other clustering tasks, such as entity coref-
erence and document clustering. Lastly, we seek
to determine how CORE and its imposition of a
clusterable latent space structure may or may not
assist in improving the quality of latent represen-
tations in general.
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Québec - Nature et Technologies (FRQNT). We
thank the anonymous reviewers for their helpful
comments and suggestions.

References
Amit Bagga and Breck Baldwin. 1998. Algorithms

for scoring coreference chains. In The first in-
ternational conference on language resources and
evaluation workshop on linguistics coreference, vol-
ume 1, pages 563–566.

Amit Bagga and Breck Baldwin. 1999. Cross-
document event coreference: Annotations, exper-
iments, and observations. In Proceedings of the
Workshop on Coreference and its Applications,
pages 1–8. ACL.

Cosmin Adrian Bejan and Sanda Harabagiu. 2014. Un-
supervised Event Coreference Resolution. Compu-
tational Linguistics, 40(2):311–347.

Cosmin Adrian Bejan and Sanda M Harabagiu. 2008.
A Linguistic Resource for Discovering Event Struc-
tures and Resolving Event Coreference. In LREC.

Yoshua Bengio, Aaron Courville, and Pascal Vincent.
2013. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis
and machine intelligence, 35(8):1798–1828.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen,
Abby Vander Linden, Brittany Harding, Brad
Huang, Peter Clark, and Christopher D Manning.
2014. Modeling Biological Processes for Reading
Comprehension. In Proceedings of the 2014 Con-
ference on EMNLP, pages 1499–1510.

Zheng Chen and Heng Ji. 2009. Graph-based event
coreference resolution. In Proceedings of the 2009
Workshop on Graph-based Methods for NLP, pages
54–57. ACL.

Zheng Chen, Heng Ji, and Robert Haralick. 2009. A
Pairwise Event Coreference Model, Feature Impact
and Evaluation for Event Coreference Resolution.
In Proceedings of the workshop on events in emerg-
ing text types, pages 17–22. ACL.

Prafulla Kumar Choubey and Ruihong Huang. 2017.
Event coreference resolution by iteratively un-
folding inter-dependencies among events. arXiv
preprint arXiv:1707.07344.

Kevin Clark and Christopher D Manning. 2016. Im-
proving Coreference Resolution by Learning Entity-
Level Distributed Representations. arXiv preprint
arXiv:1606.01323.

Agata Cybulska and Piek Vossen. 2014. Using a
sledgehammer to crack a nut? Lexical diversity and
event coreference resolution. In LREC, pages 4545–
4552.

Agata Cybulska and Piek Vossen. 2015. Translating
Granularity of Event Slots into Features for Event
Coreference Resolution. In Proceedings of the 3rd
Workshop on EVENTS at the NAACL-HLT, pages 1–
10.

Elisa Ferracane, Iain Marshall, Byron C Wallace, and
Katrin Erk. 2016. Leveraging coreference to iden-
tify arms in medical abstracts: An experimental
study. EMNLP, pages 86–95.

Jonas Gehring, Yajie Miao, Florian Metze, and Alex
Waibel. 2013. Extracting deep bottleneck features
using stacked auto-encoders. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE Inter-
national Conference on, pages 3377–3381. IEEE.
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